developer\Vorks.

Interfacing with the CDT debugger, Part 2: Accessing
gdb with the Eclipse CDT and Mi

How C/C++ Development Tooling uses the C/C++ Debugger Interface
to work with the GNU Debugger's Machine Interface

Matthew Scarpino June 24, 2008

The graphical debugging environment provided by Eclipse C/C++ Development Tooling
(CDT) is about as good as it gets, displaying breakpoints, watchpoints, variables, registers,
disassembly, signals, and memory contents. You can add new capabilities to this environment
or access these views to display output from a custom debugger. But first, you need to
understand the C/C++ Debugger Interface (CDI) and how it communicates with Eclipse. Part
1 of this "Interfacing with the CDT debugger" series describes the CDI at a high level. Here in
Part 2, learn how the CDT talks to the GNU Debugger (gdb). Specifically, learn how the CDT
uses the CDI and the Machine Interface (MI) to interface with the gdb.

View more content in this series

The GNU Debugger (gdb) is the most popular open source debugger in use. Originally designed
for C, it's been ported to debug code in many languages on a variety of computing systems,
from tiny embedded devices to large-scale supercomputers. It's generally used as a command-
line executable, but it can be accessed through software using the little-known MI protocol. This
article explains how Ml works and how the CDT uses MI to communicate with gdb. This concrete
example of CDT-debugger interaction should be helpful for anyone wishing to interface a custom
C/C++ debugger from CDT.

The Java™ classes discussed here build on the classes and interfaces provided by the CDI,
introduced in Part 1 of this "Interfacing with the CDT debugger"” series. To remove any confusion,
let's be clear about the difference between the CDI and MI:

* The C/C++ Debugger Interface (CDI) was created by Eclipse/CDT developers so CDT can
access external debuggers.

* The Machine Interface (MI) was created by gdb developers so external applications can
access the gdb.

This may look like a straightforward distinction, but many of the classes I'll present straddle both
the CDI and MI, and sometimes it's hard to see where one interface ends and the next begins.

© Copyright IBM Corporation 2008 Trademarks
Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 1 of 10
the Eclipse CDT and Ml

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=interfacing+CDT+debugger
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=interfacing+CDT+debugger
http://www.ibm.com/developerworks/opensource/library/os-eclipse-cdt-debug1/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=interfacing+CDT+debugger

developerWorks® ibm.com/developerWorks/

Once you understand how the CDI and MI work together, you'll be better able to link custom debug
tools to the CDT, whether they're based on gdb or not

Understanding the GNU Debugger Machine Interface (gdb/Ml)

Most people access gdb from a command line, using simple instructions like run, print, and
info. This is the human interface to gdb. A second method of accessing gdb was developed for
interfacing the debugger with software: the Machine Interface (MI). The debugger performs the
same tasks as before, but the commands and output responses differ greatly.

An example will make this clear. Let's say you want to debug an application based on the code
below.

Listing 1. A simple C application: simple.c

int main() {
int x = 4;
X +=6; // X
X *= 5: // X
return (0);
}

10
50

After you compile the code with gcc -g -00 simple.c -o simple, a regular debug session might
look like Listing 2.

Listing 2. A debug session

$ gdb -g simple (gdb) break main (gdb) run
1 int main() {
(gdb) step
2 int x = 4;
(gdb) step
3 X += 6; // x = 10
(gdb) print x
$1 = 4
(gdb) step
4 X *=5; // x = 50
(gdb) print x
$2 = 10
(gdb) quit

Listing 3 shows how the same gdb session looks using Ml commands (shown in bold).

Listing 3. A debug session using MI

$ gdb -g -i mi simple

(gdb)

-break-insert-main

Adone, bkpt={number="1", type="breakpoint",6 disp="keep", enabled="y", addr="0x00401075",
func="main", file="simple.c", fullname="/home/mscarpino/simple.c",line="1", times="0"}
(gdb)

-exec-run

Arunning

(gdb)

*stopped, reason="breakpoint-hit",6 bkptno="1", thread-id="1", frame={addr="0x004010675",
func="main",args=[], file="simple.c", fullname="/home/mscarpino/simple.c", line="1"}
(gdb)

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 2 of 10
the Eclipse CDT and Ml

ibm.com/developerWorks/ developerWorks®

-exec-step
Arunning

(gdb)
*stopped, reason="end-stepping-range", thread-id="1", frame={addr="0x0040107a",
func="main",args=[], file="simple.c", fullname="/home/mscarpino/simple.c", line="2"}

(gdb)
-exec-step
Arunning

(gdb)
*stopped, reason="end-stepping-range", thread-id="1", frame={addr="0x00401081",
func="main",args=[], file="simple.c", fullname="/home/mscarpino/simple.c", 1line="3"}

(gdb)
-var-create x_name * X
Adone, name="x_name", numchild="0", type="int"

(gdb)
-var-evaluate-expression x_name
Adone, value="4"

(gdb)
-exec-step
Arunning

(gdb)
*stopped, reason="end-stepping-range", thread-id="1", frame={addr="0x00401081",
func="main",args=[], file="simple.c", fullname="/home/mscarpino/simple.c", line="4"}

(gdb)
-var-update x_name
Adone, changelist=[{name="x_name", in_scope="true", type_changed="false"}]

(gdb)
-var-evaluate-expression x_name
Adone, value="10"

(gdb)
-var-delete x_name
Adone, ndeleted="1"

(gdb)
-gdb-exit

The -i mi flag tells gdb to communicate using the MI protocol, and you can see the difference is

significant. The command names have changed dramatically and so has the nature of the output.
The first line of the output record is either Arunning or Adone, followed by result information. This

output is called a result record, and it can include Aerror and an error message.

In many cases, the Ml result record is followed by (gdb) and an out-of-band (OOB) record. These
records provide additional information about the status of the target or the debugging environment.
The *stopped message after -exec-step is an OOB record that provides information about
breakpoints, watchpoints, and why the target has halted or finished. In the previous session, gdb
returns *stopped, reason="end-stepping-range" after each -exec-step, along with the status of
the target.

gdb/Ml is hard for humans to understand, but it's ideal for communication between software
processes. The CDT enables this communication by creating a pseudo-terminal (pty) that sends
and receives data. Then, it starts gdb and creates two session objects to manage debug data.

Starting the debugger

As described in Part 1, when the user clicks Debug, the CDT accesses an ICDebugger2 instance
and calls on it to create an 1cbiSession. This debugger class must be identified in a plug-in that
extends the org.eclipse.cdt.debug.core.CDebugger extension point. Listing 4 shows what this
extension looks like in the CDT.

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 3 of 10
the Eclipse CDT and Ml

http://www.ibm.com/developerworks/opensource/library/os-eclipse-cdt-debug1/

developerWorks® ibm.com/developerWorks/

Listing 4. The CDT default debugger extension

<extension point="org.eclipse.cdt.debug.core.CDebugger">
<debugger
class="org.eclipse.cdt.debug.mi.core.GDBCDIDebugger2"
cpu="native"
id="org.eclipse.cdt.debug.mi.core.CDebuggerNew"
modes="run, core,attach"
name="gdb Debugger"
platform="*">
<buildIdPattern
pattern="cdt\.managedbuild\.config\.gnu\..*">
</buildIdPattern>
</debugger>
</extension>

This states that the GDBCDIDebugger2 implements the createSession() method that begins

the debug process. When the CDT calls this method, it provides the debugger with the launch
object containing configuration parameters, the name of the executable to be debugged, and a
progress monitor. The GDBCDIDebugger2 uses this information to form a string that starts the gdb
executable:

gdb -q -nw -i mi-version -tty pty-slaveexecutable-name.

The GDBCDIDebugger2 creates an MIProcess for the running gdb executable, then creates

two session objects to manage the rest of the debugging process: MIsession and Session. The
MISession Object manages communication to the gdb, and the Session object connects the gdb
session to the CDI described in Part 1. The rest of this article discusses these session objects in
detail.

The MISession

After starting gdb, the first thing the GDBCDIDebugger2 does is create an MISession object. This
object handles all access to the gdb debugger using three pairs of objects:

* An outputStream to send data to the gdb process and an InputStream to receive its response

* An outgoing and incoming commandQueue to hold Ml commands

* A TxThread that sends commands from the output commandQueue to the outputStream and an
RxThread that sends receives commands from the InputStream and places them in the input
CommandQueue

An example will demonstrate how these objects work together. If the debug session is conducted
remotely, the CDT initiates communication by sending a remotebaud command to gdb, followed

by the baud rate. To accomplish this, it calls the MISession's postCommand method, which adds the
remotebaud command to the session's outgoing commandQueue. This wakes the TxThread, which
writes the command to the outputStream connected to the gdb process. It also adds the command
to the session's incoming CommandQueue.

Meanwhile, the RxThread is constantly reading the InputStream from the gdb process. When new
output is available, the RxThread sends it through the mIParser to acquire the result record and the
OOB record. It then searches through the incoming commandQueue to find the gdb command that

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 4 of 10
the Eclipse CDT and Ml

http://www.ibm.com/developerworks/opensource/library/os-eclipse-cdt-debug1/

ibm.com/developerWorks/ developerWorks®

prompted the output. Once the RxThread comprehends the gdb's output and the corresponding
command, it creates an MIEvent used to broadcast the change in the debugger's state.

As data is transferred to and from gdb, the TxThread and RxThread create and fire MIEvents.

For example, if the TxThread sends a command changing a breakpoint to gdb, it creates an
MIBreakpointChangedEvent. If the RxThread receives a response from gdb whose result record is
Arunning, it creates an MIRunningEvent. These events are not implementations of the ICDIEvent
interface described in Part 1. To see how MIEvents and ICDIEvents relate, you need to understand
the session object.

Session, Target, and EventManager

After creating the misession, the GDBCDIDebugger2 creates a session object to manage the
operation of the CDI. When its constructor is called, the session creates many objects to assist
with its management responsibilities. Two objects are particularly important: the Target, which
manages the CDI model and sends commands to the debugger, and the EventManager, which
listens for MIEvents created by the debugger.

As Part 1 explains, the Target receives debugging commands from the CDT and packages them
for the debugger. For example, when you click the Step Over button, the CDT finds the current
Target and calls its stepover method. The Target responds by creating an MIExecNext command
and calling MIsession.postCommand() to execute the step. The MIsession adds the command to its
outgoing commandQueue, Where it's transferred to the debugger in the manner described earlier.

The gdb output, packaged into an MIEvent, is received by the session's EventManager. When this
object is created, it's added as an Observer for the running Misession. When the MISession fires
MIEvents, the EventManager interprets them and creates corresponding ICDIEvents. For example,
when the MISession fires an MIRegisterChangedEvent, the EventManager creates a CDI event
called changedEvent. After creating the CDI event, the EventManager notifies all interested listeners
that a state change has occurred. Many of these listeners are elements in the CDI model, but

an important exception is an object called cbebugTarget. This is part of another model hierarchy,
explained next.

The CDI and the Eclipse debug model

For your debugging plug-in to interface the Eclipse debug views, such as Register View and
Variable View, you have to play by Eclipse's rules: You have to use events and model elements
taken from the Eclipse debug platform. The root element in the Eclipse debug model is an
IDebugTarget, and other elements include IvariableS, IExpressions, and IThreads. If these
names look familiar, it's because the CDI model hierarchy is structured after the Eclipse debug
model hierarchy. But the CDI model and the Eclipse debug model can't talk directly to one another.

For this reason, the CDT contains a set of classes that wrap around CDI classes to provide a
bridge between the CDI model and the Eclipse debug model. The cbebugTarget is the root of this
wrapper-model hierarchy, and it listens for events fired by the CDI EventManager. When it receives
a new event, the cpebugTarget processes a large set of if and switch statements to determine

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 5 of 10
the Eclipse CDT and Ml

http://www.ibm.com/developerworks/opensource/library/os-eclipse-cdt-debug1/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-cdt-debug1/

developerWorks® ibm.com/developerWorks/

how to respond. For example, if the CDI event is an ICDIResumedEvent, the CDebugTarget executes
the code in Listing 5.

Listing 5. Converting CDI events to DebugEvents

switch(event.getType()) {
case ICDIResumedEvent.CONTINUE:
detail = DebugEvent.CLIENT_REQUEST;
break;
case ICDIResumedEvent.STEP_INTO:
case ICDIResumedEvent.STEP_INTO_INSTRUCTION:
detail = DebugEvent.STEP_INTO;
break;
case ICDIResumedEvent.STEP_OVER:
case ICDIResumedEvent.STEP_OVER_INSTRUCTION:
detail = DebugEvent.STEP_OVER;
break;
case ICDIResumedEvent.STEP_RETURN:
detail = DebugEvent.STEP_RETURN;
break;

}

The cbebugTarget responds to CDI events by creating bebugEvents, which are generally related to
stepping, breaking, and resuming execution. After creating these events, it accesses the Eclipse
DebugPlugin and calls its firebDebugEventSet method. This notifies all the Eclipse debug listeners
that a state change has occurred. That is, any object that adds itself as a bebugEventListener
receives the bebugEvent. This includes the Eclipse debug views, such as the Memory View and the
Variables View.

The CDT debug views

The MI-CDI-wrapper-Eclipse communication is useful only if it updates Eclipse's graphical display
with proper debug data. Figure 1 shows the CDT debug perspective, and you can see the many
views that present the state of the target's execution. Many of the views — Breakpoints, Modules,
and Expressions — are provided by Eclipse, but CDT adds three views to the perspective:
Executables View, Disassembly View, and Signals.

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 6 of 10
the Eclipse CDT and Ml

ibm.com/developerWorks/ developerWorks®

Figure 1. The CDT debug perspective

£ Debug - hello.c - Eclipse SDK = 8=
Hle Edit Refactor Navigate Search Run Project Window Help
[3v CRE S R SR N I e B »
-i_} w fr_v o (o %
¥ Debug :ﬁ = 8 Breakpoints Modules .& Signals 3-3 Expressions =0
= | Name Pass suspend Description |:
& o - 2 B+ SIGHUP yes yes Hangup
= [£]hello2 [C/C++ Local Applicat |- st o bl ntemepL
~ & gdb/mi (05/17/2008 3:58 p| ||| & SICQUIT yes yes Quit
= 4 Thread [0] (Suspended: s SIGILL yes yes lllegal instruction
= 1 main() root/eclips e SIGTRAP no yes Trace/breakpoint trap
» gdb (05/17/2008 3:58 PM) | || 5 SIGABRT yes = Leiiis
W frootfeclipse/workspace/h (=) = SIGEMT yes yes Ernulation trap =]
| ¥ ||GI I D]
[e = 8 |outline == Variables 33 . Registers =08
Lint main() { o ' ' . -
2 dint x = 4 _ — = *
3 X += B; Name Value
4 X ¥=5;
5 return ©; - X 10 e — D .4
6} (] IC
7 (=] :
G [+ |GI Iv)
& console 2 . Tasks Memory = bw G ot Bvr3v =0

hello2 [C/C++ Local Application] froot/eclipse/workspace/hello2/Debughello2 (05/17/2008 3:58 PM)

These views create and receive debug events in similar ways. This section explains the

Signals View. This view, displayed prominently above, lists all the signals the target can

receive and shows which can be passed to the process. When the view first appears, the
SignalsViewContentProvider calls on the cbebugTarget to provide a list of signals. This target
accesses the CDI target and asks it for the signals in its CDI-model hierarchy. When the array of
ICDISignals is returned, the cbebugTarget updates its own model elements and sends them to the
SignalsViewContentProvider, which uses them to populate the Signals View.

When you right-click an entry in the Signals View, the Resume with Signal context-menu option
lets you continue the target's execution and send the selected signal to the process. This option
calls on the signalsActionDelegate. When this option is selected, the delegate calls on the CDI
target to resume its execution with the 1cbisignal corresponding to the selected signal. The target
creates an Ml command for the signal and invokes MISession.postCommand(), which sends the
command to gdb.

When gdb responds, the process of updating the Signals View takes five steps:

1. The misession analyzes the Ml output from gdb and determines whether a signal setting is
being changed. If so, it fires an MISignalChangedEvent.

2. The CDI EventManager listens for the MISignalchangedEvent and responds by creating a CDI
event: changedevent. Then it fires the event and alerts all ICDIEventListeners.

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 7 of 10
the Eclipse CDT and Ml

developerWorks® ibm.com/developerWorks/

3. The cbebugTarget receives the event from the EventManager and determines whether the
ChangedEvent relates to a signal change. If so, it calls on its csignalManager to process the
CDI event.

4. The csignalManager updates its model elements and fires a bebugEvent whose type is given
by DebugEvent . CHANGE.

5. The signalviewEventHandler receives the bebugEvent, checks to make sure it deals with
signals, and refreshes the Signals View.

Understanding the involved operation of the Signals View is important for two reasons; It serves as
a concrete example of how the different model elements work together, and it shows how you can
build similar views that interact with Eclipse, gdb, and the CDI.

Conclusion

Two session objects (MISession and Session), two targets (CDebugTarget and Target), and two
completely different hierarchies of model elements — the operation of the CDT debugger is so
complicated that you may wonder whether any of the developers were related to Rube Goldberg.
Still, the code for the CDT debugger was written with modularity in mind, and the better you
understand its inner workings the easier it will be to insert your own modules. And remember: The
learning curve is steep, but adding new features to the CDT is far easier than building a custom
debugging application from scratch.

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 8 of 10
the Eclipse CDT and Ml

ibm.com/developerWorks/ developerWorks®

Downloadable resources

Description Name Size
Sample code os-eclipse-cdt-debug-ex-debugger-plugin.zip 15KB
Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 9 of 10

the Eclipse CDT and Ml

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=314937&filename=os-eclipse-cdt-debug-ex-debugger-plugin.zip&method=http&locale=

developerWorks® ibm.com/developerWorks/

Related topics

* Visit the Eclipse CDT at Eclipse.org.

* Read the CDT project leader's blog.

» Check out the latest Eclipse technology downloads at IBM alphaWorks.

* Check out the "Recommended Eclipse reading list."

* Download Eclipse Platform and other projects from the Eclipse Foundation.

* Browse all the Eclipse content on developerWorks.

* New to Eclipse? Read the developerWorks article "Get started with Eclipse Platform” to learn
its origin and architecture, and how to extend Eclipse with plug-ins.

» Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project resources.

© Copyright IBM Corporation 2008
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Interfacing with the CDT debugger, Part 2: Accessing gdb with Page 10 of 10
the Eclipse CDT and Ml

http://www.eclipse.org/cdt
http://www.eclipse.org/
http://cdtdoug.blogspot.com
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Understanding the GNU Debugger Machine Interface (gdb/MI)
	Starting the debugger
	The MISession
	Session, Target, and EventManager

	The CDI and the Eclipse debug model
	The CDT debug views
	Conclusion
	Downloads
	Trademarks

