
Agile Model Editing in EMF using 
Executable Metamodel Annotations

Dimitrios Kolovos, Richard Paige, and Fiona Polack

{dkolovos, paige, fiona}@cs.york.ac.uk

Department of Computer Science
The University of York



1st TOWERS Workshop, TOOLS 2007, Zurich

2

Introduction

z Domain Specific Languages (DSL)
– DSLs are increasingly used in MDD
– The abstract syntax of the DSL is the first and most 

important artefact
z Based on it, concrete syntaxes and model management 

operations are defined

z Eclipse Modeling Framework (EMF)
– EMF is the most widely-used open source modelling 

framework
– In EMF, the abstract syntax of a DSL is defined using 

ECore (a variant of MOF 2.0)



1st TOWERS Workshop, TOOLS 2007, Zurich

3
The Need for an Agile Model Editing Approach

z Providing prototype model editing tool-support 
early in the process enables the engineers to 
locate problems in the abstract syntax by 
experimentation

z In research activities, DSLs are only prototypes
and thus, not much effort must be spent to 
provide editing tool-support

z Model engineers typically work with a number of 
DSLs and they cannot spend too much effort in 
implementing and maintaining a separate editor
for each DSL



1st TOWERS Workshop, TOOLS 2007, Zurich

4

Research Question

z Is there a technique that requires little 
customization and maintenance effort but still 
delivers usable prototype editors?
– to make prototyping DSLs easier
– to facilitate the establishment of Towers of DSLs (is 

that “a good thing”? ☺)



1st TOWERS Workshop, TOOLS 2007, Zurich

5

Model Editing in the EMF world

z Text-based Editors
– E.g. using XText, TCS

z Diagrammatical Editors
– E.g. using GMF, Topcased

z Tree-based Editors
– Generated tree-based editors
– Built-in reflective editor



1st TOWERS Workshop, TOOLS 2007, Zurich

6

Text-based Editors

z Tools like XText and TCS can be used to specify 
textual syntaxes for DSLs

z Pros
– Users can edit models in a compact textual syntax
– Such tools also support model-to-text serialization

z Cons
– Tools of this kind require significant expertise with 

EBNF-like notations
– Identifying and correcting errors in grammars is often 

challenging
– Involves generating and maintaining additional 

artefacts (e.g. parsers)



1st TOWERS Workshop, TOOLS 2007, Zurich

7

Diagrammatical Editors

z Tools like GMF and Topcased enable engineers to 
define visual syntaxes for DSLs

z Pros
– Enable engineers to edit models using visual tools
– Enable non-technical stakeholders to provide feedback 

early in the process

z Cons
– To achieve generality such tools are particularly 

complex and require significant expertise
– Requires generation and maintenance of additional 

artifacts (i.e. plug-ins)



1st TOWERS Workshop, TOOLS 2007, Zurich

8

Generated Tree-based Editors

z EMF provides built-in tools for generating a basic 
tree-based editor and then customizing its 
appearance using Java

z Pros
– Java can be used to customize many aspects of the 

generated editor

z Cons
– Requires generation and maintenance of additional 

artefacts (I.e. plugins)
– To customize, engineers must be familiar with the 

(non-trivial) underlying EMF.Edit framework



1st TOWERS Workshop, TOOLS 2007, Zurich

9

Reflective Tree-based Editor

z EMF provides a built-in reflective editor that can 
be used to edit models of arbitrary DSLs

z Pros
– Does not require generating or maintaining additional 

artefacts

z Cons
– Model elements are represented on the editing tree 

using very simple labels and practically 
indistinguishable icons

– No customization is possible



1st TOWERS Workshop, TOOLS 2007, Zurich

10

The Reflective Editor in Action



1st TOWERS Workshop, TOOLS 2007, Zurich

11

Comparison of Editing Approaches

z Text-based and diagrammatical editors require 
significant effort and expertise to implement

z Except for the reflective approach, all others 
require generation and maintenance of additional 
artefacts

z The reflective editor is the most agile one (but it 
cannot be customized and is not really usable as-
is)



1st TOWERS Workshop, TOOLS 2007, Zurich

12

An Agile and Usable Editing Approach

z Our aim is to provide a means of customizing the 
appearance of the reflective editor without 
needing to generate and maintain additional 
artefacts

z We achieved this by enriching the abstract syntax 
of the DSL with presentation-specific executable 
annotations

z We have implemented a prototype that realizes 
this approach: the EXtended Emf EDitor (Exeed)



1st TOWERS Workshop, TOOLS 2007, Zurich

13

A Motivating Example

z We have designed a 
prototype DSL for 
specifying simple 
Object Oriented 
designs



1st TOWERS Workshop, TOOLS 2007, Zurich

14

Editing OO Models with the Reflective Editor

z This is the 
appearance of an 
OO model in the 
reflective editor



1st TOWERS Workshop, TOOLS 2007, Zurich

15

Preview of the Result

z In the end of this 
example, the 
appearance of the 
same OO model will 
be like that:



1st TOWERS Workshop, TOOLS 2007, Zurich

16

Presentation-Specific Annotations

z Presentation-specific annotations are added to 
constructs of the ECore metamodel as 
EAnnotationDetails contained in 
EAnnotations named exeed

z There are two types of annotations
– Static strings
– Executable blocks of EOL statements

z EOL is an OCL-based imperative language, part of 
the Epsilon GMT project



1st TOWERS Workshop, TOOLS 2007, Zurich

17

EClass Annotations (1/2)

z label
– A block of EOL statements that calculates a label for 

each instance of the EClass on the editing tree

z referenceLabel
– A block of EOL statements that calculates a label for 

each instance of the EClass when referenced by 
another object (e.g. in the properties view)



1st TOWERS Workshop, TOOLS 2007, Zurich

18

EClass Annotations (2/2)

z icon
– A block of EOL statements that calculates an icon for 

each instance of the Eclass

z classIcon
– A string that specifies the icon that represents the 

EClass (in context menus or where an icon annotation 
is not provided)



1st TOWERS Workshop, TOOLS 2007, Zurich

19

EStructuralFeature Annotations

z featureLabel
– A string that specifies a human-understandable label 

for the feature (in context menus, property view etc)

z multiline
– A true/false value that specifies if the value of the 

EAttribute must be edited in a single-line or a multi-
line mode (applies to EAttributes)



1st TOWERS Workshop, TOOLS 2007, Zurich

20

A Label Annotation Example



1st TOWERS Workshop, TOOLS 2007, Zurich

21

An Icon Annotation Example



1st TOWERS Workshop, TOOLS 2007, Zurich

22

A ReferenceLabel Annotation Example



1st TOWERS Workshop, TOOLS 2007, Zurich

23

The Result



1st TOWERS Workshop, TOOLS 2007, Zurich

24

Conclusions

z Executable metamodel annotations can be used 
to add presentation-specific information to the 
abstract syntax of a DSL

z The approach is particularly agile as it does not 
require generation and maintenance of language-
specific editors

z We consider our approach to be particularly 
helpful in the initial stages of DSL development 
and in cases of prototype languages constructed 
for research purposes



1st TOWERS Workshop, TOOLS 2007, Zurich

25

Further Work

z We are using this approach for providing editors 
for DSLs we define for our research and have 
already identified new annotations that can 
further customize the appearance of the editor

z When support for dynamic EMF is provided in 
GMF*, we shall attempt to apply a similar 
approach in order to support definition of simple 
diagrammatical syntaxes

* https://bugs.eclipse.org/bugs/show_bug.cgi?id=150177



1st TOWERS Workshop, TOOLS 2007, Zurich

26

Acknowledgements

This work was supported by the 
ModelPlex EU IST project

www.modelplex-ist.org



1st TOWERS Workshop, TOOLS 2007, Zurich

27

Resources

z Epsilon (including Exeed) can be obtained at:
– http://www.eclipse.org/gmt/epsilon/download.php

z The OO DSL example can be downloaded at:
– http://www.eclipse.org/gmt/epsilon/doc/examples.p

hp


