

Public

1 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

RIoT Quickstart guide

Contents

1 Introduction .. 1
2 Installation .. 2
2.1 Prerequisites .. 2
2.2 Compiling RIoT .. 2
3 Demos ... 3
3.1 CoAP performance test against the Californium stack 3
3.1.1 GUI .. 4
3.1.2 Californium ... 5
3.1.3 Top window .. 5
3.1.4 State machines .. 6
3.1.5 Configuration files .. 7
3.1.5.1 Coap_basic_maing.cfg .. 7
3.1.5.2 Coap_basic_params.cfg .. 9
3.1.5.3 Coap_basic_fsms.cfg .. 9
3.1.5.4 Coap_basic_templates.cfg .. 9
3.2 CoAP performance test against a simulated server ... 10
3.3 Simulated LwM2M devices against Leshan .. 11
3.4 Stability test against Leshan .. 14
4 Source code ... 15
5 References ... 17

1 Introduction

This document is a quick and informal introduction to the RIoT Titan application.

RIoT is a load generator built on top of the TitanSim load generator framework. It is capable of
simulating devices using some IoT protocols (CoAP[4], LwM2M[5], MQTT[6], HTTP). RIoT
(and the TitanSim framework) was created to support non-functional tests, where load
generation is required like performance, stability, scalability and so on.

Public

2 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

2 Installation

2.1 Prerequisites

 Eclipse Titan
The Titan TTCN-3 compiler is required to build the RIoT application
https://projects.eclipse.org/projects/tools.titan

 Eclipse with TITAN TTCN-3 Plugins
To navigate RIoT’s source code it is recommended to install eclipse with the titan
eclipse plugins

 Since the application will simulate several thousand devices it will want to use many
simultaneously open network connections. In Linux, the ulimit command can be used
to set resource limits on processes. Use ulimit -n to increase the maximum number of
open file descriptors allowed for RIoT (100000 will be enough for the demos):

ulimit -n 100000

2.2 Compiling RIoT

To clone RIoT’s git repository:

git clone git://git.eclipse.org/gitroot/titan/titan.Applications.RIoT.git

To clone the submodule dependencies:

cd titan.Applications.RIoT
git submodule update –init

Generating the Makefile:

ttcn3_makefilegen -t RIOT_LPA108661.tpd

Compiling the source code:

cd bin
make dep
make

After the compilation was done successfully, a binary called “riot” can be found in the bin
directory.

ttcn3@ttcn3-VirtualBox:~/riot/src/Applications/RIOT_LPA108661$./bin/riot -l
IOT_App_Functions.TC

Public

3 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

3 Demos

In this section some load generator setups will be presented to demonstrate the RIoT
application:

 CoAP performance test against the Californium stack (see 3.1)

 CoAP performance test against a simulated server (see 3.2)

 Simulated LwM2M devices against Leshan (see 3.3)

 Stability test against Leshan (see 3.4)

3.1 CoAP performance test against the Californium stack

In this setup the System Under Test (SUT) is a CoAP server realized with the Californium
stack available from Eclipse[8]. The load generator is sending CoAP GET and POST requests
to this server and waiting for a response. Execute the following steps to go through the demo.

To build Californium, please follow the instructions from here:
https://github.com/eclipse/californium. After the build is successful, executable JARs of
Californium’s examples with all dependencies can be found in the demo-apps/run folder. We
will use the cf-plugtest-server example as a System Under Test (SUT).

 Start the SUT

o cd <californium repo>/demo-apps/run

o java -jar cf-plugtest-server-*.jar

 Start RIoT

o cd <riot repo>

o ttcn3_start ./bin/riot
./cfg/performance_californium/coap_basic_main.cfg

o To open RIoT’s GUI you’ll need to open a browser and go to
http://127.0.0.1:4040

 Start Testing

o On RIoT’s GUI in the browser press the “Start Scenario”

Public

4 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

3.1.1 GUI

This section gives a short introduction to RIoT’s GUI. After starting the application and
opening http://127.0.0.1:4040, the Execution Control’s Statistic page is shown in the browser.
This page gives a good overview about the current test execution.

The entity group this demo is using is called “IoTClients”. An entity group is a group of
simulated devices. Here this group consists of 10.000 simulated IoT clients (Group size).
These clients are distributed on 4 load generators (Number of LGens). This is important in
case of performance testing, since each LGen is a physical Linux process. In order to utilize
the cores available in the CPU, one need to create at least as many processes as CPU cores
the executing machine has. This setup will use 4 cores.

On the entity groups one can start scenarios, where each scenario consists of traffic cases,
where each traffic case is tied to a finite state machine that will implement the given traffic
case. Here we are executing the “IoTClientScenario” which has only one traffic case:
“TC_CORE_02_POST”. The user can set a frequency to trigger the finite state machines tied
to the traffic case by setting the “Target CPS” field. This field can be dynamically tuned even
after the execution has been started.

After the execution started, there are statistics presented. “Starts” is the number of triggers
sent to the finite state machine instances. As the state machines are finishing their execution
they will report back some verdict like pass, fail, timeout or error. There are counters assigned
to these events and they are shown respectively on the GUI.

Public

5 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

3.1.2 Californium

Californium is a CoAP protocol stack implementation. The sample application will log the
messages received and sent to the console, where it was started.

In case you have Wireshark installed on your machine, you can trace the CoAP messages on
the network interface (loopback interface). Look for UDP port 5683.

3.1.3 Top window

The easiest way to check what kind of resources are used by the SUT and the load generator
is to use top. RIoT has 4 “riot” processes that are used only for CoAP load generation. The
java line in the screenshot below belongs to the Californium stack. There are other “riot”
process that are either used for coordination or to handle specific functions like the REST API
for the GUI. When you increase CPS only the load generator processes should require more
resources.

Please keep in mind, that there are a number of factors that affect the performance of RIoT.
Some examples:

 Turning on logging will result in great performance loss, as writing to disk is very slow.
When logging is on, one must also be very careful to not run out of disk space.

Public

6 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

 Optimizing the compilation has also a great effect on performance. Adding -O2 switch
to the C++ compiler, will result in optimized binaries. It is also possible to turn on/off
verbose logging statements in the code by using the preprocessor switch -
DEPTF_DEBUG (The default generated Makefile in the bin directory is not optimized.
You must add the -O2 switch to the CXXFLAGS= line and rebuild the executable)

3.1.4 State machines

As mentioned earlier, the state machine instances are implementing the behavior of the
simulated devices. In this demo the state machines are specified in the configuration file. They
can be found in <riot repo>/cfg/coap_basic/coap_basic_fsms.cfg and is called
TC_CORE_02_POST_FSM. The description is text based, so it is possible to read and write it
using a simple text editor. From the textual description a the following graphical representation
can be drawn (see below).

Public

7 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

The FSM is very simple. It starts in the idle state. Then as the instance receives the
“Start_the_traffic_case” event it will initialize its CoAP library and will load in a template (from
coap_basic_templates.cfg”) to send it out. After executing these actions, it goes to the state
called “initialized”. If it receives a CoAP 201 response in state “initialized” it finishes running
and reports a pass verdict.

3.1.5 Configuration files

The configuration files for the load generator are in the <riot
repo>/cfg/performance_californium directory. The configuration is described in four files:

 Coap_basic_main.cfg

 Coap_basic_params.cfg

 Coap_basic_fsms.cfg

 Coap_basic_tempates.cfg

3.1.5.1 Coap_basic_maing.cfg

This is the main configuration file. This is the one that should be passed as an argument when
starting RIoT. It is including the rest of the configuration files using preprocessor include
statements.

[INCLUDE]

Public

8 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

"coap_basic_params.cfg"
"coap_basic_fsms.cfg"
"coap_basic_templates.cfg"

The following structure will create 4 processes (load generators) to form a load generator pool
“Pool_CoAP_Clients”:

tsp_EPTF_ExecCtrl_LGenPool_Declarators :=
{
 {
 name := "Pool_CoAP_Clients",
 lgenPoolItems := { { hostname := "localhost", num := 4, createFunctionName :=
"RIoT.createLGen" } }
 }
}

This part below assigns the load generator pool to the entity group “IoTClients”. You can
assign several entity groups to a load generator pool. When a group is put on a load generator
pool, it means that the elements (entities) of that pool will be distributed on the load generator
pool. Using this construct, it is possible to distribute the simulated entities of a group on more
than one cores of the host and this enables to generate larger loads (higher calls per seconds)

tsp_EPTF_ExecCtrl_EntityGroup2LGenPool_List :=
{
 {
 eGrpName := "IotClients",
 lgenPoolName := "Pool_CoAP_Clients"
 }
}

The next part describes what the IoTClients entity group is. This group contains 10.000
instances of the entity type “IOT_Entity”. The entity type IOT_Entity is defined using TTCN-3
code (in IOT_LGen_Functions.ttcn) and it describes what kind of application libraries
(behaviors) the given entity can use.

tsp_LGenBase_EntityGrpDeclarators := {
 { name := "IotClients", eType := "IOT_Entity", eCount := 10000 }
}

The next part is defining a scenario “IoTClientScenario”, which has only one traffic case using
a state machine called “TC_CORE02_POST_FSM” and assigns this scenario to the
“IotClients” entity group.

tsp_EPTF_ExecCtrl_Scenario2EntityGroupList := {
 { scenarioName := "IotClientScenario", eGrpName := "IotClients", name := omit}
}

tsp_LGenBase_TcMgmt_tcTypeDeclarators2 := {
 {
 name := "TC_CORE02_POST",
 fsmName := "TC_CORE02_POST_FSM",
 entityType := "IOT_Entity",
 customEntitySucc := ""
 }
}

tsp_LGenBase_TcMgmt_ScenarioDeclarators3 :=
{

Public

9 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

 {
 name := "IotClientScenario",
 tcList := {
 {
 tcName := "TC_CORE02_POST",
 tcParamsList := {
 {startDelay := 1.0},
 {target := { cpsToReach := 1.0 }},
 {scheduler := {preDefinedName := cs}},
 {enableEntitiesAtStart := true},
 {enabledAtStart := true}
 }
 }
 },
 scParamsList := {
 {enabled := true}
 }
 }
}

This a very simple setup. But this hierarchic structure (of scenarios, traffic cases and entity
groups) allows the users of TitanSim to create sophisticated traffic mixes. For more details,
please look at the LGenBase documentation.

3.1.5.2 Coap_basic_params.cfg

Here mostly those switches are provided that turn on and off certain log levels for different
components.

In case you plan to generate high load and/or load for a longer time, it is recommended to
disable logging TTCN_USER and TTCN_ACTION to the log files, otherwise the system will
run out of HDD space quickly.

[LOGGING]
FileMask := TTCN_ERROR | TTCN_TESTCASE | TTCN_STATISTICS | TTCN_WARNING | TTCN_ACTION #|
LOG_ALL #| DEBUG
ConsoleMask := TTCN_ERROR | TTCN_TESTCASE | TTCN_STATISTICS | TTCN_WARNING #| TTCN_ACTION

3.1.5.3 Coap_basic_fsms.cfg

This file contains the FSM descriptions.

3.1.5.4 Coap_basic_templates.cfg

Message structures are described here that are used by the state machines described in
coap_basic_fsms.cfg. An example:

 {
 id := "t_TC_CORE_01_GET",
 msg :=
 {
 header :=
 {
 version := 1,
 msg_type := CONFIRMABLE,

Public

10 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

 code := { class:= 0, detail := 1 },
 message_id := 0
 },
 token := ''O,
 options :=
 {
 {
 uri_path := "test"
 }
 },
 payload := omit
 }
 },

3.2 CoAP performance test against a simulated server

In this setup both the CoAP server and the CoAP clients are simulated by RIoT. This is
intended to be an example of how to use separate groups and different behaviors in the same
configuration.

 Start RIoT

o cd <riot repo>

o ttcn3_start ./bin/riot ./cfg/coap_basic/coap_basic_main.cfg

o To open the GUI you’ll need to open a browser and go to http://127.0.0.1:4040

 Start Testing

o On RIoT’s GUI

 Select “IoTServer” entity group by clicking on it.

 Push the “Start Scenario”, to start the CoAP server

 Select “IoTClients” entity group by clicking on it.

 Push the “Start Scenario”, to start the CoAP clients

 You can change the desired cps during running.

 Stop testing

o On RIoT’s GUI

 Select IotClients entity group

 Push Stop scenario button to stop the clients

 Select IoTServer entity group

Public

11 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

 Push Stop scenario button to stop the server

 Press ‘Exit’ to exit from RIoT

3.3 Simulated LwM2M devices against Leshan

In this setup the System Under Test (SUT) is a Lightweight Machine2Machine (LwM2M)
server realized with the Leshan library available from Eclipse[9]. The load generator is
simulating LwM2M devices that are registering in to the server, publishing their smart objects
and finally deregistering.

Leshan sources and precompiled JAR packages can be found from:
https://github.com/eclipse/leshan. For this demo the leshan-server-demo.jar package will be
needed.

 Start Leshan

o java -jar leshan-server-demo.jar

o Open the Leshan GUI using a browser http://127.0.0.1:8080

 Start RIoT

o cd <riot repo>

o ttcn3_start ./bin/riot
./cfg/leshan_basic/leshan_basic_main.cfg

o To open the GUI you’ll need to open a browser and go to http://127.0.0.1:4040

 Start Testing

o On RIoT’s GUI

 Select “IoTClients” entity group by clicking on it.

 Push the “Start Scenario”, to start the LwM2M clients

After starting the device simulation, the clients will register in to the Leshan LwM2M server.
On Leshan’s GUI you should see them listed:

Public

12 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

The clients’ behavior is in the leshan_basic_fsms.cfg, the FSM is called
“LWM2M_RegDereg_FSM”. The simulated devices are registering in. Then keep their
registration alive by reregistering for a while and finally they deregister.

Public

13 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

The LwM2M library is capable to handle some incoming requests as well, but not all LwM2M
procedures are supported currently. Some examples:

 Reading a smart object value

o On the Leshan GUI select a device

o Locate the smart object Device/instance 0/Manufacturer and push the Read
button

o This will send a CoAP read request to the simulated device which will answer
with a response

Public

14 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

 Executing a smart object value

o On the Leshan GUI select a device

o Locate the smart object Device/instance 0/Reset error code and push the
Execute button

o This will send an execute request to the simulated device which will receive it and
answer it. You shall notice in RIoT’s terminal a message, that indicates the
request was received.

 Stopping the test

o On RIoT’s GUI select “IoTClient” entity group and push stop scenario.

o After a few seconds all the simulated devices will deregister (you can check this
on Leshan’s GUI)

o Push Exit on RIoT’s GUI

3.4 Stability test against Leshan

This case is a variation for the previous one (3.3). The SUT is Leshan again. RIoT is
simulating a little bit more devices than before (1000) and uses a little bit larger calls per
second to start them up (50cps). This is to demonstrate that the system can simulate large
numbers of entities. If you check top you shall see that the simulation still does not consume
too much resources. (With other applications built with TitanSim we were able to simulate ~1M
SIP signaling phones with media generation on PC hardware)

 Start Leshan

o java -jar leshan-server-demo.jar

Public

15 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

o It is not recommended to open Leshan’s GUI (actually you should close its tab in
firefox before starting up RIoT), because it may have problems handling these
many devices!

 Start RIoT

o cd <riot repo>

o ttcn3_start ./bin/riot
./cfg/stability_leshan/leshan_basic_main.cfg

o To open the GUI, you’ll need to open a browser and go to http://127.0.0.1:4040

 Start Testing

o On RIoT’s GUI

 Select “IoTClients” entity group by clicking on it.

o Push the “Start Scenario”, to start the LwM2M clients

When the execution is started, all 1000 devices will register in with 50cps. But this time they
won’t deregister automatically, instead they keep alive their registration by reregistering.
Which means about 50 reregisters per second during test execution. To idea with this stability
test is to keep them running for a long time to see, if the SUT is stable enough to handle this
load.

 Stopping the test

o On RIoT’s GUI select “IoTClient” entity group and push stop scenario.

o After a few seconds all the simulated devices will deregister
(The deregistration is not distributed in time. The devices will get the stop event
and they try to immediately deregister at once, thus creating a peak load)

o Push Exit on RIoT’s GUI

4 Source code

The source code is divided into several components, where each component is mapped to a
directory. To help understanding the arrangement of the components in the software one must
know how a TitanSim application is constructed. The TitanSim framework is a 3-layered
software framework aimed at developing TTCN-3 load test applications.

Public

16 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

The three layers are defined as follows:

1 Core Load Library (CLL)
<riot repo>/src/Libraries/EPTF_Core_Library_CNL113512
This library realizes a common base foundation for the whole framework and
provides project, SUT and protocol independent functionality

2 The various Application Libraries (AppLib)
<riot repo>/src/Libraries/EPTF_Applib_*
They are usually protocol, or application-area dependent, but can be reused
across many TitanSim applications

3 The Application level code (often called as Control Logic) that “glues”
together the various framework components:
<riot repo>/src/Libraries/IoT_LoadTest_Framework

3.1 Configuration logic (what can and must be configured and what is set
implicitly, what is configured statically and what can be set interactively,
etc.)

3.2 Statistics generation and collection logic (what data is generated, how
the data is reported and which data is recorded in logs and which is
displayed during execution, etc.)

3.3 Deployment logic (which software component is deployed to which
PTC, whether distributed execution of a given Entity Group is
supported, or not, etc.

Public

17 (17)
Prepared (Subject resp) No.

Antal Wu-Hen-Chang
Approved (Document resp) Checked Date Rev Reference

 2018-03-02 PA1

5 References

[1] Oracle VirtualBox
https://www.virtualbox.org/

[2] Ubuntu Linux 14.04.1 Desktop i386
http://old-releases.ubuntu.com/releases/14.04.1/

[3] Titan TTCN-3 Test Executor
https://projects.eclipse.org/projects/tools.titan

[4] CoAP protocol
http://coap.technology/

[5] LwM2M protocol
http://openmobilealliance.org/iot/lightweight-m2m-lwm2m

[6] MQTT protocol
http://mqtt.org/

[7] Eclipse
http://www.eclipse.org

[8] Eclipse Californium
https://www.eclipse.org/californium/

[9] Eclipse Leshan
https://www.eclipse.org/leshan/

