7.1 Overview

Object Constraint Language
Soecification 4

This chater introduces anddefnes tle Ohect Constraint Language (OCL), a famal
language to express sideeffect-free mnstraints.

Contents

This chapter contains the following topics.

Topic Page
“Overview” 7-1
“Introduction” 7-3
“Connectionwith the UML Metamodel” 7-4
“Basic \dues andTypes” 7-6
“Objeds and Propetties” 7-11
“Collection Operaions” 7-22
“Predefined OCL Types 7-28
“Grammar’ 7-50

This chapter introduces anddefnes tle Ohect Constraint Language (OCL), a famal
language ged toexpress corstraints. These typicallyspecif/ invariant canditions that
must hold for the systembeing modeled. Note that whenthe OCL expressiams are
evaluatal, they do not have side effects (ie., their evaluation cannot alter the state @

OMG-UML V1.3 March 2000 7-1

7-2

the correponding exeauting system). In addition to specifying invariantsof the UML
metamadd, UML modelers canuseOCL to specify apgication-specific constraints in
their nodels.

OCL is usedin the UML Semantics chapterto specify the well-formedress rules d the
metaclasses comrising the UML metamodel. A well-f ormedress rule in the static
senantics chapters in te UML Senmantics sectionnormally containsan OCL
expressim, speifying an invariant for the assciatedmetadass The gammarfor OCL
is spedfied at the end of this chapter A parser gererated from this grammar has
correctly parsed all the corstraints in the UML Semantics section a process which
improved the carectness of the speciffcations fa OCL and UML.

7.1.1 Why OCL?

A UML diagam, suchas a class diagm, is typically not refinedenaugh to provide all
the relevant aspets of a specification. There is, amang other things, a needo descibe
addtional constraints alout the objects in the model. Such constraints are ofte
described innatural language. Pradice has $iown that this will a lways result in
ambiguities. In order to write unambiguous corstraints, so-call@ formal languages
have been developed. The dsadwantage d traditional formal languages isthat they are
usable to persons with a string mathemetical background, but difficult for the average
business or system nodeler to use.

OCL has keen deeloped to fill this gap. It is a formal language that remains easyto
read andwrite. It has been deelopedas abusinessmodeling language within the|IBM
Insurance division, and has its rootsin the Syntropy method.

OCL is a pue expressim language; therefore,an OCL expressionis guaranteed to be
without side efect. When anOCL expressionis evaluated, it sinply returns a \alue. It
cannot change anything in the model. This meansthat the stateof the systemwill never
change becatse ofthe evaluation of an OCL expresson, eventhough an OCL
expressia can be usedto specify a state bange (eg., in a post-condition).

OCL is not a proggamming language; therefore, it is not possible towrite program
logic o flow cortrol in OCL. You cannot invoke processesor adivate non-quety
operations within OCL. Becawse O is a modeling language in the first place, rot
everythingin it is p romised to be directly executalbe.

OCL is a typedlanguage, so that eachOCL expressionhas a tye. To be well formed,
an OCL expression must conform to the type conformarce rues of the language. For
example, you canrot compare anlinteger with a String. Each Classifer definedwithin
a UML model representsa distinct OCL type. In addtion, OCL includes a set &

suplemertary predefined types (these ae described in Section 7.8, “Predefined OCL

Types,” on page 7-28).

As a spcification language, all im plementationissues are ou of scope and canrot be
expressal in OCL.

The evaluatian of an OQ@. expressionis instamaneous. Ths mears that tke states of
objectsin a modd cannot change during evaluaion.

OMG-UML V1.3 March 2000

1.2

7.1.2 Where to Use OCL

OCL can be usedfor a number of differert purposes:

® To specify invariants on clas®s ard types in the class mdel

® To specify type irnvariant for Steeotypes

® To descrbe pre- and post conditions on Operations ard Methods
® To desaibe Guards

® As a ravigation language

® To specify constrants on operations

Within the UML Senentics chager, OCL is used in the well-formednessrules as
invariants on the metaclasses inthe abstract syntax. In several places it is alsoused to
define ‘additional’ operations, which are usedn the well-formedress rules.

Introduction

7.2.1 Legend

Text written in the courier typeface as sbwn below is an OCL &pressia.

‘This is an OCL expres sion'

The context keyword introduces the context for the expession. The keywords inv, pre
ard post derote the steretypes, respectively «invariant», «precondtion», and
«postcandition», of the costraint. The actual OCL expresson comes after the alon.

cont ext TypeName i nv:
'this is an OCL expres sion with stereot ype <<invariant> > in the

contex t of TypeName' = ‘another string’

In the examples. the keywords of OCL arewritten in boldface in this document. The
boldfacehas noformal meaning, but is used to meke the expressiors more readalte in
this document. OCL expressons are written using ASCII characters orly.

Words in Italics within the nain text of the @ragrapts refer to parts of OCL
expressiors.

7.2.2 Example Class Diagram

The following diagam is usd in the examples inthis documert.

OMG-UML V1.3 Introduction March 2000 7-3

Bank

accountNumber:Integer

0.*

managedCompanies

Company

name : String
numberOfEmployees : Integer

employer

0.~ | stockPrice() : Real

Job

title : String
startDate : Date
salary : Integer

0.1
customer
manager
Person g
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date employee
age : Integer
firstName : String 0.*
lastName : String
sex : enum {male, female}
. wife
income(Date) : Integer
0.1
husband | 0..1
T
|
|
Marriage
place : String
date : Date

Figure 7-1 Class Dagram Eamplke

7.3.1 SHf

Each OCL expressionis written in the context of an irstance 6 a sgecific type. In an
OCL expressim, the reserwed word self is used torefer to the conextual instarce. For
instance, if the corext is Company, thenself refers to an instance of Company.

7.3 Connectionwiththe UML Metamodel

7.3.2 Specifying the UML context

The cotext of an OCL expresson within a UML model can be spedfied through a so-
cdled context dedaraton at the beginning of an OCL expression. The context

declaation of the constraints inthe following sectiors is shown.

OMG-UML V1.3 March 2000

v

If the corstraint is shown in a diagram with the proper steeatype and the dashedlines
to connect it to its contextual element, thereis no need for an &plicit context
declaition in the test of the corstraint. The context declaration is optional.

7.3.3 Invariants

The OCL expressioncanbe part of an Invariant, which is a Constraint stereatyped as
an «invariart». Whenthe invariant is associaed with a Classifer, the latter is referred
to as d'type” in this chapter. An OCL expressionis an invariant of the type and must
be true for dl in stances that type at ary time. (Note that all OCL expressims that
express irvariants ae of the type Boolean)

For exanple, if in the corext of the Canpary type in Figure 7-1, tte following
expressio would specify aninvariant that the number of employees must always
exceed 50:

self.n umberOfEmployees > 50

whereself is aninstance oftype Compary. (We canview self as the dject from where
we stat the expresson.) This invariant holds for every instarnce of the Compary type.

The type o the contextual instanceof an OCL expression, which is part of an
invariant, is written with the context keyword, followed by the name of the type as
follows. The labelnv: declares the canstraint tobe an d¢nvarant» constrant.

cont ext Company i nv:

self.n umberOfEmployees > 50

In most cases, tk keyword self canbe droppedbecause te cantext is clear as in the
alove examples. As analtemative for self, a differentname canbe defined playing the
pat of sdf:

cont ext c: Company inv:
c.numb erOfEmployees > 50

This invariant is equivaent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing
the corstraint to be referenced ly name. In the following example the name of the
constraint is enoughEmployees. In the UML metamodel, this name is an attribute ofthe
metaclass @ndraint that is inherited from ModelElement.

cont ext c: Company i nv _enoughEmployees :

c.numb erOfEmployees > 50

7.3.4 Pre- and Postconditions

The OCL apressim can e part of a Preondition or Poscondition, carespading to
«precordition» and «postcordition» steeaypes of Constraint assdated with an
Operaion or Method. The contextual instarce self then isan instance of the type that

OMG-UML V1.3 Connection with the UML Metamodel March 2000 7-5

owns the operation or method as a featue. The context declarationin OCL uses the
context keyword, followed by the type and operation declamation. The steeotype of
corstraint is shown by putting the labels ‘pre:’and‘ post:’ before the actual
Preconditions and Postcanditions

cont ext Typename: :operationName(p araml: Typel,.. .):R eturnType
pre: paraml> ..

post: result=...

The name self can be ugd in the expression referring to the object onwhich the
operation was called. The resered word result derotes the resultfothe operation, if
thereis one. The names of the parameters (paraml) canalso be used in the OCL
expressia. In the example diagram, we can write:

cont ext Person:iincome (d: Date) : Inte ger

post: result = 5000

Optionally, the name of the preondition or postcordition may be written after the pre
or post keyword, allowing the constraint tobe réerenced by name. In the bllowing
example the nane of the preondition is parameterOk ard the rame d the
postcordition is resultOk. In the UML metamodel, these nares are attibutes ¢ the
metaclass ©ndraint that is inlerited from ModelElement.

cont ext Typename: :operationName(p araml: Typel,.. .):R eturnType
pr e pa rameterOk: para ml> ...

post resultOk: resu It=...

7.3.5 General Expressions

Any OCL expresson can be used as the value for an attribute of the UML metadass
Expressio or one o its subtypes. In tlat case, the seantics sectiondescribes th
meanirg of the expressia.

7.4 Basic Valuesand Types

In OCL, anumber o basic types arepreddined ard available tothe modeler at all
time. Thesepredefined value types arendependert of any object madel ard part of the
definition of OCL.

7-6 OMG-UML V1.3 March 2000

v

The most basic value in OCL is a value of one of the basic types.Some besic types
used in the examdes in this document, with correspmding examples o their values,
are shavnin Table 7-1.

Table 7-1 Basic types

type values

Boolean | true, false
Integer 1, -5 2, 34, 26524, ...
Real 15, 3.14, ..

String "To be or not to be...!

OCL defines anumber of operations on the predefinedtypes. Table 7-2 gives some
examples of the operaions on the preddined types. See Section 7.8, “Predefined OCL
Types,” onpage7-28for a conplete list of all operations.

Table 7-2 Operatons m predefned types

type operations

Integer * o+, -/, s

Real * 4+, -/, floor

Boolean and or, xor, na, implies, if-then-else

String toUpper, concat

The canplete list d operatiors provided for eachtype is described at the erd of this
chapterCollection, Set, Bagand Seqience ae basic types aswell. Their specifics will
be desaibed in the upcoming sections.

7.4.1 Types from the UML Model

Each OCL expressionis written in the context of a UML model, anumber of
classifiers (types/classes,..), their features andassciations, and their gereralizations.
All classifiers from the UML modd aretypes in the OCL expressiors that ae attahed
to the model.

7.4.2 Enumeration Types

As shavn in the exanple diagr.am, new enumeration types can ke defined in a model
by using:

enum{ valuel, value2, value3 }

The values ofthe enumeration canbe usedwithin expressons.

As there nght be a name conflict with attribute nanes being equal to enumeration
values, the usagof an erumeration value is expres®d syntactically with an additional
pound (#) symbol prefixing the name of the value:

OMG-UML V1.3 BasicValuesand Types March 2000 7-7

#value 1

The type of anenumeration attibute is Enumeration, with restrictions on the \alues for
the attibute.

7.4.3 Let Expression
Sametimesa sub-expressionis usedmore than ance in a constraint. The et expression
allows one to define a variable that canbe usedin the constrain.
cont ext Person inv:
| et in come : Integer = self.job.salary- >sum in
i f isU nemployed then
income <100
el se
income >=100

endi f

7.4.4 Type Conformance

OCL is a typedlanguage and the basic value types ae organized in a type hierarchy.
This hierarchy determinesconformanceof the different types to eachother. You
cannot, for example, compare anlinteger with a Booleanor a String.

An OCL expresson in which all the types conform is a valid expressiam. An OCL
expressionin which the typesdon’t conform is aninvalid expresson. It contains atype
conformance error. A typetypel conformsto atype type2 whenaninstarce d typel
can be substituted at eachplace wtere an instance of type2 is expected The type
conformarce rules for types in the class digrams aresimple.

® Each type corforms to eachof its suprtypes.

* Type corformance is transitive: if typel conforms to type2, and type2 conforms to
type3, then typel conforms to types.

The efect d this is that a type corforms to its sugertype, ard dl the sipeitypes alove.
The type conformance rules for the value types are listed inTable 7-3.

Table 7-3 Type canformarce rules

Type Conforms to/ls asubtype of
Set(T) Collection(T)

SequencdT) Collection(T)

Bag(T) Collection(T)

Integer Real

7-8 OMG-UML V1.3 March 2000

The corfiormance relation between tke collection types aily holds if they are
cdlections d elemert types that canform to eachother. See Setion 7.5.14, “Collection
Type Hierarchy and Type Conformance Rules,” on page 7-20 for the complete
conformarce mles for collections.

Table 7-4 provides examples d valid andinvalid expressions.

Table 7-4 Valid expressiors

OCL expression valid explanation

1+2*34 yes

1 + 'motorcycle’ no type Intege does nat conform to type
String

23 * false no type Intege doesnot conform to
Boolean

12+ 135 yes

7.4.5 Re-typing or Casting

In somre circumstancs, it is desieble touse a pioperty of anolject that is defnedon
a subtype of the current known type of the object. Because the property is not defined
on the current known type, this resultsn a type conformance eror.

When it is certan that the actual type of the dbject is the sibtype, the olject can be re-
typed using the operation ocl AsType(Ocl Type). This geraion resultsin the same
object, but the known type is the argument Ocl Type. Whenthee is an bject abject of
type Typel ard Type2 is arother type, it is adlowed to write:

object .oclAsType(Type2) --- evaluatest 0 object with ty pe Type2

An object @an only be re-typed to one of its sultype; therefore, in the exanple, Type2
must be a subtype of Typel.

If the actual type of the dbject is nat a sultype of the type to which it is re-typed, the
expressionis undefined (see Section 7.4.9, “Undefined Values,” on page 7-10).

7.4.6 Precedence Rules

The pecederce ader for the operatins, starting with highest pecederte,in OCL is:
* @pe

® dot and arrow operations: ‘. and ‘- >’

® unary ‘not’ and unary minus ‘-’

® “*’and‘/

® ‘+ and binary ‘-’

® ‘if -then-else-endif’

OMG-UML V1.3 BasicValuesand Types March 2000 7-9

7-10

o 1>1' (<:1, =

S
® ‘and, ‘or’ and ‘xor
® ‘implies

Parentheses ‘(" and*)’ can be usedto change precedence.

7.4.7 Use of Infix Operators

The wse of infix operators is dlowed in OCL. The qoerators ‘+', ‘-7, ™7, [, ‘<['>7
‘<>’ '<=" '>=" gre usedasinfix operatas. If atype defines ane of those operators with
the corret signature, they will be used as irfix operators. The epressio:

a+b
is corceptually equal tothe epressio:
a.+(b)
that is, ivoking the '+ operation i a with b as the pararater to the @eraion.

The infix operatas cefined for a type must have exactly one paameter. For the infix
operatars ‘<*, ‘>, ‘=" ‘>=" ‘<>’ ‘and’, ‘or’, and ‘xor’ the return type must be
Boolean

7.4.8 Comment

Comments in OCL are written following two successve dashes (minus signs).
Everything immediately following the two dasles up to andincluding the erd of line is
part of the comment. For examge:

--thi sis a comment

7.4.9 Undefined Values

Whenever an OCL expressia is being evaluated, tlere isa paossillity th at ore or nore
of the queries in the expressionare undefined If this is the casethenthe complete
expressionwill be undefined.

There aretwo exceptions tothis far the Booleanoperatas:
1. True OR-ed with anything is True
2. Fase AND-ed with anything is False

The &ove two rules ae valid irrespecive d the ader of the agumerts ard the alove
rules are valid whether or nd the value of the other subexpresson is known.

OMG-UML V1.3 March 2000

7.5 Objectsand Properties

OCL expressims can efer to Classifiers (e.g., types, clas®s, interfaces, assaiations
(acting as types) and datatypes). Also all attibutes assaiation-ends, methods, and
operations without side-effects that aredefinedon these types can ke used. In a class
model, an @eraion or method is definedto be sideeffectfree if the isQery attribute
of the @erations istrue. For the purpose of this document, we will r efer to attributes,
assodation-ends, and side-effed-free methods ard operations as keing properties. A
property is one of:

® an Attribute

® anAssociationEnd

® an Ogeration with isQuery beingtrue
* a Mehod with isQuery beingtrue

7.5.1 Properties

The value of a property on anobject that is déinedin a class digram is specified by a
dot followed by the narre of the property.

cont ext AType inv:

self.p roperty

If self is a rdéerence to an object, then self.property is the \alue o the property
property on self.

7.5.2 Properties: Attributes

For example, the age foa Persoris wiitten asself.age:
cont ext Person inv:

selffa ge>0

The \alue o the subexpression self.age is the value of theage attribute an the
partiaular instance of Peson identified by self. The type of this sitbexpressim is the
type of the attribute age, which isthe basic type Integer.

Using attributes andoperaions defined on the basic \alue types, wecan express
cdculations over the classmodel. For examde, abusiness rule might be “the ageof a
Peson is always greater thanzero.” T his can be statedas slown in the invariant above.

7.5.3 Properties. Operations

Operdions may have parameters. For examgde, & shown earlier, a Perso object has an
income expressedas a function of the date. This operation would be acces®d as
follows, for a Person aPerson ard a dite aDate:

aPerso n.income(aDate)

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-11

7-12

The operation itsdf could be defined by a postoondition congtraint. This is a constraint
that issteretyped as «postcondition». The object that is returned by the operation can
be referredto by result. It takes the following form:

cont ext Person::iincome (d: Date) : Inte ger

post: result=age*1 000

The light-handside of this definition may refer to the operaion being defined (i.e, the
definition may be recursie) as long as the recursia is not infinite. The type o result
is the return tpe of the perdion, whichis Integer in the abee exanple.

To refer to an erationor amethod thatdoesn’t take a @rameter, parentheses withan
enpty argument list are mardatory:

cont ext Company i nv:

self.s tockPrice() >0

7.5.4 Properties: Association Ends and Navigation

Stating from a spedfic object, we can navigate an asscciation on the class dagramto
refer to other objects and their properties. To do so, we navigate the assoiation by
using the opposite assodation-end:

object .rolename

The \alue of this expressionis the set of objects an the other side d the rolename
assaiation. If the multiplicity of the assciation-endhas a maximum of one (“0..1" or
“1"), thenthe value of this expresson is anaobject. In theexanple classdiagam when
we stat in the cortext of a Compary (i.e, self is aninstarce of Compary), we can
write:

cont ext Company
i nv:s elf.manager.isUn employed = false

i nv:s elf.employee->no tEmpty

In the frst invariant self. manager is a Person, becawse the multiplicity of the
assaiation is one. In the secoml invariant self.employee will e valuate in a Set of
Pesons. By default, navigation will result in a Set. When the assaiation on the Class
Diagram is adoned with {ordered}, the ravigation resuts in a Segence.

Collections, like Sets, Bgs, and Sequences ae predefnedtypes in OCL. They have a
large number of predefined operations an them. A property of the collectionitself is
aces®d by usingan arrow ‘- >’ f ollowed by the name d the property. The following
exampleis in the context of a person

cont ext Person inv:
self.e mployer->size < 3

This gplies thesize property on the Setself.employer, which resultsin the number of
employers of the Person self.

cont ext Person inv:

OMG-UML V1.3 March 2000

7541

7542

self.e mployer->isEmpty

This appliestheisEmpty propety on the Sd self.employer. This evaluates to true if the
set d employers is empty and false otherwise.

Missing Rolenames

When arolename is missingat one of the ends o an as®ciation, the name of the type
at the assotation end, stating with a lowercase character is usedas the olenane. If
this results in an ambiguity, the rolenane is mandatory. This is the casewith unnamed
rolenames in reflexive as®ciations. If the rolenane is ambiguous, then it canrot be
usedin OCL.

Navigation over Associationswith Multiplicity Zero or One

Becatuse the multiplicity of the role maneger is one, self.manager is anobject of type
Peson. Sucha sinde object canbe wsed as a Setawell. It thenbehaves as if itis a
Setcontaining the single dbject. The usageasa setis done through the arrow followed
by a property of Set. This is shown in the following example:

cont ext Company i nv:

self.m anager->size =1

The sib-expression self.manager is usedas a Set, écaise thearrow is used toacces
the size property an Set. This expressim evaluates to true.

cont ext Company i nv:

self.m anager->foo

The sub-expression self.manager is usedas Set, bcatse the arow is used to accesghe
foo property on the Set.This expression is incared, becausefoo is not a defined
property of Set.

cont ext Company i nv:

self.m anager.age> 40

The sub-expressionself.manager is usedasa Peson, be@use tle dd is usedto acess
the age property of Peson.

In the case of anpbional (0..1 multiplicity) asscciation, thisis especially seful to
check whether there isanobject or not when navigating the associon. In the example
we @n write:

cont ext Person inv:

self.w ife->notEmpty i mpl i es self.wife.s ex = #female

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-13

7.5.4.3 Combining Properties

Praoperties canbe combined to make more complicatedexpressiors. Animportart rule
is that anOCL expressionalways evaluates to a specit object of a specific type. After
obtaining a result, one can avays appy anather property to the result toget a nev
result value. Therefore, eachOCL expressioncanbe eadandevaluated left-to-right.

Following are someinvariants thd use conbined properties onthe example class
diagram:
[1] Married people are ofage >= 18
context Person inv:
self.w ife->notEmpty i mpl i es self.wife.a ge>=18 and

self.h usband->notEmpty i nplies selfhus band.age >=18

[2] A compary has at nost 50emgdoyees
cont ext Company i nv:

self.e mployee->size <= 50

7.5.5 Navigation to Association Classes

To specify navigation to assocition classes (Jobrd Mariage in the ekamge), OCL
uses a dot and the name of the assciation classstarting with a lowercase taracter.

cont ext Person inv:

self.j ob

The sWb-expression self.job evaluates to a Set of all the jaba persorhas withthe
companies that are his’her employer. In the case of an asscciation class, ttereis no
explicit rolenare in the class dagran. The nane job used inthis ravigation is the
name d the assoi@ation class startig with a lovercase chrader, similar to the way
described irthe sectim “Missing Rolenanes” above.

In case ba reursive assciation, that is anassaciation of a clasawith itself, the nane
of the assoiation class alme is not enough. We need todistinguish the directionin
which the assa@iation is navigated as well as tlie name of the assciation class. Take
the following model as an exanple.

Person bosses
age "
EmployeeRanking
employees* | — — — ~ score

Figure 7-2 Navigaing recursve assodgition classes

7-14 OMG-UML V1.3 March 2000

When navigating to an assciation class swch asemployeeRanking there are two
possitlitie s deperding on the direction For instance, in tle above example, we may
navigatetowards the employees end, or the bosses end. By using the name of the
assaiation class alor, these two options canrot be distinguished To make the
distinction, the rolename of the direction in which we want to navigate is adad to the
assciation class rame, enclose in square bradkets. In the expression

context Person inv:

self.e mployeeRanking[b osses]->sum >0

the self.employeeRanking[bosses] evaluates tothe setof EmployeeRankings belorging
to the collection of bosses. And in the expressim

context Person inv:

self.e mployeeRanking[e = mployees]->sum > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings
belonging to the collection of employees. The umualified use of the a&saciation class
nane is nd dlowed in such a reursive situation Thus, the follaving exanple is
invalid:

context Person inv:

self.e mployeeRanking-> sum >0 -- INVALI D!

In a non-recusive situation, the associion class nane alone is erough, although the
qualified version is allowed as well. Trerefore, the examplesat the stat of this sedion
coud alsobe written as:

cont ext Person inv:

self.j ob[employer]

7.5.6 Navigation from Association Classes

We can navigae from the assaiation class itself to the objects that participate in the
assaiation. This is done using the dot-rotationand the role-names at the assciation-
ends.

cont ext Job
i nv:s elf.employer.num berOfEmployees >= 1

i nv: self.e mployee.age > 21
Navigation from an asociationclass to one of the objects an the assciation will
always deliver exactly oneobject. Thisis a resit of the definition of AsscciationClass.

Therefore, the result of this navigation is exactly one olject, althaugh it can be usedas
a Set usig the arrow (->).

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-15

7.5.7 Navigation through Qualified Associations

Qualified asseiations use ame or more qualifier attributes to select the djects at the
other end of the assciation. To navigate them, we can add the values forthe qualifiers
to the navigation. This is done using square bradets, following the role-name. It is
permissible toleave out the qualifier values, inwhich case tle resut will be all o bjects
at the otherend of the as®ciation.

cont ext Bank inv:
self.c ustomer
This results in a SetPerson containing all custaners o the Bank.
cont ext Bank inv:
self.c ustomer[8764423]

This results in one Person, having acaount number 8764423.

If there is more thanone qualifier attribute, the values are sepasted by commas, inthe
order which isspecified in the UML class nodel. It is not permissible to partially
specify th e qualifier attribute values.

7.5.8 Using Pathnames for Packages

Within UML, different types are organizedin packages OCL provides a way of
explicitly referring to typesin other packages by using a package-pathname prefix. The
syrtaxis a pakage name, followed by a double colon:

Packag ename:: Typename

This usa@ of pahnames is trasitive and canalso ke usedfor packages within
packages:

Packag enamel::Packagen ame2::Typename

7.5.9 Accessing overridden properties of supertypes

Whenever properties are redefinedwithin a type, the property of the supertypes canbe
acces®d using the oclAsType() operation. Whenever we have a class Bas a sultype of
class A, anda property p1 of both A and B, we can write:

context B inv:
self.o clAsType(A).pl -- accesses the p 1 property defin edinA

selfp 1 --ac cesses the pl pro perty defined in B

Figure 7-3 stows anexanple wheresuch a castruct is needed

7-16 OMG-UML V1.3 March 2000

source

*

ModelElement | taget

JAN

Note Dependency

value: Uninterpreted

Figure 7-3 AccessingOveriddenPropeties Example

In this model fragment there is an anbiguity with the OCL expressiom on Depencngy:
cont ext Dependency i nv:

self.s ource <> self

This can eitbr mean normal associationnavigation which is inheited from
ModelElement, or it might also mean ravigation through the dotted line as an
assaiation class. Bdh posdble navigationsuse the same role-name, so ths is always
ambiguous. Using oclAsType() we can dstinguish betweenthemwith:

cont ext Dependency
i nv:s elf.oclAsType(De pendency).source

inv: self.o clAsType(ModelElI ement).source

7.5.10 Predefined properties on All Objects

There are several properties tha apply to all objects, amd arepredefinedin OCL. These
are:

oclisT ypeOf(t: OclTyp e) :Boolean
oclisk indOf(t : OclTyp e) :Boolean

ocl InS tate(s : Ocl Stat e) : Boole an
ocllsN ew : Boolean
oclAsT ype(t: OclType) : instance of Oc Type

The oeration is ocl TypeOf resuts in true if the type of sdf ard t are the sameFor
example:

cont ext Person
i nv:s elf.oclisTypeOf(Person) -- is true

i nv:s elf.oclisTypeOf(Company) -- is false

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-17

7-18

The alove property deals with the direct type of an object. The ocllsKindOf property
detemines whethert is either the dred type or one d the supertypes d anohect.

The geration oclinState results in true if the object is inthe states. Valuesfor s are
the names ofthe states in the statemahine(s) attacted to the Classifier of object. For
nested stats the statemmes ca be combined using the :..

-
O™

Figure 7-4 Statemachine Bxampke

In the previous examge of statenachine, values for s can be On, Off, Off:: Standby,
Off::NoPower. If the classifer d object has the albve associged stateracline, valid
OCL expressims are:

object .oclinState(On)
object .oclinState(Off)
object .oclinstate(Off: :Standby)
object .oclinState(Off: NoPower)
If there ae multiple statenachines attached tthe dject’s classifer, then the

statemmecan be prefixed with the name of the statemadine containing the state and
the dbuble senicolon ::, as with nestedstates.

The operation ocllsNew evaluates to true ifused ina pcstcordition, the olject is
created diring performing the operation (i.e., it didn't exist at precandition time).

7.5.11 Features on Classes Themselves

All properties dscused until now in OCL ae propetties m instances bclasses. The
types ar either pralefined in OCL or definedin the class model. In OCL, it is also
possibleto use features defined on the types/classes tremsehes. These ae, for
example, the elass-scqped featues déinedin the chss nodel. Furthermore, several
featues ae preddined on each type.

A precdefined feature on eachtype is alllnstances, which results inthe Set d all
instances of the type in existence at thespeciic time when the expressim is evaluated.
If we want to make sure that all instaoces o Personhave unique nanes, we can write:

cont ext Person inv:

Person .allinstances->f orAll(pl, p2 |

OMG-UML V1.3 March 2000

v

p 1<>p2 inpliespl.name< >p2.name)

The Person.alllnstances is the set d all persons andis of type St(Pewson). It is the st
of all pemsons that eist at the siapsot in time that the expressim is evaluated.

Note — The use d alllnstances has sone problems and its wse is dsoouraged in most
cases. Thefirst prodem is best explained by looking at the types like Integer, Real and
String. For these tyes tte meaning of alllnstances is undefined. What doesit meanfor
an Intgerto exist? The evaluation of the expression Integer.alllnstances resuts in an
infinite set ad is therefore undefined within OCL. The secondprodem with
alllnstances is that the &istence d objects nmust be considered within some overall
context, like a systemor a model. This overall context must be defined, which is not
done within OCL. A recommended style is to model the overall contextual sysem
explicitly as an olject within the systemand navigate from that olject to its containing
instances without using alllnstances.

7.5.12 Collections

Sinde navigdion results ina S, combined ravigations in a Bag, and navigation over
assodations adarned with {o rdered} r esults in a Seqwence. Therefore, the collection
types play an important role in OCL expressions.

Thetype Cdlection is predefined in OCL. The Collection type defines alarge number
of predefned operatiors to enable the OCL expressio author (the modeler) to
manipulate cdlections. Casgstent with tke defnition of OCL as anexpresson
language,collection operations never change collections; isQuery is aways true. They
may resut in a collectin, but ratherthan changng the origiral collection they project
the result into a new one.

Callection is anabstrac¢ type, with the concrete cdlection types as its sitypes. OCL
distinguishes threedifferent cdlection types: Set, Segence, andBag. A Set is the
mathematical set.It does rot contain cuplicate demerts. A Bag is like a set, with
may contain duplicates {.e, the same elenen may be ina kag twice ormore). A
Seqierce is like aBag in which the elenents ae ordered. Both Bags and Sets lave no
order deifnedon them Sets Sequences, andags can ke specified by a literal in OCL.
Curly bradkets suround the elenents d the cdlection, demerts in the cdlection are
written within, separated by commas. The type of the collection is written beforethe
curly brackets:

Set{ 1,2,5,88}

Set{ ‘apple', ‘'orang e', 'strawberry' }
A Seqierce:

Sequence {1, 3,45, 2 , 3}

Sequence {'ape’, 'nut "}
A bag:

Bag{l ,3,4,3,5}

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-19

7-20

Becatuse ofthe usefuness of a Seqience of consecutive Integers, there is a se@rate
literal to crede them. The elanentsinside the curly brackets can b replaced by an
interval specification, which cmsistsof two expressims o type Integer, Int-exprl and
Int-expr2, segrated ty ‘... This dendes all the Integers between the values d Int-
exprl and Int-expr2, including the values of Int-exprl andInt-expr2 thenseles:

Sequence{1..(6 +4)}

Sequence{1..10}

--are both identical to

Sequence{ 1, 2, 3, 4, 5,6,7,8,9, 10 }

The conplete list of Collection operatiors is describedat the end of this chager.

Coallections can be spedfied by a literal, as described above. The aly other way to get
a collection is by navigation. To be more predse, the only way to get a Set,Seqlence,
or Bag is:

1. a literal, this will result in a Set, Segence,or Bag:

Set {1,2,3,5 ,7,11,13,17 }
Sequence {1,2,3,5 , 7,11, 13,17 }
Bag {1,2,3,2, 1}

2. a naigaion startingfrom a sirgle olject can resli in a collection
Company
self.e mployee
3. operations on collections may result in new collections:

collec tionl->union(col lection2)

7.5.13 Collections of Collections

Within OCL, all Collections of Collections areflattened auomatically; therefore,the
following two expressons have the same value:

Set{ S et{l, 2}, Set{3, 4}, Set{5, 6} }
Set{1 , 2,3,4,5,6 }

7.5.14 Collection Type Hierarchy and Type Conformance Rules

In addtion to the type corformance wles in Section 7.4.4, “Type Conformance,” on
page 7-8, the following rules hold for all ty pes, ircluding the collection types:

® The types SetX), Bag (X) andSeaierce (X) are all sulbypes ofCollection (X).
Type cotriormance wles ae as follavs for the cdlection types:

®* Typel conformsto Type2 when they are identical (stanatd rule for all tyges).

* Typel conformsto Type2 when it is a sultype of Type2 (standard rule for al types).

OMG-UML V1.3 March 2000

v

® Collection(Typel) conforms to Collection(Type2), when Typel conforms to Type2.

* Type coriormance is transitie: if Typel conforms to Type2, ard Type2 conforms to
Type3, then Typel conforms to Type3 (standard rule for & types).

For examge, if Bicycle andCar are two searate aubtypes of Transport:
Set(Bi cycle) conformsto Set(Transport)
Set(Bi cycle) conformsto Coll ection(Bicycle)

Set(Bi cycle) conformsto C ollection(Transp ort)

Note tha Set(Bicycle) does nd conform to Bag(Bicycle), nor the other way around.
They are bah subtypes of Collection(Bicycle) at the same leel in the hierarchy.

7.5.15 Previous Values in Postconditions

As gatedin Section7.3.4, “Pre-ard Pogconditions,” on page 7-5, OCL canbeusedto
specify pre- and post-conditions on Operations ard Methods in UML . In a
postcordition, the expressia can refer to two sets of values for eat property of an
object:

® the value of a property at the start d the operation or method

® the walue of a property upon completion of the operaion or method

The value of a property in a postcortition is the value upon completion of the
operation. To refer to the value of a property at the start of the operaion, one has to
postfix the property name with the keyword ‘ @pre’:

cont ext Person::birthd ayHappens()
post: age = age@pre + 1
The property age refers to the progerty of the instance of Pa'son on which executesthe

operation. The property age@pre refers to the @ue d the prgerty age of the Pe&son
that executes the operation, at the stat of the operation.

If the poperty has @rameters, he ‘@pre’ is postfixed to the progertyname, before the
parameters.

cont ext Company::hireE mployee(p : Perso n)

post: employees =empl oyees@pre->includ ing(p) and
stockp rice() = stockpr ice@pre() + 10

The abee operation can alsobe spedfied by a postcortition anda precondition
together.

cont ext Company::hireE mployee(p : Perso n)
pre: notemployee->in cludes(p)
post : employees->inclu des(p) and

stockprice() = stockprice@pre()+ 10

OMG-UML V1.3 Objectsand Properties ~ March 2000 7-21

Whenthe pre-value of a property evaluaes to anobject, all fu rther properties that are
acces®d of this object ar the rew values (Upon completion of the operation) of this
object. So:

a.b@pre.c --tak esthe old value of property b of a, say X
--and then the new val ue of ¢ of x.

a.b@pr e.c@pre --tak esthe old value of property b of a, say X
--and then the old val ue of ¢ of x.

The ‘@pre’ postfix is alloved orly in OCL expressiors that ae part of a
Pogcondition. Asking for a current poperty d an dject that fas been @stroyed
during exeaution of the operation results inUndefined. Also, referring to the previous
value of an object that has beencreated during execution of the gperation results in
Undefined

7.6 Collection Operations

7-22

OCL defines mary operations an the cdlection types. These @erations ae spedically
mear to enale a flexible andpowerful way of projectirg new collectiors from
existing ones. The different canstructs are described ithe following sectiors.

7.6.1 Select and Reject Operations

Sorretimesan expresson using operations andnavigations delivers a mllection, while
we ae interested only in a special subset of the collection OCL has special constructs
to specify a selection from a spedfic collection. These are the select ard reject
operations. The sele¢ specifiesa subset of a collection. A seled is an operationon a
collectionand is specified using the arow-syntax:

collec tion->select(..)

The patameter of selet has aspecialsyntaxtha erabdes meto speify which elenerts
of the cdlection we want to select. There arethree dfferent forms, of which the
simplest one is:

collec tion->select(bo olean-expression)

This resuts in a cdlection that cortainsall the elenents from eollection for which the
boolean-expression evaluates to true. To find the resut of this expression for each
element in collection the expressionboolean-expression is evaluated. 1 this evaluates
to true, the eleent is included in the result collection, otherwise nd. As an example,
the following OCL expressionspecifies that tke cdlection of all the enployees older
than 50 years is not empty:

cont ext Company i nv:

self.e mployee->select(age > 50)->notEmp ty

The self.employee is of type Set(Peson). The select takeseach person from
self.employee andevaluatesage > 50 for this person If this resilts in true, then the
personis in the result Set.

OMG-UML V1.3 March 2000

As stown in the previous example, the contet for the expressim in the select
argumentis the element o the cdlection on which the select is ivoked. Ths the age
property is taken in the context of a person.

In the above exanmple, it is impossible torefer explicitly to the persons themseles; you
can only refer to properties of them To refer to the persons themselwes, trere isa nore
general syntax for the select &pression:

collec tion->select(v | boolean-express ion-with-v)

The variablev is called tle iterator When the seletis evaluated, v iterates wer the
collection and the boolean-expression-with-v is evaluaed for eachv. Thev is a
reference to he dvject from the cdlection and canbe wsed torefer to the ohects
thenselves from the collection. The two examgdes béow are idertical:

cont ext Company i nv:
self.e mployee->select(age > 50)->notEmp ty
context Company i nv:

self.e mployee->select(p | p-age > 50)-> notEmpty

The resut of the conplete select is the diection of persons p for which the p.age >
50 evaluaesto True. This amaunts to a sibset d self.employee.

As a final extension to the selectsyntax, the expected tye of the variable v can be
given. The select nav is written as:

collec tion->select(v : Type | boolean- expression-with- V)

The mearing of this is that the oljects in eollection must be of type Type. The next
exampleis identical to the previous exanples:

cont ext Company i nv:

self.e mployee.select(p : Person | p.age > 50)->notEmpty

The canpete seletsyntax now looks like one of.

collec tion->select(v : Type | boolean- expression-with- V)
collec tion->select(v | boolean-express ion-with-v)
collec tion->select(bo olean-expression)

The reject operation is identical to tke select operation, but with reject we get tle
subset of dl the elements of the wllection for which the expressia evaluates to Else.
The reject syrtax is idertical to the selet syrtax:

collec tion->reject(v : Type | boolean- expression-with- V)
collec tion->reject(v | boolean-express ion-with-v)
collec tion->reject(bo olean-expression)

As an eample, specif/ that the ctlection dof all the empoyeeswho are not maried is
enmpty:
cont ext Company i nv:

self.e mployee->reject(isMarried)->isE mpty

OMG-UML V1.3 Collection Operations March 2000 7-23

7-24

The reject operation is available in OCL for convenience because achrejed can be
restated & a select with the negated expression. Therefore, the following two
expressims areidentical:

collec tion->reject(v : Type | boolean- expression-with- V)

collec tion->select(v:Type | not (boole an-expression-wi th-v))

7.6.2 Collect Operation

7.6.2.1

As stown in the preious sectia, the selectrad reject operaions dways result in a
sub-collection of the original collection When wewant to spedfy a collectionwhich is
derived from some other collection, but which contains different objects from the
original collection (i.e, it is not a sub-collection), we can use acollect operation The
coallect operaion usesthe samne syrntax as the select andejed and is written asone of:

collec tion->collect(v : Type | express ion-with-v)
collec tion->collect(v | expression-wit h-v)
collec tion->collect(e Xpression)

The \alue of the rgect ogerationis the collection of the esuts of all the ealuations of
expression-with-v.

An example: specify the collection of birthDates for all enployees in the context of a
compary. This can be written in the context of a Compary object as ore of:

self.e mployee->collect (birthDate)
self.e mployee->collect (person | person .birthDate)

self.e mployee->collect (person : Person | person.birthD ate)

An importart isste here is that the resuting collectionis nd a Se, but a Bag When
more thanone enployee has tle same &ue for birthDate, this value will b e an
element o the resuiting Bag more thanonce. The Bag resiting from the collect
operation always has the sane size as the original collection.

It is posside to make a Set from the Bag,by using theasSt property on the Bag.The
following expressia resuts in the Set of dfferent birthDates from all empoyees ofa

Company:

self.e mployee->collect (birthDate)->as Set

Shorthand for Collect

Becawse naigation through many objectsis very common, thereis a shorthand
notation for the collect that makes the OCL expressiors mare readable Insteadof

self.e mployee->collect (birthdate)

we can also write:

self.e mployee.birthdat e

OMG-UML V1.3 March 2000

In general, whenwe apply a property to a cdlection of Objects, then it wil l
autamatically be interpreted as acollect over the members of the cdlection with the
specified property.

For any propertyname that is definedas a poperty on the oljects in a cdlection, the
following two expressons are idertical:

collec tion.propertynam e
collec tion->collect(pr opertyname)

and soarethese ifthe property is parameteized
collec tion.propertynam e(parl, par2, ...)

collec tion->collect(pr opertyname(parl, par2,)

7.6.3 ForAll Operation

Many times a canstrant is needed m all elements d a collection. The forAll operation
in OCL allows gecifying a Bodean &pressim, which must hdd for all oljects ina

collection
collec tion->forAll(v : Type | boolean- expression-with- V)
collec tion->forAll(v | boolean-express ion-with-v)
collec tion->forAll(bo olean-expression)

This forAll expressionresults in a Boolean. The resut is true if the bool ean-
expression-with-v is true for dl elements of collection. If the boolean-expression-with-
v is false for one or nore v in collection, thenthe conplete expressia evauates to
false. For exanple, in the context of a compary:

cont ext Company

inv: self.e mployee->forAll(forename = 'Jack)
inv: self.e mployee->forAll(p | p.forename = ‘Jack')
inv: self.e mployee->forAll(p:Per son|p.for ename='J ack')

These iwvariants evaluae to tue if the forename featue of eachempoyee is egal to
‘Jack!

The forAll operaton has an &tended variant in which more then oe itertor is used.
Both iterators will iterate over the conplete collection. Effectively this is aforAll on
the Cartesian poduct of the collectionwith itself.

cont ext Company i nv:
self.e mployee->forAll(el e2|
el <> e2implies el.for ename <> e2.fore name)
cont ext Company i nv:
self.e mployee->forAll(el, e2 : Person [

el <> e2implies el.for ename <> e2.fore name)

OMG-UML V1.3 Collection Operations March 2000 7-25

This expressia evaluates totrue if the forenames of all employees aredifferent. It is
semantically equivalent to:

context Company i nv:
self.e mployee->forAll(el | self.employe e->forAll (e2 |

el<>e 2implies el.forename <>e2.fo rename)))

7.6.4 Exists Operation

Marny times o need to know whether there isat leat one elenent ina cdlection for
which a corstraint holds. Theexists operationin OCL allows you to specify a Boolean
expressionwhich must hdd for at least one object in a collection:

collec tion->exists(v : Type | boolean- expression-with- V)
collec tion->exists(v | boolean-express ion-with-v)
collec tion->exists(bo olean-expression)

This exists operationresuts in a Boolean The result idrue if the bool ean-expression-
with-v is true for at least oe elenent d collection. If the bool ean-expression-with-v is
false for all v in collection, then the complete expresson evaluates tofalse. For
example, in the context of a conpany:

context Company i nv:

self.e mployee->exists(forename = 'Jack ")
context Company i nv:

self.e mployee->exists(p | p.forename = ‘Jack')
cont ext Company i nv:

self.e mployee->exists(p : Person | p.f orename = 'Jack’)

These &pressiors evaluate totrue if the forenane feature of at leat one empoyee is
equal to ‘Jack.

7.6.5 Iterate Operation

The iterate operationis slightly more complicated, but is very genelic. The ogerations
reject, select, for All, exists, collect, canall be descrbed in terms of iterate.

An accunulation builds one value by iteraing over a cdlection.
collec tion->iterate(e lem : Type; acc: Type = <express ion> |

expres sion-with-elem-an d-acc)

The veriable elem is the itefator, asin the definitions of select andforAll. The variable
acc is the accumulator. The accumulator gets aninitial value <expression>.

7-26 OMG-UML V1.3 March 2000

v

When the iterate is evaluated elem iteraesover the eollection and the expression-with-
elem-and-acc is evaluated for each elem. After ead evaluaton of expression-with-
elem-and-acc, its value is assgned to acc. In this way, the \alue o acc is built up
during the iteration of the collection The collect ogration descibed in terms of iterate
will look like:

collec tion->collect(x : T | X.property)
--is identical to:
collec tion->iterate(x :T;acc:T2=B ag{} |
acc->in cluding(x.proper ty))

Or written in Java-like psewocode the resut of the iterate can be calculated as:

iterat e(elem: T; acc : T2 = value)
{
acc =value;
for (Enumeration e = collection.eleme nts() ;
e.hasM oreElements();) {
elem = e.nextEl ement();
acc = <express ion-with-elem-and -acc>
}
}

Although the Java pseud code uses a hext elemen,’ the iterate operation is defined
for eachcollection type ard the ader of the itemtion through the elements in the
collectionis not definedfor Set andBag. For a Sequence the order is the oder of the
elements in the sequence.

7.7 The Sandard OCL Package

Each UML model that uses OCL constraints contains a pedefined standard padkage
cdled “UML_OCL.” This package is usedby default in all other packagesin the
model to evaluae OCL expressiors. This packagecontains all predefned OCL types
and their features.

To extend the predefined OCL types, amodeler shauld define a sepaate padkage. The
stardard OCL package can beimported, and eachOCL type can be extended with new
featues.

To specify that apaclkage wsed the predefined OCL types from a wser defined package
instead of the stawlard package the usingpackaye nmust define a Dendercy with
steeotype <<OCL_Types>> tothe padkage which defines theextended OCL types.

A constraint on the user defined OCL packageis that as a ninimum al preddined
OCL types with all of their featuresmust be defined. The use defined package must be
a proper extension to the standard OCL package.

OMG-UML V1.3 The Sandard OCL Package = March 2000 7-27

7.8 Predefined OCL Types

7-28

This sectim cortains all stadard types defnedwithin OCL, including all the
properties ddined onthosetypes. Itssignature and a desaiption of its semantics define
eeach property. Within the description, the reseved word ‘result’ is used to refer to the
value that resultsfrom evaluating the property. In several places, pet corditions are
used to describe poperties of the resuit. When there is more thanone postcortition, all
postcorditions must be true.

7.8.1 Basic Types

7.8.11

The lesic types usedare Integer, Real, String, andBoolean.They aresupplemented
with OclExpresdon, OclType, and OclAny.

OclType

All types deined ina UML model, or predefined within OCL, have a type. This tpe
is an instane of the OCL type called OclType. Access to this type dlows the modeler
limited access tothe neta-level of the model. This can ke useful for advanced
modders.

Properties of Ocllpe, where the instance of Oclifpe is callel type.

type.name : Sting

The name of type.

type.attibutes : St(String)
The set of names of the dtributes oftype, as they are ddfined in the model.

type.assoiationEnds : Set(Sting)

The sa of names of the navigable assaiationEnds o type, as tley are
defined in the model.

type.ogerations : Set(Sting)
The sd of names of the operations of type, as the aredefinedin the model.

OMG-UML V1.3 March 2000

type.swertypes : St(OclType)

The sd of all direct sypertypes of type.
pod: type.allSupertypes->includsAll(r esult)

type.allSupertypes : Set(O€Type)
The trangtive closure of the set of all sugertypes d type.

type.alllnstances : Set(typ)

The set of dl in stances 6 type and all its subtypes inexistence &the
snasha at the time that the expressionis evaluated.

7.8.1.2 OclAny

Within the OCL context, the type OclAny is the swpertype d all typesin the nodel and
the basic predefined OQL type. The predefined OCL Collection types ate nd sultypes
of OclAny. Properties d OclAny are available oneachobject in all OCL expressiors.

All classes in a UML model inheiit all propertiesdefined an OclAny. To avoid name
corflicts between propertiesin the model and the progerties inherited from OclAny, all
names onthe prgerties o OclAny statt with ‘ocl.” Although theoretially there may
still be name conflicts, they can be avoided One canalso use the oclAsType()
operation to explicitly refer to the OclAny properties.

Properties of OclAry, wherethe instarce of OclAny is called object.

object = (object2: OclAny) : Boolean
True if ebject is the same object asobject2.

object <> (object2: OclAny) : Boolean

Trueif object is a diferen object from object2.
post: result = not (object = olject2)

OMG-UML V1.3 Predefined OCL Types March 2000 7-29

object.oclisKindOf(type : OclType) : Boolean

True if type is ore of the tygs of ebject, or one of the supetypes
(transitive) of the types of abject.

object.ocllsTypeOf(type : OdType) : Boolean
Trueif type is equl to ore of the tyes of object.

object.oclAsType(type : OdType) : type
Reslts in abject, but of known type type.
Resluts in Undefinedif the actual type ofebject is nd type or one o its

sultypes.

pre : object.ocllsKindOf(type)
post: result = object

post: result.ocll sKindOf(type)

object.cclinStategtate : OclState): Boolean

Reslts in true ifobject is in the statestate, othemwise resuts in false. The
argumernt is a nane of a state n the state machne corespnding with the

class of object.

object.oclisNew : Boolean

Can aily be used in a postcondition.
Evaluates to true if theabject is creaked during peforming the gperation.
l.e.it didn't exist at preondition time.

7.8.1.3 OclSate

The type OclState is wsed as a rameter for the operationocllnSate. There ae o
properties defined on OclState.One can aly specify anOdState by using the nane of
the state, @it appears ina statenachine. These rames can be fully qualified by the

nested stats and statemachne that mntain them.

7-30 OMG-UML V1.3 March 2000

7.8.14

7.8.1.5

OclExpression

Each OCL epressionitself is an object in the context of OCL. The type & the
expressionis OclExpressian. This type andits properties are usedto define the
semantics of properties that take an expressia as one of their parameters. For
example; select, cdlect or forAll.

An OclExpresson includes the oponal iterator variable and type andthe ogional
accumulator variable andtype.

Propertiesof OclExpressia, where the instance of OclExpresson is called expression.

expresson.evaluationType : OclType

The type of the object that results from evaluating expression.

Real

The OCL ty pe Real represents the mahematical concept of red. Note that Integer is a
sulxlass of Real, sofor eath parameter of type Real, you canuse aninteger as the
adual parameter

Properties d Real, wtere theinstarce of Real is calledr.

r = (r2: Real) : Boolean
Trueif r is equl to r2.

r <> (r2 : Real) : Boolean

True if r is not equal to r2.
post: result = not (r =r2)

r+ (r2: Rea) : Real

The value of the adlition of r andr2.

r-(2: Real) : Real
The value d the aubtraction of r2 fromr.

OMG-UML V1.3 Predefined OCL Types March 2000 7-31

r*(r2: Real) : Real
The value of the nultiplication of r and r2.

r/ (r2: Real): Real
The value o r divided by r2.

r.abs: Red

The absdute value of r.
post: if r <0 then result = - r else resut = r endif

r.floor : Integer

The lagest intger which isless thanor equal tor.
post: (resut <=r) and (resut + 1 >r)

roround : Intege

The integer which is closest tor. When there ae two sich integers, the
largest ore.
post: ((r - result) <r).abs < 0.5) or ((r - result).abs = 0.5 and (result > r))

rmax(r2 : Real) : Real

The maximum of r ard r2.
post: if r >=r2 then result = r else esult = r2 endif

r.min(r2 : Red) : Real

The minimum of r ard r2.
post: if r <=r2 then result = r else esult = r2 endif

7-32 OMG-UML V1.3 March 2000

r < (r2: Redl) : Boolean

True if rl is less thanr2.

r> (r2 : Real) : Boolean

True if ¥l is greater thanr2.
post: result = not (r <=1r2)

r <= (r2 : Real) : Boolean

True if r1 is less thn or equl to r2.
post result = (r = r2) or (r<r2)

r>= (r2 : Real) : Boolean

True if rl is greate thanor equal to r2.
post result = (r = r2) or (r > r2)

7.8.1.6 Integer
The OCL ty Integer represerts the mathemetical concept of integer.

Properties of hteger, where the indance of Integer is called i.

i = (i2 : Integer) : Boolean

Trueif i is equl to i2.

i + (i2 : Integer) : Integer
The value of the adition of i and i2.

i- (i2 : Integer) : Integer

The value of the subtraction of i2 fromi.

OMG-UML V1.3 Predefined OCL Types March 2000 7-33

i* (12 : Integer) : Integer
The value of the nultiplication of i andi2.

i/(i2 : Integer) : Real
The value o i divided by i2.

i.abs: I nteger

The absdute value of i.
post: if i <0 then resut = - i else resut = i endif

i.div(i2 : Integer) : I nteger

The nunber d times that2 fits conpletely within i.
pre:i2<>0
post: if i /i2 >= 0 thenresut = (i / i2).floor else result = {(-i/i2).floor) endf

i.mod(i2 : Integer) : Integer

The resut is i modulo i2.
post: result =i - (i.div(i2) *i2)

i.max(i2 : Integer) : Integer

The maximum of i ani2.
post: if i >=i2 then result =i else esut = i2 endif

i.min(i2 : Integer): Integer

The minimum of i ani2.
post: if i <=2 then result =i else esut = i2 endif

7-34 OMG-UML V1.3 March 2000

7.8.1.7 Sring
The OQL type Sting represents ASdI strings.

Properties of Stringwhere the irstance of Stng is called string.

string = (string2 : String) : Boolean

Trueif string and string2 contain the samecharacte's, in the sane order.

string.size : Integer

The number of charactes in string.

string.concat(string2 : String) : String

The concateration of string ard string2.

post: result.size = string.size + string2.size

post: result.substring(1, string.size) = string

post: result.substring(string.size+ 1, result.size)= string2

string.toUpper : String

The value of string with all lowercase chracters cowerted touppercase
charecters.
post: result.size = string.size

string.toLower : String

The value d string with all uppercase chraders cawerted tolowercase
charactes.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String

The aib-dring of string stating at claracter rumber lower, up to and
including character number upper.

7.8.1.8 Boolean
The OCL tye Bodean reresents the common true/false \aues.

Featwes of Boolean the instame d Booleanis calledb.

b = (b2 : Boolean) : Boolean

Equal if b is the sane ash2.

OMG-UML V1.3 Predefined OCL Types March 2000 7-35

7-36

b or (b2 : Boolean) : Boolean

True if atherb or b2 is true.

b xor (b2 : Boolean) : Boolean

True if ather b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b ard (b2 : Boolean) : Boolean
True if both b1 ard b2 are tue

not b : Boolean

True if b is false.
pod: if b then resut = false else esut = true endif

b implies (b2: Boolean) : Bodean

True if b is false, or if b is true and b2 is true.
pod: (not b) or (b and b2)

if b then (expressiorl : OclExpresson)
else (expression? : OclExpresson) endf : expresgonl.evaluationType

If b is true, the rault is the value of evaluating expressionl; otherwise,
resut is the \alue o evaluatirg expression2.

7.8.1.9 Enumeration

The OCL type Enumeration represents the enumerations defined in an UML model.

OMG-UML V1.3 March 2000

Featues of Enumeration, the instarce of Enumeration is called enumer ation.

erumeration = (enumeration2 : Boolean) : B oolean

Equal if enumeration is the sane asenumeration2.

enumeration <> (enumeration2 : Boolean): Boolean

Equal if enumeration is nd the same asenumeration2.
post: result = not (enumeration = enumeration?2)

7.8.2 Collection-Related Types

The following sectiors define the properties oncollections (i.e., these properties ae
availableon Set,Bag, and Sequence) As defined in this section, each collectiontype is
adually a template with one pamameter. ‘ T’ denctes the @rameter. A real collection
type is created ly substituting a type for the T. So Set (Integer) and Bag (Person) are
collectiontypes.

7.8.2.1 Collection

Cadllection is the abstrat supettype of all collection types inOCL. Eachoccurrence of
anobject in a collectionis called an elemert. If an object occurs twice in a collection,
thereare two elenents. This sectiondefines the properties on Collections that have
identical semantics for all collection subtypes Some properties may be deinedwith
the sibtype as well,which means that there is anadditional postcordition or a more
specialized return value.

The defnition of several common propetties is different for each sultype. These
properties arenot mentioned inthis sedion.

Properties of Cltection, where the irtsnce of Collection is called collection.

cadlection->size : Integer

The number of elementsin the collection collection.
post: result = collection->iterate@lem; acc : Integer =0 | acc + 1)

calection->includes(object : OclAry) : Boolean

True if object is anelenent d collection, false otherwise.
post: resut = (collection->count(object) > 0)

OMG-UML V1.3 Predefined OCL Types March 2000 7-37

callection->excludes(olject : OclAny) : Boolean

True if object is not anelenent d eollection, false otherwise.
post: resut = (collection->count(object) = 0)

callection->court(object : OclAny) : I nteger

The number of times thatebject occurs in the collection eollection.
post: result =collection->iterate(elem; acc : Integer = 0 |
f elem = object then acc + 1 dse acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Doescollection contain dl the elenernts ofe2 ?
post: resut = c2->forAll(elem| collection->includes(elen))

callection->excludesAll(c2 : Collection(T)) : Boolean

Doescollection contain rone of the elenents ¢ ¢2 ?
post: resut = c2->forAll(elem| collection->excludes(elem))

callection->isEnpty : B oolean

Is collection the enpty collection?
post: resut = (collection->size =0)

collection->natEmpty : Boolean

Is eollection nat the enpty collection?
post: resut = (collection->size <> 0)

7-38 OMG-UML V1.3 March 2000

calection->sum: T

The addition of all elementsin collection. Elements must be of atype
supporting the + operation. The + operation must teke one parameter of type
T and be both asscciative: (a+b)+c = a+(b+c), and commutative: atb = b+a.
Integer and Redl fulfill this cordition.

post: result =collection->iterate(elem acc: T=0 |
acc +elem)

callection->exists(expr : OclExpression) : B oolean
Resultsin true if expr evaluates to true for &least me elenent incollection.

post: result = collection->iterate@lem; acc : Boolean= false |
acc or expr)

callection->forAll(e xpr : OclExpressior) : Boolean

Resultsin true if expr evaluates to true for each elenent in eollection;
otherwise,resut is false.

post: result = collection->iteratelem; acc : Boolean= true |
acc ahexpr)

callection->isUnique(expr : OclExpression) : Boolean

Resultsin true if expr evaluates to a different value for each demert in
collection; otherwise,result is false.

paost: result = collection->callect(expr)->forAll(el, e2| el <> e2)

callection->sortedBy(expr : OclExpression) : Boolean

Resultsin the Sequene containing all elements of ecollection. The elenent for
which expr has tle lowest value cones first, andso m. The type of theexpr
expression must have the < operaion defined The < operation must be
trarsitivei.e.ifa< band b<cthena<c.

post:

OMG-UML V1.3 Predefined OCL Types March 2000 7-39

callection->iterateexpr : OclExpressian) : expr.evaluationType

Iterates @er the cdlection. See “LerateOpertioni’ on page 7-26 for a
complete description. This is the basic collection operaion with which the
other collection operatons can be desaibed.

7.8.2.2 Set

The Set is tb matlemadical set. t contairs elemeits withaut duplicates. Featues of
Set,the instarce of Set is calledset.

set->union(set2 : Set(T)) : Set(T)
The union of set andset2.

post: resut->forAll(elem| set=>includes(elem or set2->includes(dem))
post: set->forAll(elem | resut->includes(elen))
post: set2->forAll(elem | result->includes(dem))

set->union(bag : BagT)) : Bag(T)
Theunion of set andbag.

post: resut->forAll(elem|

reailt->count(elem) = set>count(elem) + kag->count(elem))
post: set->forAll(elem | resut->includes(eleny)
post: bag->forAll(elem | resut->includes(elen))

set = (set2 : Set(T) : Boolean
Evaluates totrue if set andset2 contain the sameelemaents.

post: result = (set->forAll(elem | set2->includes(elem) and
sel->forAll(elem |set>includes(elem)))

set->intersectior{set2: Set(T)) : Set(T)

The intersectionof set and set2 (i.e, the setof all elements that are in both set
and set2).

post: resut->forAll(elem| set->includes(elem) and set2->includesglem))
post: set>forAll(elem| set2->includes(dem) = result->includes(dem))
post: set2->forAll(elem| set->includes(éem) = result->includes(dem))

7-40 OMG-UML V1.3 March 2000

set->intersectior{bag : Bag(T)) : Set(T)

The intersection of set ard bag.
post: result = set->intersectior{ bag->asSet)

set — (set2 : Set(T)) : Set(T)
The elemerts of set, whichare na in set2.

post: resut->forAll(elem| set->includes(elem) and set2->excludes(elemn))
post: set>forAll(elem| result->includes(elem) = set2->excludes(elen))

set->including(object : T) : Set(T)
The set containing all elemants d set plus abject.

post: resut->forAll(elem| set->includes(elem) or (elem = object))
post: set>forAll(elem| result->includes(elem))
post: resut->includes(olject)

set->excluding(object : T) : Set(T)
The set containing all elements o set without ebject.

post: resut->forAll(elem| set->includes(elem) and (elem <> object))
post: set>forAll(elem| result->includes(elem) = (object <> dem))
post: resut->excludes(object)

set->symmetricDifference(set2 : Set()) : Set(T)
The sets containing all the dements that are in set or set2, but not in both.

post: result=>forAll(elem| set=>includes(elem xor set2->includes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elen))
post: set2->forAll(e lem | result->includes(dem) = set->excludes(elen))

OMG-UML V1.3 Predefined OCL Types March 2000 7-41

set->selectéxpr : OclExpressia) : Set(T)
The subset ¢ set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
f expr then acc->including(elem) else acc endif)

set->rejectexpr : OclExpresdon) : Set(T)

The subset d set for which expr is false.
post: result = set->selectfot expr)

set->collect(expr : OclExpresson) : Bag(expr.evaluationType)

The Bag of elenments wiich results flom amplying expr to every member of
set.

post: resut = set->iterate(elem; acc : Bag(expr.evaluationType) = Bag{} |
accrincluding(expr))

set->count(object : T) : Integer

The numbe of occurerces 6 object in set.
post: resut <=1

set->asSegerce : Seqence(T)
A Sequence that contains all the elements from set, in undefined order.

post: resut->forAll(elem| set->includes(elem))
post: set=>forAll(elem| result->count(elem) = 1)

set->asBag: Bag(T)
The Bag that contains all the elements from set.

post: resut->forAll(elem| set->includes(elem))
post: set=>forAll(elem| result->count(elem) = 1)

7-42 OMG-UML V1.3 March 2000

7.8.2.3 Bag

A bag is a cdlection with duplicates allowed That is, o ohect canbe an elenert of
a bag mary times. There is no ordering defined on the elenents ina bag.

Properties of Bagwhere the instance of Bag iscalled bag.

bag= (bag? : Bag(T)) : Boolean
True if bag and bag2 cortain the sare elenents, tle samenumber d times

post: result = (bag->forAll(elem| bag->count(elem) = bag2->count(elem))
and
bag2->brAll(elem | ba@->count(elem) = bag>count(elem)))

bag->union(bag? : Bag(T)) : Bag(T)
The uron of bag ard bag2.

post: resut->forAll(elem|

result->count(elem) = bag>couwnt(elem) + bag2->count(elem))
post: bag->forAll(elem |

result->count(elem) = bag>couwnt(elem) + bag2->count(elem))
post: bag2->forAll(elem|

result->count(elem) = bag>couwnt(elem) + bag2->count(elem))

bag->union(set : Set(T)) : Bag(T)
The unon of bag ard set.

post: resut->forAll(elem|

reailt->count(elem) = kag->count(elem) + set>count(elem))
post: bag->forAll(elem |

reailt->count(elem) = kag->count(elem) + set>count(elem))
post: set>forAll(elem|

reault->count(elem) = bag->count(elem) + set>count(elem))

OMG-UML V1.3 Predefined OCL Types March 2000 7-43

7-44

bag->intersection(bag?2 : Bag(T)) : Bag(T)
The intersection of bag and bag2.

post: resut->forAll(elem|

resut->court(elem) =bag->cout(elem)min(bag2>count(elem)))
post: bag->forAll(elem |

resut->court(elem) =bag->cout(elem)min(bag2>count(elem)))
post: bag2->forAll(elem|

resut->court(elem) =bag->cout(elem)min(bag2>count(elem)))

bag->intersection(set : Setl)) : Set(T)
The intersection of bag and set.

post: resut->forAll(elem|

result->count(elem) = bag->cout(elem)min(set->count(elem)))
post: bag->forAll(elem |

result->count(elem) = bag->cout(elem)min(set->count(elem)))
post: set>forAll(elem|

result->count(elem) = bag->cout(elem)min(set->count(elem)))

bag->including(object : T) : Bag(T)
Thebagcortaining all elerrents & bag plus object.

post: resut->forAll(elem|
if elem = olgect then
lesult->count(elem) = bag->count(elem) + 1
dse
iesult->count(elem) = bag->count(elem)
endif)
post: bag->forAll(elem |
if elem = olgect then
lesult->count(elem) = bag->count(elem) + 1
dse
iesult->count(elem) = bag->count(elem)
endif)

OMG-UML V1.3 March 2000

bag>excluding(objed : T) : Bag(T)
The bagcontainng all elemerts of bag apat from all oacurences é object.

post: resut->forAll(elem|
if elem = object then
iesult->count(elem) = 0
dse
iesult->count(elem) = bag->count(elem)
endif)
post bag>forAll(elem |
if elem = object then
iesult->count(elem) = 0
dse
iesult->count(elem) = bag->count(elem)
endif)

bag->select(expr : OclExpressia) : Bag(T)
The sib-bagof bag for which expr is true.

post: result = bag>iterate@em; acc : Bag(T) = Bag{} |
f expr then acc->including(elem) else acc endif)

bag>rejectexpr : OclExpression) : Bag(T)

The sib-bagof bag for which expr is false.
post: result = bag->selet(not expr)

bag->collect(expr: OclExpressia) : Bag(expr.evaluationType)

The Bag of elements wtlich results from applying expr to every member of
bag.

post: result = bag >iteratelem; acc : Bag(expr.evaluationType) = Bag{} |
accincluding(expr))

bag>count(object: T) : Integer

The numbe of occurrences d object in bag.

OMG-UML V1.3 Predefined OCL Types March 2000 7-45

bag>asSequence : Sequence(T)
A Sequene that ontains all tie elenents from bag, in undefined order.

post: result->forAll(elem| bag->count(elem) = result=>count(elem))
post: bag->forAll(elem | bag->count(elem) = resut->count(elem))

bag>asSet : Set(T)
The Set containing all the elemeris from bag, with duplicates renoved.

past: result->forAll(elem| bag->includes(elem))
post: bag->forAll(elem | result->includes(elemn))

7.8.2.4 Sequence

A seqlence is a collection where theelemerts are ordered. An elemernt may be pat of
a segence nmore than once.

Properties of Sequence(T), where the instarce o Sequence is cdled sequence.

sequerce->cownt(object : T) : Integer

The number d occurences of abject in sequence.

sequence= (sequerce2: Sequence(T)) : Boolean
True if sequence cortains the sane elemaits assequence? in the sare order

post: result = Sequencgl. .sequence->size}->forAll(index : Integer |
sguene@->at(index) = sequena@2->at(index))
ad
fguene->size =sequenE2->size

7-46 OMG-UML V1.3 March 2000

sequence->union (sequence?2 : Seaquence(T)) : Sequence(T)

The segerce comisting of all elementsin sequence, followed by all elements
in sequence2.

post: result->size = segence->size + seqience2>size
post: Seqence{l..sequence-size}->forAll(index : Integer |
fquence>at(ndex) = result->at(index))
post: Sequence(l. .seqence2>size}->forAll(in dex : | nteger |
fguence2->at(index) =
asult->at(index + sequence->size)))

seqience->append (objed: T) : Sequence(T)
Thesequerceof elerments,consistingof all elements d sequence, followed by
object.

post: result->size = segence->size + 1

post: result->at(result=>size) = object

post: Sequence{l..sequence-size}->forAll(index : Integer |
esult->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)
The sequence consisting of object, followed by all elements in sequence.

post: result->size = segence->size + 1

post: result->at(1) = object

post: Sequence{l..sequence-size}->forAll(index : Integer |
fquence->af(index) = result->at(index + 1))

OMG-UML V1.3 Predefined OCL Types March 2000 7-47

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-seqernce d sequence starting at number fower, up toandincluding
element number upper.

pre : 1 <= lower

pre : lower <= upper

pre : upper <= sequence->size

post: result=>size = upper -lower + 1

post: Sequencdlo wer..upper} ->forAll(in dex |
esult->at(index - lower + 1) =

esjuence->at(index))
endf

sequerce->at(: Integer) : T

Thei-th elemert of seqlence.
pre:i>=1 andi <= sequerce->size

sequerce->first: T

Thefirst elenent in sequence.
post: result = sequence->at(1)

sequence>last : T

Thelag demert in sequence.
post: result = sequence->at(sequence->size)

sequence->including(object : T) : Sequence(T)

The sequence cortaining all elerrents d sequence plus object added asthe
lag demen.
post: result = sequence.append(object)

7-48 OMG-UML V1.3 March 2000

seqience->excluding(object: T) : Sequence(T)

The sequence cortaining all elements & sequence apart from all occurences
of object.
The order of the remaining elemerts is not changed

post:resut->includes(olject) = false
post: result->size = segience->size - sequence>count(object)
post: result = sequence->iterate(elem; acc : Seqence(l)
= Seqerce{}|
if elem= dbjectthenacc ése acc->append(elem)endf)

sequence->seled(expression: OclExpression) : Sequence(T)
The subsequence of sequence for which expression is true.

post: result = sequence->iterateelem; acc : Seqience(T) = Seqenc{} |
if e xpr thenacc->including(elem) else ac erdif)

sequence->rejectexpresson : OclExpression) : Sequence(T)

The sibseqierce of sequence for which expression is false.
post: resut = sequence->seled(not expr)

sequerce->collect(expressian : OclExpresson) :
Sejuencdexpression.evaluationType)

The Sequenceof elements whidh results flom apgying expression to every
memtler of sequence.

sequerce->iterate(expr : OclExpresson) : expr.evaluationType

Iterates @er the segence. terdion will be done from elenent at psition 1
up until the dement at the last psition following the order of the segance.

OMG-UML V1.3 Predefined OCL Types March 2000 7-49

sequence->asBag() : Bag(T)
The Bag containing all the elenents fom sequence, including duplicates.

post: result->forAll(elem| sequence>count(elem) = result->count(elem))
post: sequence->forAll(elem| sequence->count(elem) = result->count(elem))

sequerce->asSet] : Set(T)
The Set containing all the elemeris from sequence, with duplicated removed.

paost: result->forAll(elem| sequence->includes(elem))
post: sequence->forAll(elem| result->includes(elem))

7.9 Grammar

This section describes the gammar for OCL expressions. An executable LL(1) version
of this grammar is available on the OCL web site. (See
http://www.software ibm.con/ad/ccl).

The ganmar desciption uses the BNF syrtax, where " mears a chdce, “?”
optionality, and “*” mears zeroor more times, + mears one or more times. Inthe
descaiption of the name, typeName, andstring, the syntax for lexical tokens from the
JavaCC parsergenerator is used. (Seehttp://www.surtest.om/JavaCC.)

constr aint := contextDeclaration

(stere otype name? “" e xpression)+
contex tDeclaration = “context”

(clas sifierContext | o perationContext)
classi fierContext = (<name> “")? <typeName>
operat ionContext . =<typeName> “: " <name>

“(“fo rmalParameterList 21"

(G <typeName>)?
formal ParameterList := formalParam eter (*;” formalP arameter)*
formal Parameter = <name> " <typ eName>
stereo type ="in Vv"|“pre” | “pos t
expres sion :=let Expression* logic alExpression
ifExpr ession ="if " expression

"then" expression

"else" expression

7-50 OMG-UML V1.3 March 2000

"endif "
logica |Expression :=rel ationalExpression

(logi calOperator

rel ationalExpression)*
relati onalExpression := additiveExpress ion

(rela tionalOperator
addi tiveExpression)?

additi veExpression :=mul tiplicativeExpres sion

(addO perator

mult iplicativeExpress ion)*
multip licativeExpressi on:= unaryExpres sion

(mult iplyOperator unar yExpression)*
unaryE xpression := (una ryOperator postfi XExpression)

| post fixExpression

postfi XExpression =pri maryExpression (" ->"
feat ureCall)*
primar yExpression =lit eralCollection
| lite ral

| path Name timeExpressi on? qualifier?
featureCall Parameters?
NG expression ")"

| ifEx pression

featur eCallParameters :="("(declarat or)?

(act ualParameterList)2 ")
letExp ression = “let” <name>

(s pathTypeName)?

“="ex pression “in”

litera | :=<ST RING> | <number> | "#" <name>
enumer ationType ="en um""{""#" <name > (") U# <nam e>
o
simple TypeSpecifier :=pathTypeName
| enumerationType
litera ICollection :=col lectionKind "{"

expres sionListOrRange? "}"

expres sionListOrRange : = expression
((" " expression)+
| (" " expression)
)?

OMG-UML V13 Grammar March 2000 7-51

featur eCall

pat hName timeExpress ion? qualifiers?

featu reCallParameters?

qualif iers ="[" actualParameterL ist"]"
declar ator :=<na me>("," <name>)*

(e simpleTypeSpecif ier)?""
pathTy peName =<ty peName> (":"<t ypeName>)*
pathNa me :=(< typeName>|<name >)

(" " (<typeName> | <name>))*
timeEx pression ="@" <name>
actual ParameterList := expression ("," expression)*
logica |Operator :="an d"|"or"|"xor" | "implies"
collec tionKind :="Se t"|"Bag"|"Seq uence" |

"Coll ection"
relati onalOperator :="=" [">"|"<"|"> =" et | >
addOperator =
multip lyOperator = | "
unaryO perator ="" | "not"
typeNa me =([“a~-"z|['A" Z71"")

(" 27|09 |

[AvZ
name =([“a~"z"l|['A"-" z|
(" 27|09 |
[Az
number =00 ""9"("0"-"9"])*
string = CEm™mem n","\r'])
e
(" bt A\ W |
Iro 7o 1)?
o 3] [07] [o-7]
)
)
)

7-52 OMG-UML V1.3 March 2000

