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Introduction

z Domain Specific Languages (DSL)
– DSLs are increasingly used in MDD
– The abstract syntax of the DSL is the first and most 

important artefact
z Based on it, concrete syntaxes and model management 

operations are defined

z Eclipse Modeling Framework (EMF)
– EMF is the most widely-used open source modelling 

framework
– In EMF, the abstract syntax of a DSL is defined using 

ECore (a variant of MOF 2.0)
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The Need for an Agile Model Editing Approach

z Providing prototype model editing tool-support 
early in the process enables the engineers to 
locate problems in the abstract syntax by 
experimentation

z In research activities, DSLs are only prototypes
and thus, not much effort must be spent to 
provide editing tool-support

z Model engineers typically work with a number of 
DSLs and they cannot spend too much effort in 
implementing and maintaining a separate editor
for each DSL
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Research Question

z Is there a technique that requires little 
customization and maintenance effort but still 
delivers usable prototype editors?
– to make prototyping DSLs easier
– to facilitate the establishment of Towers of DSLs (is 

that “a good thing”? ☺)
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Model Editing in the EMF world

z Text-based Editors
– E.g. using XText, TCS

z Diagrammatical Editors
– E.g. using GMF, Topcased

z Tree-based Editors
– Generated tree-based editors
– Built-in reflective editor
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Text-based Editors

z Tools like XText and TCS can be used to specify 
textual syntaxes for DSLs

z Pros
– Users can edit models in a compact textual syntax
– Such tools also support model-to-text serialization

z Cons
– Tools of this kind require significant expertise with 

EBNF-like notations
– Identifying and correcting errors in grammars is often 

challenging
– Involves generating and maintaining additional 

artefacts (e.g. parsers)
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Diagrammatical Editors

z Tools like GMF and Topcased enable engineers to 
define visual syntaxes for DSLs

z Pros
– Enable engineers to edit models using visual tools
– Enable non-technical stakeholders to provide feedback 

early in the process

z Cons
– To achieve generality such tools are particularly 

complex and require significant expertise
– Requires generation and maintenance of additional 

artifacts (i.e. plug-ins)
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Generated Tree-based Editors

z EMF provides built-in tools for generating a basic 
tree-based editor and then customizing its 
appearance using Java

z Pros
– Java can be used to customize many aspects of the 

generated editor

z Cons
– Requires generation and maintenance of additional 

artefacts (I.e. plugins)
– To customize, engineers must be familiar with the 

(non-trivial) underlying EMF.Edit framework
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Reflective Tree-based Editor

z EMF provides a built-in reflective editor that can 
be used to edit models of arbitrary DSLs

z Pros
– Does not require generating or maintaining additional 

artefacts

z Cons
– Model elements are represented on the editing tree 

using very simple labels and practically 
indistinguishable icons

– No customization is possible
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The Reflective Editor in Action
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Comparison of Editing Approaches

z Text-based and diagrammatical editors require 
significant effort and expertise to implement

z Except for the reflective approach, all others 
require generation and maintenance of additional 
artefacts

z The reflective editor is the most agile one (but it 
cannot be customized and is not really usable as-
is)
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An Agile and Usable Editing Approach

z Our aim is to provide a means of customizing the 
appearance of the reflective editor without 
needing to generate and maintain additional 
artefacts

z We achieved this by enriching the abstract syntax 
of the DSL with presentation-specific executable 
annotations

z We have implemented a prototype that realizes 
this approach: the EXtended Emf EDitor (Exeed)
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A Motivating Example

z We have designed a 
prototype DSL for 
specifying simple 
Object Oriented 
designs



1st TOWERS Workshop, TOOLS 2007, Zurich

14

Editing OO Models with the Reflective Editor

z This is the 
appearance of an 
OO model in the 
reflective editor
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Preview of the Result

z In the end of this 
example, the 
appearance of the 
same OO model will 
be like that:
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Presentation-Specific Annotations

z Presentation-specific annotations are added to 
constructs of the ECore metamodel as 
EAnnotationDetails contained in 
EAnnotations named exeed

z There are two types of annotations
– Static strings
– Executable blocks of EOL statements

z EOL is an OCL-based imperative language, part of 
the Epsilon GMT project
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EClass Annotations (1/2)

z label
– A block of EOL statements that calculates a label for 

each instance of the EClass on the editing tree

z referenceLabel
– A block of EOL statements that calculates a label for 

each instance of the EClass when referenced by 
another object (e.g. in the properties view)
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EClass Annotations (2/2)

z icon
– A block of EOL statements that calculates an icon for 

each instance of the Eclass

z classIcon
– A string that specifies the icon that represents the 

EClass (in context menus or where an icon annotation 
is not provided)
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EStructuralFeature Annotations

z featureLabel
– A string that specifies a human-understandable label 

for the feature (in context menus, property view etc)

z multiline
– A true/false value that specifies if the value of the 

EAttribute must be edited in a single-line or a multi-
line mode (applies to EAttributes)
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A Label Annotation Example
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An Icon Annotation Example
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A ReferenceLabel Annotation Example
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The Result
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Conclusions

z Executable metamodel annotations can be used 
to add presentation-specific information to the 
abstract syntax of a DSL

z The approach is particularly agile as it does not 
require generation and maintenance of language-
specific editors

z We consider our approach to be particularly 
helpful in the initial stages of DSL development 
and in cases of prototype languages constructed 
for research purposes
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Further Work

z We are using this approach for providing editors 
for DSLs we define for our research and have 
already identified new annotations that can 
further customize the appearance of the editor

z When support for dynamic EMF is provided in 
GMF*, we shall attempt to apply a similar 
approach in order to support definition of simple 
diagrammatical syntaxes

* https://bugs.eclipse.org/bugs/show_bug.cgi?id=150177
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Resources

z Epsilon (including Exeed) can be obtained at:
– http://www.eclipse.org/gmt/epsilon/download.php

z The OO DSL example can be downloaded at:
– http://www.eclipse.org/gmt/epsilon/doc/examples.p

hp


