
Slide subtitle

TITAN 6.5.1
Change log

2019.01.22

Public | © Ericsson AB 2016 | 2016-10-14 | Page 2

› Continued from 6.5.0:

› Added default values to generated port class member

functions 'send', 'call', 'reply' and 'raise' for backward

compatibility (so they can be called from external functions

without the timestamp redirect parameter).

› Regression test added, too.

Bug 539514 - Real-time
testing in TITAN

https://bugs.eclipse.org/bugs/show_bug.cgi?id=539514

Public | © Ericsson AB 2016 | 2016-10-14 | Page 3

› A fix to OER problem

https://bugs.eclipse.org/bugs/show_bug.cgi?id=537888

(which has now been removed) caused type descriptors for

certain ASN.1 types to be generated incorrectly, when

using XER in ASN.1 (compiler option '-a').

› The error occurred in test

regression_test/compileonly/openTypeXER.

› The OER fix has been re-added, and the type descriptor

fault has been fixed.

Bug 538482 - Type descriptor
generation problems caused by

OER fix

https://bugs.eclipse.org/bugs/show_bug.cgi?id=538482

Public | © Ericsson AB 2016 | 2016-10-14 | Page 4

› The following problems occur when generating a single module, using the command line option '-o':

› - Name clashes: two types with the same name in different XSDs cause name clash errors in the generated TTCN-3 file (normally

these would be generated into different modules and not cause errors).

› Solution: suffix the types (e.g. with _1, _2, etc.) and give them 'name as' attributes.

› - References to other modules: references to values from other namespaces (e.g. default values) are still prefixed with their

module names.

› Solution: remove the prefixes, as they are in the same module.

› For examples see attached XSD files.

› Solutions implemented.

› Regression test added under regression_test/XML/XmlWorkflow

› Tests have passed.

› Improved this fix to work for name clashes across 3 or more XML namespaces.

› Regression test updated.

Bug 541748 - xsd2ttcn: Name clashes and
references not handled when using

single module

https://bugs.eclipse.org/bugs/show_bug.cgi?id=541748

Public | © Ericsson AB 2016 | 2016-10-14 | Page 5

› Currently, if there is data left in the buffer after decoding succeeds, the

decoder function always displays a warning about it.

› A new option should be added in the 'errorbehavior' extension of

decoder functions to change this warning to error or to ignore it.

› Implemented error behavior 'EXTRA_DATA', which governs the

mentioned warning

Possible backward incompatibility: setting 'errorbehavior' to

'ALL:ERROR' now also set this to error, which would cause code that

previously only displayed a warning to now display a DTE.

Bug 543155 - New error behavior
option for data remaining after

decoding

https://bugs.eclipse.org/bugs/show_bug.cgi?id=543155

Public | © Ericsson AB 2016 | 2016-10-14 | Page 6

› The generated code for provider ports (i.e. ports in the 'map to' clauses of translation ports) changes, depending on

how many translation ports are mapped to them.

› Because of this the provider port's module and all modules containing translation ports that are mapped to the provider

port must be in the same compiler command. If the provider port is compiled first on its own (i.e. without the modules

that contain translation ports it is mapped to), and the compiled C++ code is used in a different project, where the

translation ports are (such as with central storage, and with project references in the Eclipse plug-ins), then the

generated C++ class for the provider port won't contain all members and methods necessary for the port translation

(causing C++ compilation errors in the second project).

› This limitation has been documented in the reference guide.

› A possible solution for this issue should be investigated.

› Created attachment 276873 [details]

› Example

Bug 542610 - Translation ports
across multiple Eclipse projects

https://bugs.eclipse.org/bugs/show_bug.cgi?id=542610

Public | © Ericsson AB 2016 | 2016-10-14 | Page 7

› Proposed solution:

› The classes generated for all ports with the 'provider' attribute would contain all necesary code to handle port translation (with any translation port).

› This would include the following changes:

› - a port pointer array (PORT**) and its size as new members for the provider port's class, which would be used in the same way as the current port-type-specific pointer arrays

(p_0, p_1, etc. and n_0, n_1, etc.);

› - the member functions 'add_port' and 'remove_port' would be generated for all provider port classes and would add or remove ports from the new pointer array (without dynamic

casting, since the actual port types are unknown);

› - the member functions 'reset_port_variables' and the 'outgoing_public_send/call/reply/raise' functions for all message/signature types would also be generated (their contents

would be unchanged from the ones generated for current provider ports);

› - the member functions 'incoming_message/call/reply/exception' would contain the 'for' cycle that goes through the mapped translation ports (from current provider port code),

except now it would go through all ports, and call a new function in the port base class that calls the translation port's 'incoming_message/call/reply/exception' member function

(since these are not part of the base port class).

› The base port class (PORT) would have the following new function:

› virtual boolean incoming_message_handler(const void* message_ptr, const char* message_type, component sender_component, const FLOAT& timestamp);

› This would be implemented by all translation ports, and it would call the appropriate 'incoming_message' function for the type indicated by the parameter 'message_type'. There

would either be four of these functions in total (3 more for calls, replies and exceptions), or it would have an extra parameter that indicates the operation type.

› Performance:

› - in case of translation ports there would be minor performance losses (extra functions being called, more generated code, etc.);

› - if the provider port is used in normal mode, or in a dual-faced port, then there would be a considerable amount of extra generated code, and minor performance losses during

runtime.

Bug 542610 - Translation ports
across multiple Eclipse projects

https://bugs.eclipse.org/bugs/show_bug.cgi?id=542610

Public | © Ericsson AB 2016 | 2016-10-14 | Page 8

› Created attachment 276938 [details]

› Modified C++ files with the proposed solution

› These files contain the extra code that would be generated into A.cc, A.hh, B.cc and B.hh

in the previously attached example (modifications are marked with lots of '/'-es).

› This still needs the addition of the incoming_message_handler function in PORT.hh and

its base implementation (which just returns FALSE) in PORT.cc in the runtime library.

› Proposed solution implemented.

› Regression tests added under regression_test/portTranslationCentralStorage.

Bug 542610 - Translation ports
across multiple Eclipse projects

https://bugs.eclipse.org/bugs/show_bug.cgi?id=542610

Public | © Ericsson AB 2016 | 2016-10-14 | Page 9

› The ttcn3float.hh is not compatible with the c++11, gcc 7 used by Ubuntu 18.04

› In c++11 the signbit() is not a macro any more, so the

› #ifndef signbit is true and the ttcn3float.hh redeclares the signbit as a macro.

› It doesn't cause any problem until something other than struct ttcn3float tries to use the signbit().

› For example an #include <complex> after the #include <TTCN3.hh>

› Either protect the signbit checking with

› #if __cplusplus < 201103L // c++11 -> __cplusplus == 201103L

› #ifndef signbit

›

› #endif // def signbit

› #endif // __cplusplus < 201103L

› Or remove it.

› Implemented the proposed extra C++ version check.

Bug 539612 - Ubuntu 18.04, gcc 7,
c++11 compatibility

https://bugs.eclipse.org/bugs/show_bug.cgi?id=539612

Public | © Ericsson AB 2016 | 2016-10-14 | Page 10

› Continued

› Updated the syntax analysis of '<port>.setencode' to allow

subreferences (i.e. port array indexes). This form of

'setencode' is still not supported, but the compiler now

displays a more appropriate error message for it.

Bug 517843 - Support for
multiple encodings

https://bugs.eclipse.org/bugs/show_bug.cgi?id=517843

Public | © Ericsson AB 2016 | 2016-10-14 | Page 11

Bug ID Product Component Assignee Status Resolution Summary Changed

538482Titan Core titan-inbox@eclipse.org CLOSED FIXED Type descriptor generation problems caused by OER fix 12/12/2018 5:57

541748Titan Core titan-inbox@eclipse.org CLOSED FIXED xsd2ttcn: Name clashes and references not handled when using single module 12/14/2018 5:45

543155Titan Core titan-inbox@eclipse.org RESOLVED FIXED New error behavior option for data remaining after decoding 1/4/2019 9:34

542610Titan Core titan-inbox@eclipse.org RESOLVED FIXED Translation ports across multiple Eclipse projects 1/14/2019 11:50

539612Titan Core titan-inbox@eclipse.org RESOLVED FIXED Ubuntu 18.04, gcc 7, c++11 compatibility 1/17/2019 5:59

517843Titan Core titan-inbox@eclipse.org CLOSED FIXED Support for multiple encodings 1/21/2019 8:36

