ERICSSON 2 Public

1(17)

Prepared (Subject resp) No.

Antal Wu-Hen-Chang

Approved (Document resp) Checked Date | Rev Reference

2018-03-02 PAl
RIOT Quickstart guide
Contents
1 INEFOTUCTION Loeecei e e e et e e e e 1
2 INSTAIATION 1.eeeeiiei e e e e e e e e e e aaae 2
2.1 e =T =0 B RS 1 = 2
2.2 (70T ¢ 1071 1T g Lo T 4 [0 TN 1 2
3 D BIMIOS e 3
3.1 CoAP performance test against the Californium stack............................. 3
L L G e e 4
3.1.2  CalifOrNiUM ... e e e e e e et e e e e e e e et e aaaarane 5
G 200 0 T o o I,/ o (o 1 5
.14 SHALE MACKINES ... a e e e e e e e e 6
3.1.5  ConfigUration filES .......uuee e ————— 7
3.1.51 Coap_basiC_MaiNG.CIQ .....coiuuiiiiiiiiiie e 7
3.1.5.2 Coap_basiC_paramsS.ClQ . .....cuuuiiiiiiiiieiiiii et 9
3.1.5.3  Coap_DasiC_fSMS.CIQ ...uveeiiiiiiiie ittt e e e b 9
3.1.5.4 Coap_basiC_templateS.CfQ .......cooiiiiiiiiiiei e a e 9
3.2 CoAP performance test against a simulated server...........cccccccvieeieieeeeeeeevinnnnn, 10
3.3 Simulated LWM2M devices against Leshan ..............ccccocccieee 11
3.4 Stability test againSt LESNAN .......ccuiiiiiiii e 14
4 SOUICE COUR ..ttt e e ettt e e e e e e e e earan s 15
5 =] (=T =T oSSR 17
1 Introduction

This document is a quick and informal introduction to the RIoT Titan application.

RIOT is a load generator built on top of the TitanSim load generator framework. It is capable of
simulating devices using some IoT protocols (CoAP[4], LwM2M[5], MQTT[6], HTTP). RIoT
(and the TitanSim framework) was created to support non-functional tests, where load
generation is required like performance, stability, scalability and so on.



ERICSSON 2 Public

2 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

2.1

2.2

Installation

Prerequisites

e Eclipse Titan
The Titan TTCN-3 compiler is required to build the RIoT application
https://projects.eclipse.org/projects/tools.titan

e Eclipse with TITAN TTCN-3 Plugins
To navigate RIoT’s source code it is recommended to install eclipse with the titan
eclipse plugins

¢ Since the application will simulate several thousand devices it will want to use many
simultaneously open network connections. In Linux, the ulimit command can be used
to set resource limits on processes. Use ulimit -n to increase the maximum number of
open file descriptors allowed for RIoT (100000 will be enough for the demos):

ulimit -n 100000

Compiling RIoT

To clone RIOT’s git repository:

git clone git://git._eclipse.org/gitroot/titan/titan_Applications_.RIoT_git

To clone the submodule dependencies:

cd titan.Applications.RIloT
git submodule update —init

Generating the Makefile:

ttcn3_makefilegen -t RIOT_LPA108661.tpd

Compiling the source code:

cd bin
make dep
make

After the compilation was done successfully, a binary called “riot” can be found in the bin
directory.

ttcn3@tten3-VirtualBox:~/riot/src/Applications/RIOT_LPA108661% ./bin/riot -1
10T_App_Functions.TC



ERICSSON 2 Public

Prepared (Subject resp) No.

Antal Wu-Hen-Chang

Approved (Document resp) Checked Date | Rev Reference

2018-03-02 PA1

3(17)

3 Demos

In this section some load generator setups will be presented to demonstrate the RloT
application:

e COoAP performance test against the Californium stack (see 3.1)
o CoAP performance test against a simulated server (see 3.2)
o Simulated LwM2M devices against Leshan (see 3.3)

e Stability test against Leshan (see 3.4)

3.1 CoAP performance test against the Californium stack

In this setup the System Under Test (SUT) is a CoAP server realized with the Californium
stack available from Eclipse[8]. The load generator is sending CoAP GET and POST requests
to this server and waiting for a response. Execute the following steps to go through the demo.

To build Californium, please follow the instructions from here:
https://github.com/eclipse/californium. After the build is successful, executable JARs of
Californium’s examples with all dependencies can be found in the demo-apps/run folder. We
will use the cF-plugtest-server example as a System Under Test (SUT).

e Start the SUT
ocd <californium repo>/demo-apps/run
ojava -jar cf-plugtest-server-*_jar
e Start RloT
ocd <riot repo>

ottcn3_start _/bin/riot
./cfg/performance_californium/coap_basic _main.cfg

o0 To open RIoT’'s GUI you'll need to open a browser and go to
http://127.0.0.1:4040

e Start Testing

o0 On RIoT’s GUI in the browser press the “Start Scenario”



ERICSSON 2 Public

4 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

3.1.1

GUI

This section gives a short introduction to RIoT’'s GUI. After starting the application and
opening http://127.0.0.1:4040, the Execution Control’s Statistic page is shown in the browser.
This page gives a good overview about the current test execution.

The entity group this demo is using is called “loTClients”. An entity group is a group of
simulated devices. Here this group consists of 10.000 simulated IoT clients (Group size).
These clients are distributed on 4 load generators (Number of LGens). This is important in
case of performance testing, since each LGen is a physical Linux process. In order to utilize
the cores available in the CPU, one need to create at least as many processes as CPU cores
the executing machine has. This setup will use 4 cores.

On the entity groups one can start scenarios, where each scenario consists of traffic cases,
where each traffic case is tied to a finite state machine that will implement the given traffic
case. Here we are executing the “loTClientScenario” which has only one traffic case:
“TC_CORE_02_POST". The user can set a frequency to trigger the finite state machines tied
to the traffic case by setting the “Target CPS” field. This field can be dynamically tuned even
after the execution has been started.

After the execution started, there are statistics presented. “Starts” is the number of triggers
sent to the finite state machine instances. As the state machines are finishing their execution
they will report back some verdict like pass, fail, timeout or error. There are counters assigned
to these events and they are shown respectively on the GUI.

- )
£ TitanSim RnXnn (G} Help

Calls 100 jsec] DetaRondeip 23 ms|| Deaasize 3182 Byte

StatHandler MNext Gen

=il Entity Groups  Client Resources Traffic Cases Phase Lists Regulator Clients

Entity type Group size First entity offset Number of LGens LGenPool
lotClients 10T_Entity 10000 0 4 Pool_CoAP_Clients

Scenario instance 1 Sc Status 1 i ) i
e e | [otclients.lotcli O e Start Scenaru:l Stop f‘_':(itfﬂﬁll(}l Reset Scenanl

D
Ml EIRN Traffic case states in Scenario
Current CPS Target CPS orRegulated By GroupFinish SStatus Start Stop
Leleleli= | 0.000000  1.000000 B ) Nonefire) idie Start | Stop |

——" " Entity Index Enable Log _ Single shot ‘ .

-1 Single shot @ |
FSM stats CPS chart

StatisiStartsSucceFail TimecError Fin  RangeExec RunniAvailaMax Max Min Not GoS
name Traffic Time Busy RunnilAvailaFinish

0 0 o 0o 0 0 100C 0 0 100C 100C 0.001

StatistiQ 0.000 0

Time elapsed si Start Test O Stop Test @ | Terminate Test Q | Snapshot | Exit € |




ERICSSON 2 Public

5 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

3.1.2

3.1.3

Californium

Californium is a CoAP protocol stack implementation. The sample application will log the
messages received and sent to the console, where it was started.

In case you have Wireshark installed on your machine, you can trace the CoOAP messages on
the network interface (loopback interface). Look for UDP port 5683.

& & E Eten3@tten3-VirtualBox: ~friok/sut

eTracer receiveRequest

INFO: f127.0.0.1:17,012 ==> req CON-POST MID=63259, Token=0000766d, OptionSet
{"Uri-Path":"test", "Content-Format":"text/plain"}, 01 62 03 64 05 66 67 08 89
Nov 14, 2017 2:44:42 PM org.eclipse.californium.core.network.interceptors.origi
Tracer receiveRequest

INFO: f127.0.08.1

Nov 14, 2017 2:44:42 PM org.eclipse.californium.core.network.interceptors.Messag|
eTracer sendResponse

INFO: f127.0.0.1:17,012 <== res ACK-2.01 MID=63259, Token=0000766d, OptionSet
{"Location-Path":["locationl”,"location2”,"location3"]}, no payload

Nov 14, 2017 2:44:42 PM org.eclipse.californium.core.network.interceptors.Messag|
eTracer receiveRequest

INFO: f127.0.08.1:19,512 ==> req CON-POST MID=50572, Token=000074c3, OptionSet
{"Uri-Path":"test", "Content-Format":"text/plain"}, 61 62 03 84 05 06 67 08 89
Nov 14, 2017 2:44:42 PM org.eclipse.californium.core.network.interceptors.origi
Tracer receiveRequest

INFO: f127.0.8.1

Nov 14, 2017 2:44:42 PM org.eclipse.californium.core.network.interceptors.Messag|
eTracer sendResponse

INFO: [127.0.8.1:19,512 <== res ACK-2.01 MID=508572, Token=000074c3, OptionSet
{"Location-Path":["locationl","location2","location3"]}, no payload

Nov 14, 2017 2:45:40 PM org.eclipse.californium.core.network.UdpMatcher$1 run
INFO: Matcher state: @ exchangesByMID, @ exchangesByToken, @ ongoingExchanges

Top window

The easiest way to check what kind of resources are used by the SUT and the load generator
is to use top. RIOT has 4 “riot” processes that are used only for CoAP load generation. The
java line in the screenshot below belongs to the Californium stack. There are other “riot”
process that are either used for coordination or to handle specific functions like the REST API
for the GUIL. When you increase CPS only the load generator processes should require more
resources.

Please keep in mind, that there are a number of factors that affect the performance of RloT.
Some examples:

e Turning on logging will result in great performance loss, as writing to disk is very slow.
When logging is on, one must also be very careful to not run out of disk space.



ERICSSON 2 Public

6 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

3.14

¢ Optimizing the compilation has also a great effect on performance. Adding -O2 switch
to the C++ compiler, will result in optimized binaries. It is also possible to turn on/off
verbose logging statements in the code by using the preprocessor switch -
DEPTF_DEBUG (The default generated Makefile in the bin directory is not optimized.
You must add the -O2 switch to the CXXFLAGS= line and rebuild the executable)

top - 14:44:26 up 1:34, 4 users, load average: 1,39, 1,10, 8,97
Tasks: 181 total, 4 running, 177 sleeping, 0 stopped, 0 zombie
%Cpu(s): 70,1 us, 8,7 sy, 0,0 ni, 20,9 id, ©,0 wa, ©,0 hi, 0,3 si, 0,0 st

KiB Mem: 4135772 total, 1495348 used, 2640424 free, 63652 buffers
KiB Swap: 4191228 total, 0 used, 4191228 free. 665008 cached Mem

PID USER PR N

VIRT RES SHR
490216 223780
186032 64004

1390796 70608
533608 134136
140524 23200

64068 15492
64100 15704
64064 15496
64068 15500

50856 8316

57136 5360

56828 6520

0 0
157624 15036
6916 1428
4456 2516

] 0

%CPU %MEM TIME+ COMMAND
46:26.17 compiz
14:06.01 Xorg
0:08.56 java
0:26.63 firefox
1:00.57 gnome-term+
0:00.78 riot
0:00.76 riot
0:00.75 riot
0:00.74 riot
B:25.76 ibus-daemon
0:02.42 riot
0:01.73 riot
0:01.06 kworker/e:1
0:01.38 unity-sett+
0:00.02 top

0:82.87 init
0:00.00 kthreadd

Y
-
v

- e

HOW W W W W W W W W
W W W W W W W W W W
DO LM N B & LSRN -

DD W WW @~ WwWw=wWwWo

00000000 0]
2D 00000 MNPMPMLWWY
OO0 Q00020 WRE

=
e

State machines

As mentioned earlier, the state machine instances are implementing the behavior of the
simulated devices. In this demo the state machines are specified in the configuration file. They
can be found in <riot repo>/cfg/coap_basic/coap_basic_fsms.cfg and is called
TC_CORE_02_POST_FSM. The description is text based, so it is possible to read and write it
using a simple text editor. From the textual description a the following graphical representation
can be drawn (see below).



ERICSSON 2 Public

7 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

3.1.5

3.151

e HE B 5% B @

Events| Teststeps

B B i ed Ea
v Events to listen
* Events

~ Catchallevents
v Catch allunhandled e
10T App: teFinished_withverdict
COAP rsp: 201
COAP Applib: init

10T App COAP; setlLocalAddress_bywars Timers

COAP Applib: setRemoteAddress_bywars -

COAP Applib: loadTemplate_byStringld

COAP Applib: send

LGenBase: StepFunction_timerStart Timer
= LGenBase: Start_the_traffic_case! watc.., |

10T App: teFinished withverdict
Eventlist: initiated = idle #1
10T App: teFinished withverdict
watchdog

-

Search:
Fsm loaded!

The FSM is very simple. It starts in the idle state. Then as the instance receives the
“Start_the_traffic_case” event it will initialize its CoAP library and will load in a template (from
coap_basic_templates.cfg”) to send it out. After executing these actions, it goes to the state
called “initialized”. If it receives a CoAP 201 response in state “initialized” it finishes running
and reports a pass verdict.

Configuration files

The configuration files for the load generator are in the <riot
repo>/cfg/performance_californium directory. The configuration is described in four files:

¢ Coap_basic_main.cfg
e Coap_basic_params.cfg
¢ Coap_basic_fsms.cfg

e Coap_basic_tempates.cfg

Coap_basic_maing.cfg

This is the main configuration file. This is the one that should be passed as an argument when
starting RIOT. It is including the rest of the configuration files using preprocessor include
statements.

[INCLUDE]



ERICSSON 2 Public

8 (17)

Prepared (Subject resp) No.

Antal Wu-Hen-Chang

Approved (Document resp) Checked Date | Rev Reference

2018-03-02 PA1

""coap_basic_params.cfg"
"‘coap_basic_fsms.cfg"
"‘coap_basic_templates.cfg"

The following structure will create 4 processes (load generators) to form a load generator pool
“Pool_CoAP_Clients™:

tsp_EPTF_ExecCtrl_LGenPool_Declarators :=

{
{
name := "Pool_CoAP_Clients",
IgenPoolltems := { { hostname := "localhost™, num := 4, createFunctionName :=
"RloT.createlLGen" } }
b
3

This part below assigns the load generator pool to the entity group “loTClients”. You can
assign several entity groups to a load generator pool. When a group is put on a load generator
pool, it means that the elements (entities) of that pool will be distributed on the load generator
pool. Using this construct, it is possible to distribute the simulated entities of a group on more
than one cores of the host and this enables to generate larger loads (higher calls per seconds)

tsp_EPTF_ExecCtrl_EntityGroup2LGenPool_List :=
{
{

eGrpName := "lotClients",
IgenPoolName := *"Pool_CoAP_Clients"
3
3

The next part describes what the 10TClients entity group is. This group contains 10.000
instances of the entity type “IOT_Entity”. The entity type IOT_Entity is defined using TTCN-3
code (in IOT_LGen_Functions.ttcn) and it describes what kind of application libraries
(behaviors) the given entity can use.

tsp_LGenBase EntityGrpDeclarators := {
{ name := "lotClients", eType := "IOT_Entity", eCount := 10000 }

}

The next part is defining a scenario “loTClientScenario”, which has only one traffic case using
a state machine called “TC_COREOQ2_POST_FSM” and assigns this scenario to the
“lotClients” entity group.

tsp_EPTF_ExecCtrl_Scenario2EntityGroupList := {
{ scenarioName := "lotClientScenario', eGrpName := "lotClients', name := omit}

}

tsp_LGenBase_TcMgmt_tcTypeDeclarators2 := {
{
name := "TC_COREO02_POST",
fsmName := "TC_COREO2_POST_FSM",
entityType := "I0T_Entity",
customEntitySucc := """
}
}

tsp_LGenBase_TcMgmt_ScenarioDeclarators3 :=

{



ERICSSON 2 Public

9 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

3.1.5.2

3.1.5.3

3.1.54

{

name := "lotClientScenario",
tcList = {

tcName := "TC_COREO2_POST",

tcParamsList = {
{startDelay := 1.0},
{target := { cpsToReach := 1.0 }},
{scheduler := {preDefinedName := cs}},
{enableEntitiesAtStart := true},
{enabledAtStart := true}

}
}

scParamsList := {
{enabled := true}
3
3
}

This a very simple setup. But this hierarchic structure (of scenarios, traffic cases and entity
groups) allows the users of TitanSim to create sophisticated traffic mixes. For more details,
please look at the LGenBase documentation.

Coap_basic_params.cfg

Here mostly those switches are provided that turn on and off certain log levels for different
components.

In case you plan to generate high load and/or load for a longer time, it is recommended to
disable logging TTCN_USER and TTCN_ACTION to the log files, otherwise the system will
run out of HDD space quickly.

[LOGGING]

FileMask := TTCN_ERROR | TTCN_TESTCASE | TTCN_STATISTICS | TTCN_WARNING | TTCN_ACTION #|
LOG_ALL #| DEBUG

ConsoleMask := TTCN_ERROR | TTCN_TESTCASE | TTCN_STATISTICS | TTCN_WARNING #] TTCN_ACTION

Coap_basic_fsms.cfg

This file contains the FSM descriptions.

Coap_basic_templates.cfg

Message structures are described here that are used by the state machines described in
coap_basic_fsms.cfg. An example:

{
id := "t_TC_CORE_O1_GET",
msg :=
header :=
{
version := 1,

msg_type := CONFIRMABLE,



ERICSSON 2 Public o

No.

Prepared (Subject resp)

Antal Wu-Hen-Chang

Approved (Document resp) Checked Date

2018-03-02 PA1

| Rev Reference

code := { class:= 0, detail =1 },

message_id := 0
3.
token := ""0,
options :=
{
{
uri_path := "test"
3
péyload 1= omit
}.
3.2 CoAP performance test against a simulated server

In this setup both the CoAP server and the CoAP clients are simulated by RIoT. This is
intended to be an example of how to use separate groups and different behaviors in the same

configuration.
e Start RloT
ocd <riot repo>

ottcn3_start ./bin/riot ./cfg/coap basic/coap basic _main.cfg

0 To open the GUI you'll need to open a browser and go to http://127.0.0.1:4040

e Start Testing
oOn RloT's GUI

= Select “loTServer” entity group by clicking on it.

Push the “Start Scenario”, to start the CoAP server

Select “loTClients” entity group by clicking on it.

Push the “Start Scenario”, to start the CoAP clients

= You can change the desired cps during running.
e Stop testing
oOn RIoT's GUI
= Select lotClients entity group
» Push Stop scenario button to stop the clients

= Select loTServer entity group



ERICSSON 2 Public

Prepared (Subject resp) No.

Antal Wu-Hen-Chang

Approved (Document resp) Checked Date | Rev Reference

2018-03-02 PA1

11 (17)

= Push Stop scenario button to stop the server

=  Press ‘Exit’ to exit from RloT

3.3 Simulated LwM2M devices against Leshan

In this setup the System Under Test (SUT) is a Lightweight Machine2Machine (LwM2M)
server realized with the Leshan library available from Eclipse[9]. The load generator is
simulating LWM2M devices that are registering in to the server, publishing their smart objects
and finally deregistering.

Leshan sources and precompiled JAR packages can be found from:
https://github.com/eclipse/leshan. For this demo the leshan-server-demo.jar package will be
needed.

e Start Leshan

ojava -jar leshan-server-demo.jar

0 Open the Leshan GUI using a browser http://127.0.0.1:8080
e Start RloT

ocd <riot repo>

ottcn3 start ./bin/riot
./cfg/leshan_basic/leshan_basic_main.cfg

o0 To open the GUI you'll need to open a browser and go to http://127.0.0.1:4040
e Start Testing
oOn RIoT's GUI
= Select “loTClients” entity group by clicking on it.
= Push the “Start Scenario”, to start the LwM2M clients

After starting the device simulation, the clients will register in to the Leshan LwM2M server.
On Leshan’s GUI you should see them listed:



ERICSSON 2 Public

12 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

< LESHAN SECURITY

Client Endpoint Registration ID  Registration Date Last Update

eantwuhDev_0 oom2Ffe5RB Nov 16, 2017 11:10:40 AM Nov 16, 2017 11:10:40 AM
eantwuhDev_25  4QGcDiRDLf Nov 16, 2017 11:10:41 AM Nov 16, 2017 11:10:41 AM
eantwuhDev_1 3PgyjfAC2t Nov 16, 2017 11:10:42 AM Nov 16, 2017 11:10:42 AM
eantwuhDev_26 HOjRP1rjkr Nov 16, 2017 11:10:43 AM Nov 16, 2017 11:10:43 AM
eantwuhDev_2 uuC35zeddt Nov 16, 2017 11:10:44 AM Nov 16, 2017 11:10:44 AM

eantwuhDev_27  0dBNDFmOIV Nov 16, 2017 11:10:45 AM Nov 16, 2017 11:10:45 AM
eantwuhDev_3 8x4UZoZspk Nov 16, 2017 11:10:46 AM Nov 16, 2017 11:10:46 AM
eantwuhDev_28 PATgFHZxgG Nov 16, 2017 11:10:47 AM Nov 16, 2017 11:10:47 AM
eantwuhDev_4 pl4MIE9zNK Nov 16, 2017 11:10:48 AM Nov 16, 2017 11:10:48 AM
eantwuhDev_29 LWmYxntFZp Nov 16, 2017 11:10:49 AM Nov 16, 2017 11:10:49 AM
eantwuhDev_5 ksVsfwJ30lI Nov 16, 2017 11:10:50 AM Nov 16, 2017 11:10:50 AM

)@ Q0 Q0 Q00 O00Q OO

The clients’ behavior is in the leshan_basic_fsms.cfg, the FSM is called
“LWM2M_RegDereg FSM”. The simulated devices are registering in. Then keep their
registration alive by reregistering for a while and finally they deregister.



13 (17)

ERICSSON 2 Public
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

inititated

LWM2M Applib;...byStringld
LWM2M applib: send i

e LWM2ZM req: Write
LGenBase: .. timerStart
E

Iy oo sliessen e Hmerstant
e LWM2M rsp: 204 SR veeees
-— -f“ --1 registered !
i COAP Applib; handleRequest % RTINS

VY LWM2M ...hand\eReadRequestb,‘ "
S

LWM2M req: Read

v
'\ COAP Applib: handleRequest
v LWM...handleExecuteRequest’,‘

LWM2M req: Execute

userwatchdog
1
|

10T App: teFinished_withverdict
LWMZM rsp: 3xxtoBrx

10T App: teFinished_withwverdict
nsaction; timeout

COAP tra

deregistering

The LwM2M library is capable to handle some incoming requests as well, but not all LwM2M

procedures are supported currently. Some examples:

Reading a smart object value

0 On the Leshan GUI select a device

[ ]
o Locate the smart object Device/instance O/Manufacturer and push the Read

button
o This will send a CoAP read request to the simulated device which will answer

with a response



ERICSSON 2 Public

14 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

Serial Number Observe b
Civmniarmen VAavmia:m omas ] A -

Device
Instance 0 Observe » B | Read Write Delete
Manufacturer Observe b | W TitanSim
Model Number Observe » M || Read
M | Read

e

o Executing a smart object value
0 On the Leshan GUI select a device

o Locate the smart object Device/instance 0/Reset error code and push the
Execute button

o This will send an execute request to the simulated device which will receive it and
answer it. You shall notice in RIoT’s terminal a message, that indicates the
request was received.

Lx)calhost(4)@ttcn3—virtualk’:‘»-3;- Reset Error Code @_l

localhost(5)@ttcn3-VirtualBox Current Time Cbserve M Read  Wrile
localhost(4)@ttcn3-VirtualBo> UTC Offset Observe » M Read Write
localhost(5)@ttcn3-virtualBo> Timezone Observe | M || Read || Write
localhost(4)@tten3-virtualBoy Supported Binding and Modes Cbserve b | B | Read

localhost(5)@ttcn3-VirtualBos>
localhost(4)@ttcn3-VirtualBo>
localhost(5)@ttecn3-virtualBox
localhost(4)@ttcn3-virtualBo
localhost(4)@ttcn3-VirtualBo ction: executed: { 1d := 12, objld :
Id := @, observe := omit, dataSample := omit, val := { strValue :

e Stopping the test
o On RIoT’'s GUI select “loTClient” entity group and push stop scenario.

o After a few seconds all the simulated devices will deregister (you can check this
on Leshan’s GUI)

o Push Exit on RloT’'s GUI

3.4 Stability test against Leshan

This case is a variation for the previous one (3.3). The SUT is Leshan again. RIoT is
simulating a little bit more devices than before (1000) and uses a little bit larger calls per
second to start them up (50cps). This is to demonstrate that the system can simulate large
numbers of entities. If you check top you shall see that the simulation still does not consume
too much resources. (With other applications built with TitanSim we were able to simulate ~1M
SIP signaling phones with media generation on PC hardware)

e Start Leshan

Ojava -jar leshan-server-demo.jar



ERICSSON

g Public
15 (17)

Prepared (Subject resp)

Antal Wu-Hen-Chang

No.

Approved (Document resp)

Checked Date | Rev Reference

2018-03-02 PA1

olt is not recommended to open Leshan’s GUI (actually you should close its tab in
firefox before starting up RIoT), because it may have problems handling these
many devices!

e Start RloT
ocd <riot repo>

ottcn3 start ./bin/riot
./cfg/stability_leshan/leshan_basic_main.cfg

o0 To open the GUI, you'll need to open a browser and go to http://127.0.0.1:4040

e Start Testing
oOn RIoT's GUI
= Select “loTClients” entity group by clicking on it.

o Push the “Start Scenario”, to start the LwM2M clients

When the execution is started, all 1000 devices will register in with 50cps. But this time they
won’t deregister automatically, instead they keep alive their registration by reregistering.
Which means about 50 reregisters per second during test execution. To idea with this stability
test is to keep them running for a long time to see, if the SUT is stable enough to handle this
load.

e Stopping the test
0 0On RIoT's GUI select “loTClient” entity group and push stop scenario.
o After a few seconds all the simulated devices will deregister
(The deregistration is not distributed in time. The devices will get the stop event
and they try to immediately deregister at once, thus creating a peak load)

o Push Exit on RloT’'s GUI

Source code

The source code is divided into several components, where each component is mapped to a
directory. To help understanding the arrangement of the components in the software one must
know how a TitanSim application is constructed. The TitanSim framework is a 3-layered
software framework aimed at developing TTCN-3 load test applications.



ERICSSON 2

Public
16 (17)

Prepared (Subject resp)

Antal Wu-Hen-Chang

No.

Approved (Document resp)

Checked Date | Rev Reference

2018-03-02 PA1

Control Logic
(User Code)

Applib it

1

Core Load Library
(CLL)

The three layers are defined as follows:

1 Core Load Library (CLL)

<riot repo>/src/Libraries/EPTF_Core_Library CNL113512
This library realizes a common base foundation for the whole framework and
provides project, SUT and protocol independent functionality

The various Application Libraries (AppLib)
<riot repo>/src/Libraries/EPTF_Applib_*

They are usually protocol, or application-area dependent, but can be reused
across many TitanSim applications

The Application level code (often called as Control Logic) that “glues”

together the various framework components:
<riot repo>/src/Libraries/loT_LoadTest_Framework

3.1 Configuration logic (what can and must be configured and what is set
implicitly, what is configured statically and what can be set interactively,
etc.)

3.2 Statistics generation and collection logic (what data is generated, how
the data is reported and which data is recorded in logs and which is
displayed during execution, etc.)

3.3 Deployment logic (which software component is deployed to which
PTC, whether distributed execution of a given Entity Group is
supported, or not, etc.



ERICSSON 2 Public

17 (17)
Prepared (Subject resp) No.
Antal Wu-Hen-Chang
Approved (Document resp) Checked Date | Rev Reference
2018-03-02 PAl

5 References

[1]  Oracle VirtualBox
https://www.virtualbox.org/

[2]  Ubuntu Linux 14.04.1 Desktop i386
http://old-releases.ubuntu.com/releases/14.04.1/

[3] Titan TTCN-3 Test Executor
https://projects.eclipse.org/projects/tools.titan

[4] CoAP protocol
http://coap.technology/

[5] LwM2M protocol
http://openmobilealliance.org/iot/lightweight-m2m-lwm2m

[6] MQTT protocol
http://matt.org/

[7] Eclipse
http://www.eclipse.org

[8] Eclipse Californium
https://www.eclipse.org/californium/

[9] Eclipse Leshan
https://www.eclipse.org/leshan/




