
 OMG-UML V1.3 March 2000 7-
�

1

Object Constraint Language
Specification 7

This chapter introduces and defines the Object Constraint Language (OCL), a formal
language to express side-effect-free constraints.

Contents

This ch
�

apter contains the following topics.

7.1 Overview

This chapter introduces and defines the Object Constraint Language (OCL), a formal
language used to express constraints. These typically specify invariant conditions that
m� ust hold for the system being modeled. Note that when the OCL expressions are
e� valuated, they do not have side effects (i.e., their evaluation cannot alter the state of

Topic Page

“Overview” 7-1

“ Introduction” 7-3

“Connection with the UML Metamodel” 7-4

“Basic Values and Types” 7-6

“Objects and Properties” 7-11

“Collection Operations” 7-22

“Predefined OCL Types” 7-28

“Grammar” 7-50

7-
�

2 OMG-UML V1.3 March 2000

7

the corre
�

sponding executing system). In addition to specifying invariants of the UML
metamodel, UML modelers can use OCL to specify application-specific constraints in
their m

�
odels.

OCL is u
�

sed in the UML Semantics chapter to specify the well-formedness rules of the
m� etaclasses comprising the UML metamodel. A well-f ormedness rule in the static
sem� antics chapters in the UML Semantics section normally contains an OCL
e� xpression, specify ing an invariant for the associated metaclass. The grammar for OCL
is sp

�
ecif ied at the end of this chapter. A parser generated from this grammar has

corr� ectly parsed all the constraints in the UML Semantics section, a process which
improved the correctness of the specifications for OCL and UML.

7.1.1 Why OCL?

A UML
	

 diagram, such as a class diagram, is typically not refined enough to provide all
th

�
e relevant aspects of a specification. There is, among other things, a need to describe

add
 itional constraints about the objects in the model. Such constraints are often
described in

�
 natural language. Practice has shown that this will a lways result in

am
 biguities. In order to write unambiguous constraints, so-called formal languages
have been developed. The disadvantage of traditional formal languages is that they are
us� able to persons with a string mathematical background, but difficult for the average
b

usiness or system modeler to use.

OCL has b
�

een developed to fill th is gap. It is a formal language that remains easy to
read and write. It has been developed as a business modeling language within the IBM
In

�
surance division, and has its roots in the Syntropy method.

OCL is a pu
�

re expression language; therefore, an OCL expression is guaranteed to be
witho� ut side effect. When an OCL expression is evaluated, it simply returns a value. It
ca� nnot change anything in the model. This means that the state of the system will never
ch� ange because of the evaluation of an OCL expression, even though an OCL
e� xpression can be used to specify� a state change (e.g., in a post-condition).

OCL is n
�

ot a programming language; therefore, it is not possible to write program
logic or flow control in OCL. You cannot invoke processes or activate non-query
o� perations within OCL. Because OCL is a modeling language in the first place, not
e� verything in it is p romised to be directly executable.

OC
�

L is a typed language, so that each OCL expression has a type. To be well f ormed,
an
 OCL expression must conform to the type conformance rules of the language. For
e� xample, you cannot compare an Integer with a String. Each Classifier defined within
a UM
 L model represents a distinct OCL type. In addition, OCL includes a set of
sup� plementary predefined types (these are described in Section 7.8, “Predefined OCL
T

�
ypes,” on page7-28).

As a sp
	

ecif ication language, all implementation issues are out of scope and cannot be
e� xpressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of
ob� jects in a model cannot change during evaluation.

OMG-
�

UML V1.3 Introduction March 2000 7-3

7

7.1.2 Where to Use OCL

OC
�

L can be used for a number of dif ferent purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• T
�
o describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• T
�
o specify constraints on operations

W
�

ithin the UML Semantics chapter, OCL is used in the well-formedness rules as
invariants on the metaclasses in the abstract syntax. In several places, it is also used to
def

�
ine ‘additional’ operations, which are used in the well-formedness rules.

7.2 Introduction

7.2.1 Legend

Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expres sion'

The co� ntext keyword introduces the context for the expression. The keywords in
�

v, � pr� e
an
 d po� st denote the stereotypes, respectively «invariant», «precondition», and
«postcondition», of the constraint. The actual OCL expression comes after the colon.

context TypeName inv:

'this is an OCL expres sion with stereot ype <<invariant> > in the

contex t of TypeName' = 'another string'

I
�
n the examples. the keywords of OCL are written in boldface in this document. The

bo

ldface has no formal meaning, but is used to make the expressions more readable in
this

�
 document. OCL expressions are written using ASCII characters only.

Wo
�

rds in Italics within the main text of the paragraphs refer to parts of OCL
e� xpressions.

7.2.2 Example Class Diagram

The following diagram is used in the examples in this document.

7-
�

4 OMG-UML V1.3 March 2000

7

F
�

igure 7-1 Class Diagram Example

7.3 Connection with the UML Metamodel

7.3.1 Self

Each OCL expression is written in the context of an instance of a specif ic type. In an
OCL

�
 expression, the reserved word self� is used to refer to the contextual instance. For

instance, if the context is Company, then se� lf refers to an instance of Company.

7.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specif ied through a so-
ca� l led context declaration at the beginning of an OCL expression. The context
declar

�
ation of the constraints in the following sections is shown.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age� : Integer
firstName : String
lastName : String
s� ex : enum {male, female}

income(Date) : Integer

ac� countNumber:Integer

Bank

0..
�

1

cu� stomer

C
�

ompany

name : String
numberOfEmployees : Integer

st� ockPrice() : Real

manager 0..*
�

managedCompanies

emp� loyee em� ployer

wife

husband 0..1

0..
�

1

0..*
�

0
�

..*

Jo
�

b

ti

tle : String

s� tartDate : Date
s� alary : Integer

Marriage

place : String
date

!
 : Date

OMG-
�

UML V1.3 Connection with the UML Metamodel March 2000 7-5

7

I
�
f the constraint is shown in a diagram, with the proper stereotype and the dashed lines

to co
�

nnect it to its contextual element, there is no need for an explicit context
declar

�
ation in the test of the constraint. The context declaration is optional.

7.3.3 Invariants

Th
�

e OCL expression can be part of an Invariant, which is a Constraint stereotyped as
an
 «invariant». When the invariant is associated with a Classifier, the latter is referred
to as a

�
“ty pe” in this chapter. An OCL expression is an invariant of the type and must

be true for a

ll in stances of that type at any time. (Note that all OCL expressions that
e� xpress invariants are of the type Boolean.)

For example, if in the context of the Company type in Figure 7-1, the following
e� xpression would specify an invariant that the number of employees must always
e� xceed 50:

self.n umberOfEmployees > 50

wh� ere self� is an instance of type Company. (We can view self� as the object from where
we star� t the expression.) This invariant holds for every instance of the Company type.

Th
�

e type of the contextual instance of an OCL expression, which is part of an
invariant, is written with the co� ntext keyword, followed by the name of the type as
follows. The label in

�
v: declares the constraint to be an «invariant» constraint.

context Company inv:

self.n umberOfEmployees > 50

I
�
n most cases, the keyword self� can be dropped because the context is clear, as in the

ab
 ove examples. As an alternative for self, a different name can be defined playing the
pa" rt of self:

context c : Company inv:

c.numb erOfEmployees > 50

This in
�

variant is equivalent to the previous one.

Optio
�

nally, the name of the constraint may be written after the in
�

v keyword, allowing
the con

�
straint to be referenced by name. In the following example the name of the

co� nstraint is e# noughEmployees. In the UML metamodel, this name is an attribute of the
m� etaclass Constraint that is inherited from ModelElement.

context c : Company inv enoughEmployees :

c.numb erOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to
«precondition» and «postcondition» stereotypes of Constraint associated with an
Op

�
eration or Method. The contextual instance self� then is an instance of the type that

7-
�

6 OMG-UML V1.3 March 2000

7

o� wns the operation or method as a feature. The context declaration in OCL uses the
co� ntext keyword, followed by the type and operation declaration. The stereotype of
con� straint is shown by putting the labels ‘pre:’ and ‘ post:’ before the actual
Pre

$
conditions and Postconditions

context Typename: :operationName(p aram1 : Type1, .. .): R eturnType

pre% : param1 > ...

post% : result = ...

Th
�

e name self� can be used in the expression referring to the object on which the
o� peration was called. The reserved word result denotes the result of the operation, if
there

�
 is one. The names of the parameters (pa� ram1) can

&
 also be used in the OCL

e� xpression. In the example diagram, we can write:

context Person::income (d : Date) : Inte ger

post% : result = 5000

Optio
�

nally, the name of the precondition or postcondition may be written after the pr� e
or' post keyword, allowing the constraint to be referenced by name. In the following
e� xample the name of the precondition is pa� rameterOk and the name of the
po" stcondition is resultOk. In the UML metamodel, these names are attributes of the
metaclass Constraint that is inherited from ModelElement.

context Typename: :operationName(p aram1 : Type1, .. .): R eturnType

pre% pa rameterOk: para m1 > ...

post % resultOk: resu lt = ...

7.3.5 General Expressions

An
	

y OCL expression can be used as the value for an attribute of the UML metaclass
Expression or one of its subtypes. In that case, the semantics section describes the
meaning of the expression.

7.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all
tim

�
e. These predefined value types are independent of any object model and part of the

def
�

inition of OCL.

OMG-
�

UML V1.3 Basic Values and Types March 2000 7-7

7

Th
�

e most basic value in OCL is a value of one of the basic types. Some basic types
u� sed in the examples in this document, with corresponding examples of their values,
ar
 e shown in Table 7-1.

O
�

CL defines a number of operations on the predefined types. Table 7-2 gives some
e� xamples of the operations on the predefined types. See Section 7.8, “Predefined OCL
T

�
ypes,” on page7-28 for a complete list of all operations.

The complete list of operations provided for each type is described at the end of this
chapter� . Collection, Set, Bag and Sequence are basic types as well. Their specifics will
b

e described in the upcoming sections.

7.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of
cla� ssifiers (types/classes, ...), their features and associations, and their generalizations.
All classifiers from the UML model are types in the OCL expressions that are attached
to th

�
e model.

7.4.2 Enumeration Types

As sho
	

wn in the example diagram, new enumeration types can be defined in a model
by

 using:

enum{ value1, value2, value3 }

Th
�

e values of the enumeration can be used within expressions.

As there m
	

ight be a name conflict with attribute names being equal to enumeration
v(alues, the usage of an enumeration value is expressed syntactically with an additional
po" und (#) symbol prefixing the name of the value:

Table 7-1 B
)

asic types

typ
*

e values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

S
+

tring 'To be or not to be...'

Table 7-2 Operat
,

ions on predefined types

typ
*

e operations

Integer * , +, -, /, abs

Real *, +, -, /, floor

Boolean and, or, xor, not, implies, if-then-else

St
+

ring toUpper, concat

7-
�

8 OMG-UML V1.3 March 2000

7

#value 1

The type of an enumeration attribute is Enumeration, with restrictions on the values for
the attr

�
ibute.

7.4.3 Let Expression

So
+

metimes a sub-expression is used more than once in a constraint. The let
-

 expression
allo
 ws one to define a variable that can be used in the constraint.

context Person inv:

let in come : Integer = self.job.salary- >sum in

if isU nemployed then
.

income < 100

else/

income >= 100

endif/

7.4.4 Type Conformance

OC
�

L is a typed language and the basic value types are organized in a type hierarchy.
This hierarchy determines conformance of the different types to each other. You
ca� nnot, for example, compare an Integer with a Boolean or a String.

An OC
	

L expression in which all th e types conform is a valid expression. An OCL
e� xpression in which the types don’t conform is an invalid expression. It contains a type
co� nformance error. A type type10 conforms to a type type2 when an instance of type10
ca� n be substituted at each place where an instance of typ0 e2 is expected. The type
co� nformance rules for types in the class diagrams are simple.

• Each type conforms to each of its supertypes.

• T
�
ype conformance is transitive: if type10 conforms to typ0 e2, a� nd typ0 e2 conforms to

type30 , the� n type10 conforms to type30 .

The effect of this is that a type conforms to its supertype, and all the supertypes above.
The type conformance rules for the value types are listed in Table 7-3.

Table 7-3 T
1
ype conformance rules

Type Conforms to/Is a subtype of

S
+

et(T) Collection(T)

S
+

equence(T) Collection(T)

Bag(T) Collection(T)

Integer Real

OMG-
�

UML V1.3 Basic Values and Types March 2000 7-9

7

The con
�

formance relation between the collection types only holds if they are
co� llections of element types that conform to each other. See Section 7.5.14, “Collection
Type Hierarchy and Type Conformance Rules,” on page7-20 for the complete
co� nformance rules for collections.

T
�
able 7-4 provides examples of valid and invalid expressions.

7.4.5 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on
a
 subtype of the current known type of the object. Because the property is not defined
on� the current known type, this results in a type conformance error.

Wh
�

en it is certain that the actual type of the object is the subtype, the object can be re-
typ

�
ed using the operation oc' lAsType(OclType). This operation results in the same

ob� ject, but the known type is the argument OclT
2

ype. When there is an object ob' ject of
typ

�
e Ty

3
pe1 and Ty

3
pe2 is another type, it is allowed to write:

object .oclAsType(Type2) --- evaluates t o object with ty pe Type2

An object can only be re-typed to one of its subtype; therefore, in the example, Type2
m� ust be a subtype of Ty

3
pe1.

I
�
f the actual type of the object is not a subtype of the type to which it is re-typed, the

e� xpression is undefined (see Section 7.4.9, “ Undefined Values,” on page7-10).

7.4.6 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre

• do
�

t and arrow operations: ‘.’ and ‘- >’

• un� ary ‘not’ and unary minus ‘-’

• ‘* ’ and ‘/’

• ‘+’ and binary ‘- ’

• ‘if -then-else-endif ’

Table 7-4 V
4

alid expressions

O
5

CL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type Integer does not conform to type
Str
+

ing

2
6
3 * false no type Integer does not conform to

Boolean

12 + 13.5 yes

7-
�

10 OMG-UML V1.3 March 2000

7

• ‘<’, ‘>’ , ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘ implies’

P
$

arentheses ‘(’ and ‘) ’ can be used to change precedence.

7.4.7 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’ , ‘- ’, ‘* ’. ‘ /’, ‘<‘ , ‘>’,
‘<>’ ‘<=’ ‘>=’ are used as infix operators. If a type defines one of those operators with
the corre

�
ct signature, they will be used as infix operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, in
�

voking the ‘+’ operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix
o� perators ‘<‘ , ‘ >’, ‘<=’ , ‘ >=’, ‘<> ’ , ‘ and’, ‘or’ , and ‘xor’ the return type must be
B

7
oolean.

7.4.8 Comment

Co
8

mments in OCL are written following two successive dashes (minus signs).
Everything immediately following the two dashes up to and including the end of line is
p" art of the comment. For example:

-- thi s is a comment

7.4.9 Undefined Values

Wh
�

enever an OCL expression is being evaluated, there is a possibility th at one or more
o� f the queries in the expression are undefined. If this is the case, then the complete
e� xpression will be undefined.

There are two exceptions to this for the Boolean operators:

1. True OR-ed with anything is True

2. False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above
r9 ules are valid whether or not the value of the other sub-expression is known.

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

11

7

7.5 Objects and Properties

OCL
�

 expressions can refer to Classifiers (e.g., types, classes, interfaces, associations
(

:
acting as types) and datatypes). Also all attributes, association-ends, methods, and

o� perations without side-effects that are defined on these types can be used. In a class
model, an operation or method is defined to be side-effect-free if the isQuery attribute
of the o� perations is true. For the purpose of this document, we will r efer to attributes,
assoc
 iation-ends, and side-effect-free methods and operations as being p� roperties. A
pr" operty is one of:

• an Attrib
 ute

• an
 AssociationEnd

• an Op
 eration with isQu
�

ery being true

• a Me
 thod with isQu
�

ery being true

7.5.1 Properties

Th
�

e value of a property on an object that is defined in a class diagram is specified by a
do

�
t followed by the name of the property.

context AType inv:

self.p roperty

If self� is a reference to an object, then self.property is the value of the pr� operty
pr" operty on self.

7.5.2 Properties: Attributes

For example, the age of a Person is written as self� .age:

context Person inv:

self.a ge > 0

The value of the subexpression self� .age is the value of the ag; e attribute on the
partic" ular instance of Person identified by self� . The type of this subexpression is the
typ

�
e of the attribute ag; e, which is� the basic type Integer.

Usin
<

g attributes and operations defined on the basic value types, we can express
ca� lculations over the class model. For example, a business rule might be “the age of a
Per

$
son is always greater than zero.” This can be stated as shown in the invariant above.

7.5.3 Properties: Operations

Op
�

erations may have parameters. For example, as shown earlier, a Person object has an
income expressed as a function of the date. This operation would be accessed as
fo

=
l lows, for a Person aP; erson and a date aD; ate:

aPerso n.income(aDate)

7-
�

12 OMG-UML V1.3 March 2000

7

T
�

he operation itself could be defined by a postcondition constraint. This is a constraint
that is

�
 stereotyped as «postcondition». The object that is returned by the operation can

b

e referred to by result. It takes the following form:

context Person::income (d: Date) : Inte ger

post% : result = age * 1 000

The r
�

ight-hand-side of this definition may refer to the operation being defined (i.e., the
def

�
inition may be recursive) as long as the recursion is not infinite. The type of result

is the return type of the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an
em� pty argument list are mandatory:

context Company inv:

self.s tockPrice() > 0

7.5.4 Properties: Association Ends and Navigation

Star
+

ting from a specif ic object, we can navigate an association on the class diagram to
r9 efer to other objects and their properties. To do so, we navigate the association by
us� ing the opposite association-end:

object .rolename

The v
�

alue of this expression is the set of objects on the other side of the ro> lename
asso
 ciation. If the multip licity o f the association-end has a maximum of one (“0..1” or
“1”) , then the value of this expression is an object. In the example class diagram, when
we star� t in the context of a Company (i.e., self� is an instance of Company), we can
wr� ite:

context Company

inv: s elf.manager.isUn employed = false

inv: s elf.employee->no tEmpty

In the first invariant se� lf.manager is a Person, because the multiplicity of the
asso
 ciation is one. In the second invariant self� .employee will e valuate in a Set of
Per

$
sons. By default, navigation wil l result in a Set. When the association on the Class

Diagram is adorned with {ordered}, the navigation results in a Sequence.

C
8

ollections, lik e Sets, Bags, and Sequences are predefined types in OCL. They have a
large number of predefined operations on them. A property of the collection itself is
ac
 cessed by using an arrow ‘- >’ f ollowed by the name of the property. The following
e� xample is in the context of a person:

context Person inv:

self.e mployer->size < 3

This applies the size � p" roperty on the Set self� .employer, wh� ich results in the number of
em� ployers of the Person se� lf.

context Person inv:

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

13

7

self.e mployer->isEmpty

This applies the isEmpty
�

 property on the Set s� elf.employer. This evaluates to true if the
set o� f employers is empty and false otherwise.

7.5.4.1 Missing Rolenames

W
�

hen a rolename is missing at one of the ends of an association, the name of the type
at th
 e association end, starting with a lowercase character, is used as the rolename. If
this

�
 results in an ambiguity, the rolename is mandatory. This is the case with unnamed

rolenames in reflexive associations. If the rolename is ambiguous, then it cannot be
us� ed in OCL.

7.5.4.2 Navigation over Associations with Multiplicity Zero or One

Becau
7

se the multip licity of the role manager is one, self� .manager is an object of type
Person. Such a single object can be used as a Set as well. It then behaves as if it is a
Set

+
containing the single object. The usage as a set is done through the arrow followed

b

y a property of Set. This is shown in the following example:

context Company inv:

self.m anager->size = 1

The sub-expression self� .manager is used as a Set, because the arrow is used to access
the

�
siz� e property on Set. This expression evaluates to true.

context Company inv:

self.m anager->foo

T
�

he sub-expression self� .manager is used as Set, because the arrow is used to access the
foo

?
 property on the Set. This expression is incorrect, because foo

?
 is not a defined

pr" operty of Set.

context Company inv:

self.m anager.age> 40

T
�

he sub-expression se� lf.manager is used as a Person, because the dot is used to access
the

�
ag; e property of Person.

In the case of an optional (0..1 multiplicity) association, this is especially useful to
ch� eck whether there is an object or not when navigating the association. In the example
we c� an write:

context Person inv:

self.w ife->notEmpty implies self.wife.s ex = #female

7-
�

14 OMG-UML V1.3 March 2000

7

7.5.4.3 Combining Properties

Properties can be combined to make more complicated expressions. An important rule
is that an

�
 OCL expression always evaluates to a specific object of a specific type. Af ter

ob� taining a result, one can always apply another property to the result to get a new
result value. Therefore, each OCL expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class
dia

�
gram:

[1] Married people are of age >= 18

context Person inv:

self.w ife->notEmpty implies self.wife.a ge >= 18 and

self.h usband->notEmpty implies self.hus band.age >= 18

[2] A company has at most 50 employees

context Company inv:

self.e mployee->size <= 50

7.5.5 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL
u� ses a dot and the name of the association class starting with a lowercase character:

context Person inv:

self.j ob

The sub-expression self� .job evaluates to a Set of all the jobs a person has with the
co� mpanies that are his/her employer. In the case of an association class, there is no
e� xplicit r olename in the class diagram. The name jo

@
b used in this navigation is the

name of the association class starting with a lowercase character, similar to the way
described in

�
 the section “Missing Rolenames” above.

In case of a recursive association, that is an association of a class with itself, the name
of the asso� ciation class alone is not enough. We need to distinguish the direction in
which� the association is navigated as well as the name of the association class. Take
the follo

�
wing model as an example.

Figure 7-2 Navigating recursive association classes

EmployeeRanking

Person
age�

bosses

emp� loyees * sco� re

*

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

15

7

W
�

hen navigating to an association class such as emp# loyeeRanking ther
�

e are two
po" ssibilitie s depending on the direction. For instance, in the above example, we may
navigate towards the emp# loyees e� nd, or the bo

A
sses end. By using the name of the

asso
 ciation class alone, these two options cannot be distinguished. To make the
dis

�
tinction, the rolename of the direction in which we want to navigate is added to the

a
 ssociation class name, enclosed in square brackets. In the expression

context Person inv:

self.e mployeeRanking[b osses]->sum > 0

the
�

self� .employeeRanking[bosses] e� valuates to the set of Emplo
B

yeeRankings belon

ging
to th

�
e collection of bo

A
sses. And in the expression

context Person inv:

self.e mployeeRanking[e mployees]->sum > 0

the
�

self� .employeeRanking[employees] e� valuates to the set of EmployeeRankings
belo

nging to the collection of emp# loyees. The unqualified use of the association class

name is not allowed in such a recursive situation. Thus, the following example is
invalid:

context Person inv:

self.e mployeeRanking-> sum > 0 -- INVALI D!

I
�
n a non-recursive situation, the association class name alone is enough, although the

quC alified version is allowed as well. Therefore, the examples at the start of this section
cou� ld also be written as:

context Person inv:

self.j ob[employer]

7.5.6 Navigation from Association Classes

W
�

e can navigate from the association class itself to the objects that participate in the
asso
 ciation. This is done using the dot-notation and the role-names at the association-
en� ds.

context Job

inv: s elf.employer.num berOfEmployees >= 1

inv: self.e mployee.age > 21

Na
D

vigation from an association class to one of the objects on the association will
al
 ways deliver exactly one object. This is a result of the definition of AssociationClass.
Therefore, the result of this navigation is exactly one object, although it can be used as
a Set usin
 g the arrow (->).

7-
�

16 OMG-UML V1.3 March 2000

7

7.5.7 Navigation through Qualified Associations

Qualif
E

ied associations use one or more qualif ier attributes to select the objects at the
oth� er end of the association. To navigate them, we can add the values for the qualif iers
to th

�
e navigation. This is done using square brackets, following the role-name. It is

perm" issible to leave out the qualifier values, in which case the result will be all objects
at th
 e other end of the association.

context Bank inv:

self.c ustomer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv:

self.c ustomer[8764423]

Th
�

is results in one Person, having account number 8764423.

I
�
f there is more than one qualif ier attribute, the values are separated by commas, in the

order which is� specified in the UML class model. It is not permissible to partially
sp� ecify th e qualif ier attribute values.

7.5.8 Using Pathnames for Packages

W
�

ithin UML, d ifferent types are organized in packages. OCL provides a way of
e� xplicitly referring to types in other packages by using a package-pathname prefix. The
syn� tax is a package name, followed by a double colon:

Packag ename::Typename

This usage of pathnames is transitive and can also be used for packages within
p" ackages:

Packag ename1::Packagen ame2::Typename

7.5.9 Accessing overridden properties of supertypes

W
�

henever properties are redefined within a type, the property of the supertypes can be
ac
 cessed using the oclA' sType() operation. Whenever we have a class B as a subtype of
cla� ss A, and a property p1 of both A and B, we can write:

context B inv:

self.o clAsType(A).p1 -- accesses the p 1 property defin ed in A

self.p 1 -- ac cesses the p1 pro perty defined in B

Figure 7-3 shows an example where such a construct is needed.

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

17

7

Figure 7-3 Accessing Overridden Properties Example

I
�
n this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv:

self.s ource <> self

This can either mean normal association navigation, which is inherited from
Mod

F
elElement, or it might also mean navigation through the dotted line as an

asso
 ciation class. Both possible navigations use the same role-name, so this is always
a
 mbiguous. Using oc' lAsType() we can distinguish between them with:

context Dependency

inv: s elf.oclAsType(De pendency).source

inv: self.o clAsType(ModelEl ement).source

7.5.10 Predefined properties on All Objects

Th
�

ere are several properties that apply to all objects, and are predefined in OCL. These
ar
 e:

oclIsT ypeOf(t : OclTyp e) : Boolean

oclIsK indOf(t : OclTyp e) : Boolean

ocl InS tate(s : Ocl Stat e) : Boole an

oclIsN ew : Boolean

oclAsT ype(t : OclType) : instance of Oc lType

The operation is oc' lTypeOf results in true if the type0 of self and t0 are the same. For
ex� ample:

context Person

inv: s elf.oclIsTypeOf(Person) -- is true

inv: s elf.oclIsTypeOf(Company) -- is false

..G ..

Dep
H

en dency

ta
I

rg et

s oJ ur ce
*

*

M
K

odel El ement

N o
L

te
v aM lu e: U nint erp rete d

7-
�

18 OMG-UML V1.3 March 2000

7

Th
�

e above property deals with the direct type of an object. The oclIsKin' dOf property
deter

�
mines whether t0 is either the direct type or one of the supertypes of an object.

The operation oclInS' tate results in true if the object is in the state s� . Values for s� are
th

�
e names of the states in the statemachine(s) attached to the Classifier of o' bject. For

nN ested states the statenames can be combined using the ::.

Figure 7-4 Statemachine Example

I
�
n the previous example of statemachine, values for s� can be On

2
, � Of

2
f, � Of

2
f::Standby, �

Of
2

f::NoPower. If the classifier of ob' ject has the above associated statemachine, valid
OCL

�
 expressions are:

object .oclInState(On)

object .oclInState(Off)

object .oclInstate(Off: :Standby)

object .oclInState(Off: NoPower)

If there are multiple statemachines attached to the object’s classifier, then the
staten� ame can be prefixed with the name of the statemachine containing the state and
the d

�
ouble semicolon ::, as with nested states.

T
�

he operation oc' lIsNew evaluates to true if, used in a postcondition, the object is
cr� eated during performing the operation (i .e., it d idn’ t exist at precondition time).

7.5.11 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The
typ

�
es are either predefined in OCL or defined in the class model. In OCL, it is also

p" ossible to use features defined on the types/classes themselves. These are, for
e� xample, the class� -scoped features defined in the class model. Furthermore, several
f

=
eatures are predefined on each type.

A p
	

redefined feature on each type is a; llInstances,� which results in the Set of all
instances of the type in existence at the specific time when the expression is evaluated.
If we want to make sure that all instances of Person have unique names, we can write:

context Person inv:

Person .allInstances->f orAll(p1, p2 |

On
�

Of
�

f

S
+

tandby NoPower
D

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

19

7

 p 1 < > p 2 implies p1.name < > p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person). It is the set
of all per� sons that exist at the snapshot in time that the expression is evaluated.

No
O

te – The use of allInsta; nces has some problems and its use is discouraged in most
ca� ses. The first problem is best explained by looking at the types like Integer, Real and
Strin

+
g. For these types the meaning of allInsta; nces is undefined. What does it mean for

an Inte
 ger to exist? The evaluation of the expression Integer.allInstances results in an
infinite set and is therefore undefined within OCL. The second problem with
allI; nstances is

�
 that the existence of objects must be considered within some overall

con� text, like a system or a model. This overall context must be defined, which is not
do

�
ne within OCL. A recommended style is to model the overall contextual system

e� xplicitly as an object within the system and navigate from that object to its containing
instances without using allInsta; nces.

7.5.12 Collections

Sing
+

le navigation results in a Set, combined navigations in a Bag, and navigation over
assoc
 iations adorned with {o rdered} r esults in a Sequence. Therefore, the collection
typ

�
es play an important role in OCL expressions.

The
�

type Collection is predefined in OCL. The Collection type defines a large number
of predef� ined operations to enable the OCL expression author (the modeler) to
manipulate collections. Consistent with the definition of OCL as an expression
lang

P
uage, collection operations never change collections; is

�
Query is always true. They

may result in a collection, but rather than changing the original collection they project
the re

�
sult in to a new one.

Co
8

llection is an abstract type, with the concrete collection types as its subtypes. OCL
dis

�
tinguishes three different collection types: Set, Sequence, and Bag. A Set is the

mathematical set. It does not contain duplicate elements. A Bag is like a set, which
may contain duplicates (i.e., the same element may be in a bag twice or more). A
Seq

+
uence is lik e a Bag in which the elements are ordered. Both Bags and Sets have no

order def� ined on them. Sets, Sequences, and Bags can be specified by a literal in OCL.
C

8
urly brackets surround the elements of the collection, elements in the collection are

wr� itten within, separated by commas. The type of the collection is wri tten before the
cu� rly brackets:

Set { 1 , 2 , 5 , 88 }

Set { 'apple' , 'orang e', 'strawberry' }

A Sequence:

Sequen ce { 1, 3, 45, 2 , 3 }

Sequen ce { 'ape', 'nut ' }

A b
	

ag:

Bag {1 , 3 , 4, 3, 5 }

7-
�

20 OMG-UML V1.3 March 2000

7

B
7

ecause of the usefulness of a Sequence of consecutive Integers, there is a separate
literal to create them. The elements inside the curly brackets can be replaced by an
interval specification, which consists of two expressions of type Integer, Int-expr1 and
In

Q
t-expr2, sep� arated by ‘ ..’ . This denotes all the Integers between the values of In

Q
t-

ex# pr1 and Int-expr2, inclu� ding the values of Int-expr1 and Int-expr2 themselves:

Sequen ce{ 1..(6 + 4) }

Sequen ce{ 1..10 }

-- are both identical to

Sequen ce{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The com
�

plete list of Collection operations is described at the end of this chapter.

Co
8

llections can be specif ied by a literal, as described above. The only other way to get
a
 collection is by navigation. To be more precise, the only way to get a Set, Sequence,
or� Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

 Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Sequen ce {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

 Bag {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

 Company

 self.e mployee

3
R
. operations on collections may result in new collections:

collec tion1->union(col lection2)

7.5.13 Collections of Collections

W
�

ithin OCL, all Collections of Collections are flattened automatically; therefore, the
following two expressions have the same value:

Set{ S et{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1 , 2, 3, 4, 5, 6 }

7.5.14 Collection Type Hierarchy and Type Conformance Rules

I
�
n addition to the type conformance rules in Section 7.4.4, “Type Conformance,” on

pag" e 7-8, the following rules hold for all ty pes, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Ty
3

pe1 conforms to Ty
3

pe2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

OMG-
�

UML V1.3 Objects and Properties March 2000 7-
�

21

7

• Collection(Type1) conforms to Collection(Type2), w� hen Ty
3

pe1 conforms to Ty
3

pe2.

• Type conformance is transitive: if Type1 conforms to Type2, an� d Type2 conforms to
Type3, t� hen Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bi cycle) conforms to Set(Transport)

Set(Bi cycle) conforms to Coll ection(Bicycle)

Set(Bi cycle) conforms to C ollection(Transp ort)

No
D

te that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around.
Th

�
ey are both subtypes of Collection(Bicycle) at the same level in the hierarchy.

7.5.15 Previous Values in Postconditions

As stated in Section7.3.4, “Pre- and Postconditions,” on page 7-5, OCL can be used to
sp� ecify p re- and post-conditions on Operations and Methods in UML . In a
po" stcondition, the expression can refer to two sets of values for each property of an
ob� ject:

• th
�

e value of a property at the start of the operation or method

• the v
�

alue of a property upon completion of the operation or method

The v
�

alue of a property in a postcondition is the value upon completion of the
op� eration. To refer to the value of a property at the start of the operation, one has to
p" ostfix the property name wi th the keyword ‘@pre’:

context Person::birthd ayHappens()

post% : age = age@pre + 1

Th
�

e property ag; e r9 efers to the property of the instance of Person on which executes the
o� peration. The property ag; e@pre refers to the value of the property ag; e of the Person
that e

�
xecutes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
pa" rameters.

context Company::hireE mployee(p : Perso n)

post% : employees = empl oyees@pre->includ ing(p) and
stockp rice() = stockpr ice@pre() + 10

The abo
�

ve operation can also be specif ied by a postcondition and a precondition
tog

�
ether:

context Company::hireE mployee(p : Perso n)

pre% : not employee->in cludes(p)

post% : employees->inclu des(p) and

 stockprice() = stockprice@pre() + 10

7-
�

22 OMG-UML V1.3 March 2000

7

W
�

hen the pre-value of a property evaluates to an object, all fu rther properties that are
ac
 cessed of this object are the new values (upon completion of the operation) of this
ob� ject. So:

a.b@pr e.c -- tak es the old value of property b of a, say x

 -- and then the new val ue of c of x.

a.b@pr e.c@pre -- tak es the old value of property b of a, say x

 -- and then the old val ue of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition. Asking for a current property of an object that has been destroyed
du

�
ring execution of the operation results in Undefined. Also, referring to the previous

v(alue of an object that has been created during execution of the operation results in
Un

<
defined.

7.6 Collection Operations

OC
�

L defines many operations on the collection types. These operations are specif ically
meant to enable a flexible and powerful way of projecting new collections from
e� xisting ones. The different constructs are described in the following sections.

7.6.1 Select and Reject Operations

Som
+

etimes an expression using operations and navigations delivers a collection, while
we a� re interested only in a special subset of the collection. OCL has special constructs
to

�
 specify a selection from a specif ic collection. These are the select� and r> eject

o� perations. The select specifies a subset of a collection. A select is an operation on a
collection� and is specified using the arrow-syntax:

collec tion->select(.. .)

The parameter of select has a special syntax that enables one to specify which elements
o� f the collection we want to select. There are three different forms, of which the
sim� plest one is:

collec tion->select(bo olean-expression)

This results in a collection that contains all the elements from collection� for which the
bo

A
olean-expression e� valuates to true. To find the result of this expression, for each

ele� ment in collection� the expression bo
A

olean-expression is evaluated. If this evaluates
to true, the elem

�
ent is included in the result collection, otherwise not. As an example,

th
�

e following OCL expression specifies that the collection of all the employees older
tha

�
n 50 years is not empty:

context Company inv:

self.e mployee->select(age > 50)->notEmp ty

The self� .employee is of type Set(Person). The selec� t ta
�

kes each person from
self� .employee and evaluates ag; e > 50 for this person. If this results in tru0 e,� then the
person" is in the result Set.

OMG-
�

UML V1.3 Collection Operations March 2000 7-
�

23

7

As sh
	

own in the previous example, the context for the expression in the select
ar
 gument is the element of the collection on which the select is invoked. Thus the ag; e
pr" operty is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you
ca� n only refer to properties of them. To refer to the persons themselves, there is a more
gS eneral syntax for the select expression:

collec tion->select(v | boolean-express ion-with-v)

Th
�

e variable v is called the iterator. When the select is evaluated, vT iterates over the
collection� and the bo

A
olean-expression-with-v is evaluated for each vT . The vT is a

reference to the object from the collection and can be used to refer to the objects
them

�
selves from the collection. The two examples below are identical:

context Company inv:

self.e mployee->select(age > 50)->notEmp ty

context Company inv:

self.e mployee->select(p | p.age > 50)-> notEmpty

The result of the complete select is the collection of persons p for which the p.a� ge >
50

U
 e� valuates to True. This amounts to a subset of self� .employee.

As a f
	

inal extension to the select syntax, the expected type of the variable v can be
giS ven. The select now is written as:

collec tion->select(v : Type | boolean- expression-with- v)

The m
�

eaning of this is that the objects in collectio� n must be of type Ty
3

pe. The next
e� xample is identical to the previous examples:

context Company inv:

self.e mployee.select(p : Person | p.age > 50)->notEmpty

The compete select syntax now looks like one of:

collec tion->select(v : Type | boolean- expression-with- v)

collec tion->select(v | boolean-express ion-with-v)

collec tion->select(bo olean-expression)

The reject operation is identical to the select operation, but with reject we get the
su� bset of all the elements of the collection for which the expression evaluates to False.
The reject syntax is identical to the select syntax:

collec tion->reject(v : Type | boolean- expression-with- v)

collec tion->reject(v | boolean-express ion-with-v)

collec tion->reject(bo olean-expression)

As an example, specify that the collection of all the employees who are not married is
em� pty:

context Company inv:

self.e mployee->reject(isMarried)->isE mpty

7-
�

24 OMG-UML V1.3 March 2000

7

Th
�

e reject operation is available in OCL f or convenience, because each reject can be
restated as a select with the negated expression. Therefore, the following two
e� xpressions are identical:

collec tion->reject(v : Type | boolean- expression-with- v)

collec tion->select(v : Type | notV (boole an-expression-wi th-v))

7.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a
su� b-collection of the original collection. When we want to specify a collection which is
de

�
rived from some other collection, but which contains dif ferent objects from the

origin� al collection (i.e., it is not a sub-collection), we can use a colle� ct operation. The
co� llect operation uses the same syntax as the select and reject and is written as one of:

collec tion->collect(v : Type | express ion-with-v)

collec tion->collect(v | expression-wit h-v)

collec tion->collect(e xpression)

The value of the reject operation is the collection of the results of all the evaluations of
e# xpression-with-v.

An
	

 example: specify the collection of birth
A

Dates for all employees in the context of a
com� pany. This can be written in the context of a Company object as one of:

self.e mployee->collect (birthDate)

self.e mployee->collect (person | person .birthDate)

self.e mployee->collect (person : Person | person.birthD ate)

An important issue here is that the resulting collection is not a Set, but a Bag. When
more than one employee has the same value for bi

A
rthDate, this v� alue will b e an

ele� ment of the resulting Bag more than once. The Bag resulting from the co� llect
op� eration always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The
following expression results in the Set of different birthDates from all employees of a
Co

8
mpany:

self.e mployee->collect (birthDate)->as Set

7.6.2.1 Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand
nN otation for the collect that makes the OCL expressions more readable. Instead of

self.e mployee->collect (birthdate)

w� e can also write:

self.e mployee.birthdat e

OMG-
�

UML V1.3 Collection Operations March 2000 7-
�

25

7

I
�
n general, when we apply a property to a collection of Objects, then it wil l

auto
 matically be interpreted as a co� llect over the members of the collection with the
sp� ecif ied property.

For any p� ropertyname th
�

at is defined as a property on the objects in a collection, the
f

=
ollowing two expressions are identical:

collec tion.propertynam e

collec tion->collect(pr opertyname)

an
 d so are these if the property is parameterized:

collec tion.propertynam e(par1, par2, ...)

collec tion->collect(pr opertyname(par1, par2, ...)

7.6.3 ForAll Operation

Man
F

y times a constraint is needed on all elements of a collection. The forAll operation
in OCL allows specifying a Boolean expression, which must hold for all objects in a
collection� :

collec tion->forAll(v : Type | boolean- expression-with- v)

collec tion->forAll(v | boolean-express ion-with-v)

collec tion->forAll(bo olean-expression)

This forAll expression results in a Boolean. The result is true if the bo
A

olean-
e# xpression-with-v is true for all elements of collection� . If the bo

A
olean-expression-with-

vT is false for one or more vT in co� llection, then� the complete expression evaluates to
false. For example, in the context of a company:

context Company

inv: self.e mployee->forAll(forename = 'Jack ')

inv: self.e mployee->forAll(p | p.forename = 'Jack')

inv: self.e mployee->forAll(p : Per son | p.for ename = 'J ack')

These invariants evaluate to true if the forename feature of each employee is equal to
‘Jack.’

The forAll operation has an extended variant in which more then one iterator is used.
Bo

7
th iterators will iterate over the complete collection. Effectively this is a forAll on

the Cartesian p
�

roduct of the collection with itself.

context Company inv:

self.e mployee->forAll(e1, e2 |

e1 <> e2 implies e1.for ename <> e2.fore name)

context Company inv:

self.e mployee->forAll(e1, e2 : Person |

e1 <> e2 implies e1.for ename <> e2.fore name)

7-
�

26 OMG-UML V1.3 March 2000

7

This e
�

xpression evaluates to true if the forenames of all employees are different. It is
sem� antically equivalent to:

context Company inv:

self.e mployee->forAll(e1 | self.employe e->forAll (e2 |

 e1 <> e 2 implies e1.forename <> e2.fo rename)))

7.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for
wh� ich a constraint holds. The e# xists operation in OCL allows you to specify a Boolean
e� xpression which must hold for at least one object in a collection:

collec tion->exists(v : Type | boolean- expression-with- v)

collec tion->exists(v | boolean-express ion-with-v)

collec tion->exists(bo olean-expression)

This exists operation results in a Boolean. The result is true if the bo
A

olean-expression-
withW -v is true for at least one element of c� ollection. If the bo

A
olean-expression-with-v is

f
=
alse for all vT in collection� ,� then the complete expression evaluates to false. For

e� xample, in the context of a company:

context Company inv:

self.e mployee->exists(forename = 'Jack ')

context Company inv:

self.e mployee->exists(p | p.forename = 'Jack')

context Company inv:

self.e mployee->exists(p : Person | p.f orename = 'Jack')

These expressions evaluate to true if the forename feature of at least one employee is
equ� al to ‘ Jack.’

7.6.5 Iterate Operation

Th
�

e iter
�

ate operation is slightly more complicated, but is very generic. The operations
reject, selec t, forAll, exists, collect, can� all be described in terms of iter

�
ate.

An accumulation builds one value by iterating over a collection.

collec tion->iterate(e lem : Type; acc : Type = <express ion> |

expres sion-with-elem-an d-acc)

The variable elem# is the iterator, as in the definitions of s� elect and
 forAll. The variable
a; cc is th

�
e accumulator. The accumulator gets an initial value <expression>.

OMG-
�

UML V1.3 The Standard OCL Package March 2000 7-
�

27

7

Wh
�

en the iterate is evaluated, elem# iterates over the collection� an
 d the e# xpression-with-
ele# m-and-acc is evaluated for each ele# m. After each evaluation of e# xpression-with-
ele# m-and-acc, its v� alue is assigned to acc; . In this way, the value of ac; c is built up
du

�
ring the iteration of the collection. The collect operation described in terms of iterate

will loo� k like:

collec tion->collect(x : T | x.property)

-- is identical to:

collec tion->iterate(x : T; acc : T2 = B ag{} |

acc->in cluding(x.proper ty))

Or
�

 written in Java-like pseudocode the result of the iterate can be calculated as:

iterat e(elem : T; acc : T2 = value)

{

 acc = value;

 for (Enumeration e = collection.eleme nts() ;
e.hasM oreElements();) {

 elem = e.nextEl ement();

 acc = <express ion-with-elem-and -acc>

 }

}

Alth
	

ough the Java pseudo code uses a ‘next element,’ the iter
�

ate operation is defined
for each collection type and the order of the iteration through the elements in the
collection� is not defined for Set and Bag. For a Sequence the order is the order of the
ele� ments in the sequence.

7.7 The Standard OCL Package

Each UML model that uses OCL constraints contains a predefined standard package
ca� lled “U ML_OCL.” Th is package is used by default in all other packages in the
model to evaluate OCL expressions. This package contains all predefined OCL types
an
 d their features.

To extend the predefined OCL types, a modeler should define a separate package. The
stan� dard OCL package can be imported, and each OCL type can be extended with new
features.

To specify that a package used the predefined OCL types from a user defined package
instead of the standard package, the using package must define a Dependency with
ster� eotype <<OCL_Types>> to the package which defines the extended OCL types.

A co
	

nstraint on the user defined OCL package is that as a minimum all predefined
O

�
CL types with all of their features must be defined. The user defined package must be

a
 proper extension to the standard OCL package.

7-
�

28 OMG-UML V1.3 March 2000

7

7.8 Predefined OCL Types

This section contains all standard types defined within OCL, including all the
pr" operties defined on those types. Its signature and a description of its semantics define
ea� ch property. Within the description, the reserved word ‘ result’ is used to refer to the
v(alue that results from evaluating the property. In several places, post conditions are
us� ed to describe properties of the result. When there is more than one postcondition, all
po" stconditions must be true.

7.8.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented
with OclExp� ression, OclType, and OclAny.

7.8.1.1 OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type
is an instan

�
ce of the OCL type called OclType. Access to this type allows the modeler

limited access to the meta-level of the model. This can be useful for advanced
modelers.

Properties of OclType, where the instance of OclType is called typX e.

typ
�

e.name : String

Th
�

e name of typ0 e.

ty
�

pe.attributes : Set(String)

The set of names of the attributes of type0 , a� s they are defined in the model.

ty
�

pe.associationEnds : Set(String)

The set of names of the navigable associationEnds of type0 , as th� ey are
de
�

fined in the model.

ty
�

pe.operations : Set(String)

The set of names of the operations of type0 , � as they are defined in the model.

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

29

7

7.8.1.2 OclAny

W
�

ithin the OCL context, the type OclAny is the supertype of all types in the model and
th

�
e basic predefined OCL type. The predefined OCL Collection types are not subtypes

o� f OclAny. Properties of OclAny are available on each object in all OCL expressions.

All cla
	

sses in a UML model inherit all p roperties defined on OclAny. To avoid name
con� flicts between properties in the model and the properties inherited from OclAny, all
names on the properties of OclAny start with ‘ocl.’ Although theoretically there may
still be n� ame conflicts, they can be avoided. One can also use the oclAsType()
op� eration to explicitly refer to the OclAny properties.

Properties of OclAny, where the instance of OclAny is called ob' ject.

ty
�

pe.supertypes : Set(OclType)

The set of all direct supertypes of ty0 pe.
pos" t: type.allSupertypes->includesAll(result)

ty
�

pe.allSupertypes : Set(OclType)

T
�

he transitive closure of the set of all supertypes of type0 .

ty
�

pe.allInstances : Set(type)

The set of all in stances of type0 and all its subtypes in existence at the
snap� shot at the time that the expression is evaluated.

ob� ject = (object2 : OclAny) : Boolean

True if ob' ject is the same object as ob' ject2.

ob� ject <> (object2 : OclAny) : Boolean

Tr
�

ue i f ob' ject is a different object from ob' ject2.
po" st: result = not (object = object2)

7-
�

30 OMG-UML V1.3 March 2000

7

7.8.1.3 OclState

The typ
�

e OclState is used as a parameter for the operation oclI' nState. There are no
prop" erties defined on OclState. One can only specify an OclState by using the name of
th

�
e state, as it appears in a statemachine. These names can be fully qualif ied by the

nN ested states and statemachine that contain them.

ob� ject.oclIsKindOf(type : OclType) : Boolean

True if ty0 pe is one of the types of o' bject, o� r one of the supertypes
(
:
transitive) of the types of ob' ject.

ob� ject.oclIsTypeOf(type : OclType) : Boolean

Tr
�

ue i f ty0 pe is equal to one of the types of o' bject.

o� bject.oclAsType(type : OclType) : type

Results in ob' ject,� but of known type type0 .
Results in Undefined if the actual type of o' bject is not type or one of its
sub� types.
pr" e : object.oclIsKindOf(type)
po" st: result = object
po" st: result.oclIsKindOf(type)

ob� ject.oclInState(state : OclState) : Boolean

Results in true if ob' ject is in the state sta� te, o� therwise results in f alse. The
ar
 gument is a name of a state in the state machine corresponding with the
cla� ss of ob' ject.

ob� ject.oclIsNew : Boolean

Can o
8

nly be used in a postcondition.
Evaluates to true if the ob' ject is created during performing the operation.
I.e. it didn’ t exist at precondition time.

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

31

7

7.8.1.4 OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the
e� xpression is OclExpression. This type and its properties are used to define the
se� mantics of properties that take an expression as one of their parameters. For
e� xample; select, collect or forAll.

An OclExpression includes the optional iterator variable and type and the optional
ac
 cumulator variable and type.

Properties
$

of OclExpression, where the instance of OclExpression is called e# xpression.

7.8.1.5 Real

Th
�

e OCL type Real represents the mathematical concept of real. Note that Integer is a
sub� class of Real, so for each parameter of type Real, you can use an integer as the
ac
 tual parameter.

Properties of Real, where the instance of Real is called r.

e� xpression.evaluationType : OclType

The type of the object that results from evaluating e# xpression.

r = (9 r2 : Real) : Boolean

Tr
�

ue i f r is equal to r2.

r <> (r2 : Real) : Boolean

True if r is not equal to r2.
po" st: result = not (r = r2)

r + (9 r2 : Real) : Real

T
�

he value of the addition of r and
 r2> .

r - (r2 : Real) : Real

The value of the subtraction of r2 from r.

7-
�

32 OMG-UML V1.3 March 2000

7

r * (r2 : Real) : Real

The value of the multiplication of r and r2.

r / (r2 : Real) : Real

The value of r divided by r2> .

r.9 abs : Real

T
�

he absolute value of r> .
po" st: if r < 0 then result = - r else result = r endif

r.fl oor : Integer

The largest integer which is less than or equal to r> .
po" st: (result <= r) and (result + 1 > r)

r.round : Integer

The integer which is closest to r. When there are two such integers, the
largest one.
po" st: ((r - result) < r).abs < 0.5) or ((r - result).abs = 0.5 and (result > r))

r.max(r2 : Real) : Real

The maximum of r and r2.
po" st: if r >= r2 then result = r else result = r2 endif

r9 .min(r2 : Real) : Real

Th
�

e minimum of r and r2.>

po" st: if r <= r2 then result = r else result = r2 endif

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

33

7

7.8.1.6 Integer

The OCL typ
�

e Integer represents the mathematical concept of integer.

Properties of I
$

nteger, where the instance of Integer is called i.

r < (r2 : Real) : Boolean

True if r1 is less than r2.

r > (r2 : Real) : Boolean

True if r1> is greater than r2> .
po" st: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
po" st: result = (r = r2) or (r < r2)

r >= (9 r2 : Real) : Boolean

T
�

rue if r1 is greater than or equal to r2.
po" st: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i
�
 is equal to i2

�
.

i + (i2 : Integer) : Integer

The value of the addition of i
�

an
 d i2
�

.

i - (i2 : Inte
�

ger) : I nteger

T
�

he value of the subtraction of i2 from i.

7-
�

34 OMG-UML V1.3 March 2000

7

i * (i2 : Integer) : Integer

The value of the multiplication of i
�
 and i2.

i / (i2 : Integer) : Real

The value of i
�

di
�

vided by i2
�

.

i.abs
�

 : I nteger

T
�

he absolute value of i.
po" st: if i < 0 then result = - i else result = i endif

i.div(i2 : I nteger) : I nteger

The number of times that i2
�

fits completely within i.
p" re : i2 <> 0
p" ost: if i / i2 >= 0 then result = (i / i2).floor else result = -((-i/i2).f loor) endif

i.mod(i2 : Integer) : Integer

The result is i
�
 modulo i2

�
.

po" st: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : I nteger

The maximum of i
�
 an i2.

po" st: if i >= i2 th en result = i else result = i2 endif

i.m
�

in(i2 : Integer) : Integer

Th
�

e minimum of i
�
 an i2.

�

po" st: if i <= i2 th en result = i else result = i2 endif

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

35

7

7.8.1.7 String

The OCL type String represents ASCII strings.

Properties of String, where the instance of String is called st� ring.

7.8.1.8 Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b
A
.

s� tring = (string2 : String) : Boolean

Tr
�

ue i f strin� g and strin� g2 c� ontain the same characters, in the same order.

s� tring.size : Integer

T
�

he number of characters in string� .

s� tring.concat(string2 : String) : String

T
�

he concatenation of str� ing and st� ring2.
po" st: result.size = string.size + string2.size
po" st: result.substring(1, string.size) = string
po" st: result.substring(string.size + 1, result.size) = string2

st� ring.toUpper : String

Th
�

e value of str� ing with all lowercase characters converted to uppercase
ch� aracters.
po" st: result.size = string.size

s� tring.toLower : String

The value of strin� g with all uppercase characters converted to lowercase
ch� aracters.
po" st: result.size = string.size

s� tring.substring(lower : Integer, upper : Integer) : String

The sub-string of str� ing starting at character number lo
-

wer,� up to and
in
�

cluding character number upY per.

b = (

b2 : Boolean) : Boolean

E
Z

qual if b
A
 is the same as b2

A
.

7-
�

36 OMG-UML V1.3 March 2000

7

7.8.1.9 Enumeration

The OCL typ
�

e Enumeration represents the enumerations defined in an UML model.

b o

r (b2 : Boolean) : Boolean

True if either b or� b2
A

 is true.

b

 xor (b2 : Boolean) : Boolean

True if either b or b2
A

 is true, but not both.
po" st: (b or b2) and not (b = b2)

b an

d (b2 : Boolean) : Boolean

True if both b1
A

 and b2
A

 are true.

not b : Boolean

True if b
A
 is false.

pos" t: if b then result = false else result = true endif

b

 implies (b2 : Boolean) : Boolean

True if b
A
 is false, or if b

A
 is true and b2

A
 is true.

pos" t: (not b) or (b and b2)

if b
�

 then (expression1 : OclExpression)

el� se (expression2 : OclExpression) endif : expression1.evaluationType

If
�

 b
A
 is true, the result is the value of evaluating ex# pression1; otherwise,

result is the value of evaluating e# xpression2.

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

37

7

Featu
[

res of Enumeration, the instance of Enumeration is called en# umeration.

7.8.2 Collection-Related Types

The f
�

ollowing sections define the properties on collections (i.e., these properties are
a
 vailable on Set, Bag, and Sequence). As defined in this section, each collection type is
ac
 tually a template with one parameter. ‘ T’ denotes the parameter. A real collection
typ

�
e is created by substituting a type for the T. So Set (Integer) and Bag (Person) are

collection� types.

7.8.2.1 Collection

Co
8

llection is the abstract supertype of all collection types in OCL. Each occurrence of
an
 object in a collection is called an element. If an object occurs twice in a collection,
there

�
 are two elements. This section defines the properties on Collections that have

identical semantics for all collection subtypes. Some properties may be defined with
the su

�
btype as well, which means that there is an additional postcondition or a more

sp� ecialized return value.

The def
�

inition of several common properties is different for each subtype. These
prop" erties are not mentioned in this section.

Properties of Collection, where the instance of Collection is called collection� .

en� umeration = (enumeration2 : Boolean) : Boolean

Equal if en# umeration is the same as en# umeration2.

enu� meration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as e# numeration2.
po" st: result = not (enumeration = enumeration2)

co� llection->size : Integer

The number of elements in the collection collection� .
po" st: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

co� llection->includes(object : OclAny) : Boolean

True if ob' ject is an element of collection� , fa� lse otherwise.
p" ost: result = (collection->count(object) > 0)

7-
�

38 OMG-UML V1.3 March 2000

7

co� llection->excludes(object : OclAny) : Boolean

True if ob' ject is not an element of collection� ,� false otherwise.
p" ost: result = (collection->count(object) = 0)

co� llection->count(object : OclAny) : I nteger

The
�

 number of times that ob' ject o� ccurs in the collection collectio� n.
po" st: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

co� llection->includesAll(c2 : Collection(T)) : Boolean

Does
\

collection� contain all the elements of c2� ?
p" ost: result = c2->forAll(elem | collection->includes(elem))

co� llection->excludesAll(c2 : Collection(T)) : Boolean

Does collection� contain none of the elements of c2� ?
p" ost: result = c2->forAll(elem | collection->excludes(elem))

co� llection->isEmpty : Boolean

Is collection� the em
�

pty collection?
p" ost: result = (collection->size = 0)

co� llection->notEmpty : Boolean

Is
�

 collection� not the empty collection?
p" ost: result = (collection->size <> 0)

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

39

7

co� llection->sum : T

The addition of all elements in collection� . Elements must be of a type
s� upporting the + operation. The + operation must take one parameter of type
T an
�

d be both associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a.
Integer and Real fulfill th is condition.

po" st: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

co� llection->exists(expr : OclExpression) : Boolean

R
]

esults in true if ex# pr evaluates to true for at least one element in collection� .

po" st: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

co� llection->forAll(expr : OclExpression) : Boolean

Results in true if ex# pr e� valuates to true for each element in co� llection;
o� therwise, result is f alse.

po" st: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)

co� llection->isUnique(expr : OclExpression) : Boolean

Results in true if ex# pr e� valuates to a different value for each element in
co� llection; o� therwise, result is false.

po" st: result = collection->collect(expr)->forAll(e1, e2 | e1 <> e2)

co� llection->sortedBy(expr : OclExpression) : Boolean

Results in the Sequence containing all elements of co� llection. The element for
which� ex# pr has the lowest value comes first, and so on. The type of the ex# pr
e� xpression must have the < operation defined. The < operation must be
tran
�

sitive i.e. if a < b and b < c then a < c.

p" ost:

7-
�

40 OMG-UML V1.3 March 2000

7

7.8.2.2 Set

The Set is the mathematical set. It contains elements without duplicates. Features of
Set,

+
 the instance of Set is called se� t.

co� llection->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the collection. See “Iterate Operation” on page7-26 for a
co� mplete description. This is the basic collection operation with which the
ot� her collection operations can be described.

s� et->union(set2 : Set(T)) : Set(T)

The union of set� and set2� .

p" ost: result->forAll(elem | set->includes(elem) or set2->includes(elem))
p" ost: set->forAll(elem | result->includes(elem))
p" ost: set2->forAll(e lem | result->includes(elem))

s� et->union(bag : Bag(T)) : Bag(T)

The union of set � and
 ba
A

g.

p" ost: result->forAll(elem |
result->count(elem) = set->count(elem) + bag->count(elem))

p" ost: set->forAll(elem | result->includes(elem))
p" ost: bag->forAll(elem | result->includes(elem))

s� et = (set2 : Set(T)) : Boolean

Evaluates to true if se� t and
 set2� contain the same elements.

p" ost: result = (set->forAll(elem | set2->includes(elem)) and
set2->forAl l(elem | set->includes(elem)))

s� et->intersection(set2 : Set(T)) : Set(T)

The intersection of set� and set2� (i.e, the set of all elements that are in both set �

and
 set2�).
&

p" ost: result->forAll(elem | set->includes(elem) and set2->includes(elem))
p" ost: set->forAll(elem | set2->includes(elem) = result->includes(elem))
p" ost: set2->forAll(elem | set->includes(elem) = result->includes(elem))

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

41

7

s� et->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag
A

.
p" ost: result = set->intersection(bag->asSet)

s� et – (set2 : Set(T)) : Set(T)

The
�

elements of se� t, which� are not in set2� .

p" ost: result->forAll(elem | set->includes(elem) and set2->excludes(elem))
p" ost: set->forAll(elem | result->includes(elem) = set2->excludes(elem))

s� et->including(object : T) : Set(T)

The set containing all elements of set � pl" us ob' ject.

p" ost: result->forAll(elem | set->includes(elem) or (elem = object))
p" ost: set->forAll(elem | result->includes(elem))
p" ost: result->includes(object)

s� et->excluding(object : T) : Set(T)

The set containing all elements of set� without ob' ject.

p" ost: result->forAll(elem | set->includes(elem) and (elem <> object))
po" st: set->forAll(elem | result->includes(elem) = (object <> elem))
p" ost: result->excludes(object)

s� et->symmetricDif ference(set2 : Set(T)) : Set(T)

The sets containing all th e elements that are in set� or se� t2,� but not in both.

po" st: result->forAll(elem | set->includes(elem) xor set2->includes(elem))
po" st: set->forAll(elem | result->includes(elem) = set2->excludes(elem))
p" ost: set2->forAll(e lem | result->includes(elem) = set->excludes(elem))

7-
�

42 OMG-UML V1.3 March 2000

7

s� et->select(expr : OclExpression) : Set(T)

The subset of set� for which ex# pr is true.

p" ost: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)

s� et->reject(expr : OclExpression) : Set(T)

The
�

subset of set � fo
=

r which ex# pr is f
�

alse.
po" st: result = set->select(not expr)

s� et->collect(expr : OclExpression) : Bag(expr.evaluationType)

The Bag of elements which results from applying ex# pr to every member of
se� t.

p" ost: result = set->iterate(elem; acc : Bag(expr.evaluationType) = Bag{ } |
 acc->including(expr))

s� et->count(object : T) : Integer

The number of occurrences of ob' ject in set� .
p" ost: result <= 1

s� et->asSequence : Sequence(T)

A Sequence that contains all the elements from set,� in undefined order.

p" ost: result->forAll(elem | set->includes(elem))
p" ost: set->forAll(elem | result->count(elem) = 1)

s� et->asBag : Bag(T)

The
�

Bag that contains all the elements from set.�

p" ost: result->forAll(elem | set->includes(elem))
p" ost: set->forAll(elem | result->count(elem) = 1)

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

43

7

7.8.2.3 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of
a b
 ag many times. There is no ordering defined on the elements in a bag.

Properties of Bag
$

, where the instance of Bag is called bag
A

.

bag

 = (bag2 : Bag(T)) : Boolean

True if ba
A

g and b
A

ag2 contain the same elements, the same number of times.

po" st: result = (bag->forAll(elem | bag->count(elem) = bag2->count(elem))
and

bag2->f
^

orAl l(elem | bag2->count(elem) = bag->count(elem)))

b

ag->union(bag2 : Bag(T)) : Bag(T)

The un
�

ion of ba
A

g and bag2
A

.

p" ost: result->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

p" ost: bag->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

p" ost: bag2->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

b

ag->union(set : Set(T)) : Bag(T)

The un
�

ion of bag and set� .

p" ost: result->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

p" ost: bag->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

p" ost: set->forAll(elem |
res_ ult->count(elem) = bag->count(elem) + set->count(elem))

7-
�

44 OMG-UML V1.3 March 2000

7

b

ag->intersection(bag2 : Bag(T)) : Bag(T)

The intersection of ba
A

g and ba
A

g2.

p" ost: result->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

p" ost: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

p" ost: bag2->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

b

ag->intersection(set : Set(T)) : Set(T)

The intersection of ba
A

g and se� t.

p" ost: result->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

p" ost: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

p" ost: set->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

b

ag->including(object : T) : Bag(T)

The bag containing all elements of bag
A

 plus ob' ject.

p" ost: result->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)
p" ost: bag->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

45

7

bag

->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of o' bject.

p" ost: result->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)
po" st: bag->forAl l(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

b

ag->select(expr : OclExpression) : Bag(T)

The sub-bag of ba
A

g for which ex# pr is true.

po" st: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag

->reject(expr : OclExpression) : Bag(T)

The sub-bag of ba
A

g for which ex# pr is false.
p" ost: result = bag->select(not expr)

b

ag->collect(expr: OclExpression) : Bag(expr.evaluationType)

The
�

Bag of elements which results from applying ex# pr to every member of
ba
A

g.

po" st: result = bag->iterate(elem; acc : Bag(expr.evaluationType) = Bag{} |
 acc->including(expr))

bag

->count(object : T) : Integer

The
�

number of occurrences of ob' ject in
�

 bag
A

.

7-
�

46 OMG-UML V1.3 March 2000

7

7.8.2.4 Sequence

A sequ
	

ence is a collection where the elements are ordered. An element may be part of
a seq
 uence more than once.

Properties of Sequence(T), where the instance of Sequence is called seq� uence.

bag

->asSequence : Sequence(T)

A Sequence that contains all the elements from bag
A

, i� n undefined order.

po" st: result->forAll(elem | bag->count(elem) = result->count(elem))
po" st: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag

->asSet : Set(T)

The
�

Set containing all the elements from ba
A

g, with du� plicates removed.

po" st: result->forAll(elem | bag->includes(elem))
po" st: bag->forAll(elem | result->includes(elem))

s� equence->count(object : T) : Integer

The number of occurrences of ob' ject in seq� uence.

s� equence = (sequence2 : Sequence(T)) : Boolean

Tr
�

ue i f se� quence contains the same elements as sequ� ence2 in the same order.

po" st: result = Sequence{1..sequence->size}->forAll(index : Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size = sequence2->size

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

47

7

s� equence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in seq� uence,� followed by all elements
in seq� uence2.

po" st: result->size = sequence->size + sequence2->size
p" ost: Sequence{1 ..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
po" st: Sequence{1..sequence2->size}->forAll(in dex : I nteger |
 sequence2->at(index) =
 result->at(index + sequence->size)))

seq� uence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of seq� uence, follo� wed by
ob' ject.

po" st: result->size = sequence->size + 1
po" st: result->at(result->size) = object
p" ost: Sequence{1 ..sequence->size}->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

s� equence->prepend(object : T) : Sequence(T)

The sequence consisting of ob' ject, f� ollowed by all elements in seq� uence.

po" st: result->size = sequence->size + 1
po" st: result->at(1) = object
p" ost: Sequence{1 ..sequence->size}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

7-
�

48 OMG-UML V1.3 March 2000

7

s� equence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequ� ence starting at number low
-

er, up to� and including
eleme� nt number upY per.

pr" e : 1 <= lower
pr" e : lower <= upper
pr" e : upper <= sequence->size
po" st: result->size = upper -lower + 1
po" st: Sequence{lo wer..upper} ->forAll(in dex |
 result->at(index - lower + 1) =
 sequence->at(index))
end� if

s� equence->at(i : Integer) : T

The i-th
�

 e� lement of sequence.
pre" : i >= 1 and i <= sequence->size

s� equence->first : T

The
�

first element in seq� uence.
po" st: result = sequence->at(1)

s� equence->last : T

The last element in s� equence.
po" st: result = sequence->at(sequence->size)

s� equence->including(object : T) : Sequence(T)

The sequence containing all elements of seq� uence plus o' bject added as the
last element.
po" st: result = sequence.append(object)

OMG-
�

UML V1.3 Predefined OCL Types March 2000 7-
�

49

7

seq� uence->excluding(object : T) : Sequence(T)

The sequence containing all elements of seq� uence apart from all occurrences
of � obje' ct.
The
�

order of the remaining elements is not changed.

p" ost:result->includes(object) = false
po" st: result->size = sequence->size - sequence->count(object)
p" ost: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

s� equence->select(expression : OclExpression) : Sequence(T)

The subsequence of s� equence for which e# xpression is tru0 e.

po" st: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |
 if e xpr then acc->including(elem) else acc endif)

s� equence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequ� ence for which e# xpression is false.
p" ost: result = sequence->select(not expr)

s� equence->collect(expression : OclExpression) :
Se
+

quence(expression.evaluationType)

The Sequence of elements which results from applying ex# pression to every
memb� er of s� equence.

s� equence->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the sequence. Iteration will be done from element at position 1
u� p until th e element at the last position following the order of the sequence.

7-
�

50 OMG-UML V1.3 March 2000

7

7.9 Grammar

This section describes the grammar for OCL expressions. An executable LL(1) version
of this� grammar is available on the OCL web site. (See
http://www.software.ibm.com/ad/ocl).

The grammar description uses the EBNF syntax, where “|” means a choice, “?”
o� ptionality, and “*” means zero or more times, + means one or more times. In the
de

�
scription of the na` me, typeName, and str� ing, the syntax for lexical tokens from the

Ja
a

vaCC parser generator is used. (See http://www.suntest.com/JavaCC.)

constr aint := con textDeclaration

(stere otype name? “:” e xpression)+

contex tDeclaration := “context”

 (clas sifierContext | o perationContext)

classi fierContext := (<name> “:”)? <typeName>

operat ionContext : = <typeName> “:: ” <name>

“(“ fo rmalParameterList ? “)”

(“:” <typeName>)?

formal ParameterList := formalParam eter (“;” formalP arameter)*

formal Parameter := <name> “:” <typ eName>

stereo type := “in v” | “pre” | “pos t”

expres sion := let Expression* logic alExpression

ifExpr ession := "if " expression

 "then" expression

 "else" expression

s� equence->asBag() : Bag(T)

The Bag containing all the elements from sequ� ence, in� cluding duplicates.

po" st: result->forAll(elem | sequence->count(elem) = result->count(elem))
po" st: sequence->forAll(elem | sequence->count(elem) = result->count(elem))

s� equence->asSet() : Set(T)

The
�

Set containing all the elements from s� equence, with d� uplicated removed.

po" st: result->forAll(elem | sequence->includes(elem))
po" st: sequence->forAll(elem | result->includes(elem))

OMG-
�

UML V1.3 Grammar March 2000 7-
�

51

7

 "endif "

logica lExpression := rel ationalExpression

 (logi calOperator
 rel ationalExpression)*

relati onalExpression := additiveExpress ion

 (rela tionalOperator
 addi tiveExpression)?

additi veExpression := mul tiplicativeExpres sion

 (addO perator
 mult iplicativeExpress ion)*

multip licativeExpressi on:= unaryExpres sion

 (mult iplyOperator unar yExpression)*

unaryE xpression := (una ryOperator postfi xExpression)

 | post fixExpression

postfi xExpression := pri maryExpression (("." | "->")
 feat ureCall)*

primar yExpression := lit eralCollection

 | lite ral

 | path Name timeExpressi on? qualifier?

 featureCall Parameters?

 | "(" expression ")"

 | ifEx pression

featur eCallParameters : = "(" (declarat or)?
 (act ualParameterList)? ")"

letExp ression := “let” <name>

(“:” pathTypeName)?

“=” ex pression “in”

litera l := <ST RING> | <number> | "#" <name>

enumer ationType := "en um" "{" "#" <name > ("," "#" <nam e>
)* "} "

simple TypeSpecifier := pathTypeName

 | enumerationType

litera lCollection := col lectionKind "{"

expres sionListOrRange? "}"

expres sionListOrRange : = expression

 ((" ," expression)+

 | (". ." expression)

)?

7-
�

52 OMG-UML V1.3 March 2000

7

featur eCall := pat hName timeExpress ion? qualifiers?

 featu reCallParameters?

qualif iers := "[" actualParameterL ist "]"

declar ator := <na me> ("," <name>)*

 (":" simpleTypeSpecif ier)? "|"

pathTy peName := <ty peName> ("::" <t ypeName>)*

pathNa me := (< typeName> | <name >)

 (": :" (<typeName> | <name>))*

timeEx pression := "@" <name>

actual ParameterList := expression ("," expression)*

logica lOperator := "an d" | "or" | "xor" | "implies"

collec tionKind := "Se t" | "Bag" | "Seq uence" |
 "Coll ection"

relati onalOperator := "=" | ">" | "<" | "> =" | "<=" | "<>"

addOperator := "+" | "-"

multip lyOperator := "*" | "/"

unaryO perator := "-" | "not"

typeNa me := ([“a”-”z”] | ["A"-" Z"] | “_”)

(["a" -"z"] | ["0"-"9"] |

 [" A"-"Z"] | "_")*

name := ([“a”-”z”] | ["A"-" Z"] | “_”)

(["a" -"z"] | ["0"-"9"] |

 [" A"-"Z"] | "_")*

number := ["0 "-"9"] (["0"-"9"])*

string := "'" ((~["'","\\","\ n","\r"])

 | ("\ \"

 ([" n","t","b","r","f ","\\","'","\""]

 | ["0 "-"7"] (["0"-"7"])?

 | ["0 "-"3"] ["0"-"7"] ["0"-"7"]

)

)

)*

"'"

