This document describes the basic scenarios for validating and editing SML and SML-IF resources.

The intention is to provide a common framework and initial implementations which will allow a user to easily create and validate SML models.
Table of contents

1Table of contents

1Creating SML and SML-IF editors

1Editors for building SML schema definitions

1Editors for SML instances

2Editors for SML-IF instances

3SML and SML-IF validation

3XML Validation - SML schema extension validation

3Proposal

4JAXP 1.3 sample implementation

5Schematron validation

5Proposal

5Schematron validation using XSLT transform

Creating SML and SML-IF editors
There are three scenarios covered here:
Editors for building SML schema definitions

Although this is an important scenario, I believe that the EMF editor generator framework provides enough functionality to be able to do this task. It will just be a matter of generating the editor using the SML schema definition.
The only issue is that this editor has pretty basic view and functionality. We can improve it and move to a more elaborated editor on the second release of the project. I think that the goal of the first release is to have a basic tool which will allow a user to build SML documents.
Going forward we can improve the user experience and build a more sophisticated editor.

Editors for SML instances

Allow to create SML instances using existing SML schema definitions.

User interaction:

· Create a new project or select an existing project. The project type can be anything arbitrary.

· Select File > New > Other

· Expand the “Resource Modeling” category

· Select “SML instance”

· The user has the option of specifying a name.
· The user is required to specify the SML xsd definition for the SML instance.

· Optionally, the user should be able to specify schematron documents used to validate the instance content. We can simplify the initial scenario and assume that any schematron validation will be included by the selected SML schema file.
· Click finish to create the document

After the Finish button is pressed an editor based on the specified XSD schema is created. The editor can be a simple EMF based editor (ideally will be an editor generated by the EMF edit framework - genmodel).
· Editor actions should be selection sensitive, meaning that based on the current selected item and using the SML schema definition, only valid constructs should be presented by the context menu.
· Validate action should be available within the editor, as a global action on the selected SML resource.

A detailed description of the UI content will be defined next.
Editors for SML-IF instances

Allow to create SM-IFL instances using existing SML instances.
User interaction:

· Create a new project or select an existing project. The project type can be anything arbitrary.

· Select File > New > Other

· Expand the “Resource Modeling” category

· Select “SML-IF instance”

· The user has the option of specifying a name, display name, description, and a base URI.

· The user has the option of selecting one or more SML instances to be added to the phenic section. Schema documents for these SML instances will be automatically added under the genic section.

· Optionally, the user should be able to specify schematron documents used to validate the phenic documents. They will be added under the genic section.
· The user can select SML schemas (no instances) to be added under the genic section.

· Click finish to create the document

For performance reasons, based on the user selection, a simple ini document will be created. This document will contain a genic section with pointers to the schema documents and a phenic section with pointers to the phenic documents.
This document will be the underlying model for the editor. Once the content is finalized, the SML-IF document will be generated from this ini file using an ‘Export to SML-IF’ option. The ‘Export to SML-IF’ action will in-line the phenic and genic documents into an SML-IF instance file and will write this content to the disk.
Actions available in the SML-IF editor:
· Add new genic document

· The user selects the genic section and click Add

· In the Browse dialog he can select an existing schema available on the file system or point to a uri location.

· After the user presses finish in the Browse dialog, the ini file is updated with a link to the schema document in the genic section.
· Add new phenic document

· The user selects the phenic section and click Add

· Using the browse dialog, he can select an SML instance from the file system

· After the user presses finish in the Browse dialog, the ini file is updated with a lonk to the schema instance in the phenic section. The genic section is updated wit a link to the schema document for that SML instance.
· Validate SML instance – on any phenic document

· Validate SML-IF – global action on the selected SML-IF instance

· Generate SML-IF content
· The content of the ini file is inlined into an SML-IF document. The SML-IF document will congaing all phenic and genic documents described by the ini file.
A detailed description of the UI content will be defined next.
SML and SML-IF validation

Validation is done in two phases:

XML Validation - SML schema extension validation
The SML schema extension validation phase will ensure that the documents conform to the schema extensions as specified by the SML specification. This includes the following extensions:

1) sml:acyclic

2) sml:targetElement

3) sml:targetType

4) sml:key

5) sml:unique

6) sml:keyref

In addition to validating the additional constraints that SML adds on top of Schema, this phase will also validate all inter-document references using equivalence of URIs as defined by RFC 3986.

Proposal

Use Java 1.5 Validation API to validate the SML extensions.
https://jaxp.dev.java.net/article/jaxp-1_3-article.html
JAXP 1.3 introduces a new Schema independent Validation Framework (called the Validation API).
JAXP 1.3 Validation API decouples the validation of an instance document as a process independent of parsing. This new approach has several advantages. Applications relying heavily on XML Schema can greatly improve the performance of schema validation. The performance gain largely depends on the ratio (Size of XML Schema / Size of XML document), larger ratios lead to greater performance gains.

The document listed above describes in details how to use the new frameworks and what can be done using the specified framework.

Note: We should reuse and extend or provide a common user interaction scenario with any other open source projects providing the same type of functionality. To be investigated what other projects are providing XML or schema validation and work together to provide a scenario which will make the Cosmos and these projects interact and complement each other.
WTP has been identified as one of the projects offering xml schema and instance validation. The action is available for any document with the extension XML and XSD (right click and select Run Validate or Validation XML File action).
A good usability scenario would require extending these actions with SML extra validation and not providing new validate actions on an xml or xsd resource. Since this may require working with the WTP team to define a common scenario and the set of extensions required to hook in SML validation, this may not be a viable delivery for the first release of Cosmos. This should not stop us from starting the collaboration with WTP (and any other projects) with the goal of identifying required API and extension points for making this happen.
JAXP 1.3 sample implementation
Define an SML schema which will be reused for different instance validation. Use this schema to validate an instance sml.

private static final String smlSchemaValidationFactory="org.eclipse.cosmos.sml.validation.SMLSchemaFactoryImpl";

private static final String smlLanguage="org.eclipse.cosmos.smlLanguage";

private static final String smlValidationSystemProperty="javax.xml.validation.SchemaFactory:"+smlLanguage;

try {

//<SCHEMA LANGUAGE> could be W3C XML Schema, Relax NG etc.

SchemaFactory sf = SchemaFactory.newInstance(smlLanguage);

sf.setErrorHandler(new SMLSchemaErrorHandler());

//set the resource resolver to customize resource resolution

sf.setResourceResolver(new SMLSchemaResourceResolver());

 //load a WXS schema, represented by a Schema instance

Schema schema = sf.newSchema(new StreamSource(new File(smlSchema)));

}

catch(SAXException exc)

{

exc.printStackTrace(); }

//Create a Validator which can be used to validate instance document against this schema(s)

Validator validator = schema.newValidator();

validator.setErrorHandler(new SMLSchemaErrorHandler());

//Validate this instance document against the Instance document supplied

validator.validate(new StreamSource(new File(smlInstance)));

//parse an xml using this schema

SAXParserFactory spf = SAXParserFactory.newInstance();

//Just set the Schema instance on SAXParserFactory

spf.setSchema(schema);

//Obtain the SAXParser instance

SAXParser saxParser = spf.newSAXParser();

//parser will parse the XML document but validate it using Schema instance

 saxParser.parse(new File(smlInstance), new SMLInstanceHandler());

Schematron validation

Proposal

Use XSLT transforms to validate schematron rules.

http://www.ldodds.com/papers/schematron_xsltuk.html
Schematron instances can be transformed through a stylesheet (skeleton-1.5.xsl), produces XSLT validators similar to the above. The following diagram summarizes this process.

[image: image1.png]——Generating a Validating Stylesheet———

schema xslt

schematron xst,
(tneta-styleshest)

walidator sl

document sl

validator x5t [—w

Validation Report

Validating a Document-

Schematron validation using XSLT transform
This section describes how to do schematron validation using XSLT transform.
//pass a schematron file and generates an xslt result file

//The result xslt file will be used to validate an xml file against the schematron file

tranform(schematron, skeleton, schematronXSLT);

 //validate the xml instance against the schematron file by appliyng the xslt result to the xml file

tranform(xmlInstance, schematronXSLT, result);

private static void tranform(String input, String xsl, String output) {

try {

 TransformerFactory m_tfactory = TransformerFactory.newInstance();

 Transformer transformer = m_tfactory.newTransformer(new StreamSource(xsl));

 transformer.transform(new StreamSource(input), new StreamResult(output));

}

catch(Exception exc)

{

exc.printStackTrace();

}

}

