
 1 Introduction
This document is a set of notes for setting up a PC Linux system and Eclipse for cross-developing
programs for Raspberry Pi running Raspbian or RaspiOS operating system.

The notes include setting up both systems from the installation media.

 2 Preliminary setup
This part covers the initial setup of tools needed outside of Eclipse.

 2.1.1 Development tools

The test setup was made with a Kubuntu 20.04 LTS Linux on a PC, and a fresh Raspbian /
Raspberry Pi OS version 10 (Buster). The description begins from the initial installation from the
distribution media, but it is not necessary to destroy a good working installation to follow the
recipes.

The recipes assume a Debian-compatible system on the PC. The Debian installer just ignores the
requests to install packages that are already in the system.

 2.1.2 Special hardware required

To write the SD card for Raspberry Pi mass memory, a connection for the card to the host PC is
needed, either a card slot on the PC or a suitable adapter.

 2.1.3 Network connections needed

For running the remote debugging and installing software, it is necessary to have a network
connection on both the PC and the Raspberry. Both have a need to reach each other and to have a
connection to the Internet. There is a need to know the IP address or DNS name of the Raspberry.
The details how to set up the networking depend on the available network.

 2.2 Host Linux setup

 2.2.1 Set up from distribution image

Get the installation image from a distribution site, put it into suitable installation medium,
depending on the PC properties. The test installation used the kubuntu-20.04.3-desktop-amd64.iso
DVD image. Please note that Eclipse needs a 64 bit system to run.

The installation asks for an user name and password. Both are needed later.

 2.2.2 Set up keyboard, time zone and locale

Depending on your keyboard hardware and location, the keyboard, time zone and locale probably
need to be set up properly.

 2.2.3 Update

The installation images are not updated frequently, so an update is probably needed. Log in and
open a text terminal (Konsole in KDE).

sudo apt update

Respond with your password to get superuser rights.

sudo apt full-upgrade -y

Restart

sudo shutdown -r now

 2.2.4 Clean up

Log in again and open the text terminal for clean-up

sudo apt autoremove -y

sudo apt autoclean

The initial PC setup is completed.

 2.3 Raspberry Pi setup

 2.3.1 Set up from distribution image

Get the Raspberry Pi OS from https://www.raspberrypi.com/software/operating-systems/ and follow
the instructions there. Please just copy the image onto the SD card, do not use the NOOBS installer.
NOOBS occasionally sets irreversible write-protection on the card, spoiling it.

 2.3.2 Ensure SSH access

After writing the SD card, its BOOT partition can be mounted on the host PC. The Kubuntu file
manager asks if the partition should be accessed. Accept the boot partiton. The easiest way to add
SSH access is to create a zero length file with the name ssh into the BOOT partition. Kubuntu
mounts the partition to

/media/yourusername/boot/

Substitute yourusername with your username on the host Linux.

Open text terminal and create the file

touch /media/yourusername/boot/ssh

Use the file manager to unmount the SD card. Move the card to the Raspberry.

 2.3.3 Update

Start up Raspberry.

If you have keyboard and display on the Pi, use them, otherwise use the host PC SSH to log in as
user pi and password Raspberry.

Set up the keyboard layout, time zone and locale if needed.

https://www.raspberrypi.com/software/operating-systems/

Do the same update operations as with the host PC

sudo apt update
sudo apt full-upgrade -y
sudo shutdown -r now

 2.3.4 Clean up

After restart, log in again and clean up

sudo apt autoremove -y
sudo apt autoclean

 2.3.5 Install gdbserver

Install GDB server on Raspberry

sudo apt install gdbserver

 2.3.6 Create an user to match the username on the host

To simplify the remote handling, create an user with the same name as on the host PC and get the
right to change to superuser if needed

sudo adduser yourusername
sudo adduser yourusername sudo

Replace yourusername with your user name on the host PC.

The initial setup of Raspberry is completed.

 2.4 Host Linux setup, continued

 2.4.1 Install required packages

Open text console on host Linux and install

sudo apt install build-essential git gdb-multiarch openjdk-11-jdk

 2.4.2 Install Raspbian cross-tools

Change to superuser, set up installation directory for Raspbian tools and install

sudo bash
cd /opt
mkdir raspbian
cd raspbian
git clone https://github.com/raspberrypi/tools

The cloning takes some time. After it is done, continue

ln -s tools/arm-bcm2708/arm-linux-gnueabihf toolbase
ln -s toolbase/bin bin
ln -s toolbase/arm-linux-gnueabihf/sysroot sysroot
exit

The symbolic links are set to simplify the setup of toolset paths later.

Now the tools are in /opt/raspbian/*.

https://github.com/raspberrypi/tools

 2.4.3 Generate SSH keys

To simplify SSH access to Raspberry, create user identification SSH keys for login without a
password.

The keys may be a bit tricky. By default, OpenSSH creates private keys in a format which cannot be
used by the encryption libraries used by Eclipse. OpenSSH can also use the PEM keys which are
good for Eclipse.

In a system with SSH already set up, there may be a key pair already. Check if the file ~/.ssh/id_rsa
exists. If it is there and there is no file ~/.ssh/id_rsa.pem and the first text line of the key file
(id_rsa) is

-----BEGIN OPENSSH PRIVATE KEY-----

it needs to be converted

cd ~/.ssh
cp id_rsa id_rsa.pem
ssh-keygen -p -m PEM -P “” -N “” -f ~/.ssh/id_rsa.pem

In a fresh installation, there are no SSH keys yet, generate them

ssh-keygen -t rsa -b 4096 -m PEM -N “” -f ~/.ssh/id_rsa

The first line of the private key in the required PEM format is

-----BEGIN RSA PRIVATE KEY-----

 2.4.4 Install public SSH key to Raspberry

Check that Raspberry is running and accessible from net with SSH, install the key

ssh-copy-id yourusername@raspberryip

Where yourusername is the username set up previously and raspberryip is the IP address or DNS
name of Raspberry.

Respond with your password on Raspberry. Check that you can login without password

ssh raspberryip

If the login is successful, log out

exit

The setup is completed.

mailto:yourusername@raspberryip

 2.5 Cross-compilation test

 2.5.1 Create test source, compile it

Create a working directory, change to it and create hello.c

mkdir -p ~/tmpdir
cd ~/tmpdir

Use your favourite editor to create hello.c

#include <stdio.h>
#include <stdlib.h>
int main(void)

{
printf(“Hello World!\n”);
return EXIT_SUCCESS;
}

Compile hello.c to debug binary hello

export PATH=/opt/raspbian/bin:$PATH
arm-linux-gnueabihf-gcc -g -Og -o hello hello.c

 2.5.2 Start gdbserver on Raspberry

On Raspberry console, ensure that ~/Downloads exists, change to it

mkdir -p ~/Downloads
cd ~/Downloads
gdbserver --multi :5555

 2.5.3 Run GDB on host, using Raspberry remote target

Use GDB for multiple target architectures, tell it where is the system root used for developing the
target code, set up remote target, copy the code to Raspberry, and run it.

On host console

gdb-multiarch hello
set sysroot /opt/raspbian/sysroot
target extended-remote raspberryip:5555
remote put hello hello
set remote exec-file hello
run
monitor exit
disconnect
quit

The Raspberry console shows the Hello World message if everything is working.

 2.5.4 Optional cleanup on Raspberry tools

If it is desired to save host disk space, much of the cloned GIT contents may be deleted

sudo bash
cd /opt/raspbian/tools
rm -rf .git*
cd arm-bcm2708
rm -rf arm-bcm*
rm -rf gcc-linaro*
exit

 2.6 Eclipse setup
This part covers the setup of Eclipse.

 2.6.1 Download, unzip installer and start it

Get the Eclipse installer from <https://www.eclipse.org/downloads/packages/installer>.

The correct one for PC Linux is Linux x86_64. Select the ‘save’ option for the downloaded file
handling. The default browser, Firefox, saves it into ~/Downloads.

cd
tar xzvf Downloads/eclipse-inst-jre-linux64.tar.gz
eclipse-installer/eclipse-inst&

 2.6.2 Update installer if needed

There is an icon of three horizontal stripes at the top right part of the installer window. If there is an
exclamation point (!) on the icon, click the icon and click ‘Update’ on the next screen. The installer
restarts when the update is complete.

 2.6.3 Install Eclipse IDE for C/C++ Developers

On the installer screen, select Eclipse IDE for C/C++ Developers. Accept other defaults, but the
desktop shortcut may be left out, on certain desktops, it does not function. Click Install. After
installation, click LAUNCH. When Eclipse asks for workspace, just click Launch.

The installed Eclipse is in ~/eclipse/cpp-latest-released/eclipse/eclipse.

 2.6.4 Update installation if needed

On the Eclipse menu, click Help → Check for Updates. Accept all updates, if any.

 2.6.5 Install Remote System Explorer modules

Click Help → Install New Software.

For Work with, select the current Eclipse release (now: 2022-03).

Open Mobile and Device Development drop-down using the little triangle on the left.

Select from the checkboxes Remote System Explorer End-User Runtime and Remote System
Explorer End-User Actions.

Accept licences and finish the installation.

https://www.eclipse.org/downloads/packages/installer

 2.7 Cross-compilation test using Eclipse

 2.7.1 Create cross-hello using CDT and Raspberry toolset

Open C/C++ perspective on Eclipse.

Click File → New C/C++ Project, C Managed Build → Next

Project name: hello, Executable, Hello World ANSI C Project, Cross GCC → Next

Basic Settings as required → Next

Leave Debug and Release selected → Next

Cross compiler prefix: arm-linux-gnueabihf-
Cross compiler path: /opt/raspbian/bin

Click Finish

 2.7.2 Compile and link Debug target

Select the project in Project Explorer

Project → Build Configurations → Set Active → Debug

Project → Build Project.

The project should build without complaints and create a run file in Binaries branch on project tree,
with a bug icon.

 2.7.3 Run remote debug on created target

Select the binary file icon, from menu select Run → Debug Configurations

Select C/C++ Remote Application, click New Configuration button (leftmost on top row)

On Main tab, check Name, Project and C/C++ Application boxes for proper contents

In Build box, select Disable auto build

In Connection row, select New … and choose SSH from the drop-down list, click OK

Connection name: Raspberry remote

Host information, Host: IP of Raspberry, User: your username on Raspberry,
Public key based authentication

Click Network Connections, SSH2, verify your private PEM key in Private keys,
click Apply and Close

Click Finish in New Connection dialog box

On Main tab, Remote Absolute File Path for C/C++ Application, click Browse …

Accept SSH remote host identification, if asked, fill in the password on Raspberry to the pop-up

Select Downloads from the selection dialog box, click OK

On Debugger tab, Main sub-tab, GDB debugger: gdb-multiarch

Click Debug button on bottom right corner

If requested, accept change to debug perspective

Select debugging options, e.g. breakpoints if needed

Select Run → Resume, or click the green run triangle button

After debugging, return to C/C++ perspective

