Automating the embedding of Domain Specific Languages in Eclipse JDT

Thisarticle is known to apply to the following Eclipse projects:

. Eclipse Platform, release 3.3
. Eclipse Modeling Framework, release 2.3

Help us keep thisinformation up-to-date: let us know if thisinformation applies to other projects or releages.

To comment on this article, ask questions, or propose corrections, please see bug 234003.

Automating the embedding of Domain Specific Languages in Eclipse JDT

Summary

The Eclipse Java Development Tools (JDT) excels at supporting the editing and navigation of Java code, setting the bar for newer I DEs, including those for Domain Specific
Languages (DSLs). Although IDE generation keeps making progress, entry barriers remain high, thus forcing many developersto rely on traditional ways to encapsulate new
language abstractions: frameworks and XML dialects. We explore an aternative path, Internal DSLs, by automating the generation of the required APIs from Ecore models
describing the abstract syntax of the DSLs in question. To evaluate the approach, we present a case study (statecharts) and discuss the pros and cons with respect to other
approaches.

Most embedded DSLs, while offering a user-friendly syntax, are fragile in the sense that their expressions may not comply with the full static semantics of the DSL in question.
Productivity studies recommend that errors should be reported while the frame of mind is still focused in the error location. To address thisissue, we leverage the extension
capability of Eclipse to detect at compile-time malformed DSL s expressions. The technique relies on mainstream components only: EMF, OCL, and JDT. We conclude by
previewing ongoing work aimed at improving the support for embedded DSL s by performing language processing as a background task. The prototype described in this article
(DSL2JDT) has been contributed to EMFT and is available from CV S as described in the Source Code section below.

By Miguel Garcia,

TUHH (Technische Universitdt Hambur g-Harbur g, Ger many)
Copyright © 2008 Miguel Garcia

May 25th, 2008

Table of Contents

1. Introduction

o Theinternal DSL approach
o Instructions for the impatient: how to use DSL2J DT in 10 seconds
o Examples of existing internal DSLs

. Statecharts example

. Checking DSL well-formedness during editing

. Sidenote: from EBNF grammar to Ecore model and back again
. Processing DSL statements beyond well-formedness checking

o Setting the stage: useful APIsfor the task at hand
o In-place trandlation
o Statement-level annotations
o DSL-specific views
6. Implementation of in-place translation
7. Related Work
o DSL Embedding in Scala and Ruby
o Static analysis of XML artifacts
o Inspection and manipulation of Java ASTs
n Competing approach: IDE generation

a b wN

8. Conclusion

9. Acknowledgements
10. Source Code

Introduction

Nowadays, the development of software systems usually involves more than one language: SQL, BPEL, and JSP are popular examples, but the list can also be extended to
include notations focused on certain aspects of system functionality (business rules, access control, databinding between GUI forms and underlying model objects, etc.)

Providing integrated IDEs for (combinations of) such Domain-Specific Languages (DSLs) has proven hard. A Java IDE aware of SQL would for example flag those
embedded SQL statements that become invalid after refactoring the database schema. Supporting such scenariosis easier if both host and embedded languages are designed
with cooperation in mind, as is the case with Microsoft's LINQ (Language INtegrated Query). Experience has also shown that any complex-enough DSL is doomed to re-
invent constructs that are taken for granted in general-purpose languages (think of control-flow constructsin Oracle PL/SQL, in XSL, and in QV T-Operational), thus
strengthening the case for integrated tool support.

The conventional wisdom around DSL tooling is that one may either:

1. provide minimal compile-time checking of DSLs. Thisisthe path followed by XML practice, with errors being discovered at runtime when document instances are
interpreted,
or
2. invest effort in developing dedicated plugins for editing DSLs with custom syntax (be it textual or diagram-based), checking at compile time the Abstract-Syntax-Trees
(AST9) for al involved software artifacts (thus covering the refactoring scenario mentioned above).
The economics of the two alternatives are clear: the "dedicated IDE" approach is technically better but also justifiable only for DSLs with alarge user base. Actually, most of the tooling cost
for aDSL comes from supporting its concrete syntax. Most of the benefits of a DSL however result from the analyses and transformations performed on its abstract syntax. Given that this
"back-end infrastructure” is common to all DSL implementation alternatives we take it as starting point for our generator of internal DSL APIs. Besides allowing for early feedback on the DSL
being engineered, the resulting risk minimization is useful in another way: if the DSL proves successful enough to warrant development of a dedicated I DE, no development effort is thrown
away. With DSL2J DT the Internal DS code can still be used in such IDE, as it depends only on the abstract syntax of the DSL, which is independent from its concrete syntax.

The internal DSL approach

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (1 of 13)27.05.2008 19:29:15

http://www.eclipse.org/projects/project_summary.php?projectid=eclipse.platform
http://www.eclipse.org/modeling/emf/
http://bugs.eclipse.org/234003
http://www.sts.tu-harburg.de/~mi.garcia/
http://martinfowler.com/dslwip/InternalOverview.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

One of the techniques covered by Martin Fowler in the online draft of his upcoming book on DSLsis Internal DSLs, which allow embedding DSL expressions in Java code. For example, the
jMock testing framework alows writing code like:

mai nf rane. expects(once()). method("finish").after("start");

(reproduced from the paper Evolving an Embedded Domain-Specific Language in Java)

In effect, the Content Assist feature of the JIDT and the type system of Java 5 are leveraged to enforce some of the well-formedness rules of the embedded DSL (jMock) when
expressing ASTsfor it in the host language (Java 5). Additionally, method chaining facilitates editing when used in conjunction with so called progressive interfaces:
whenever the DSL grammar calls for amandatory construct, the preceding method in the chain returns an interface with a single method declared in it (standing for the
successor in lexical order in the underlying DSL grammar) so that the IDE offers a single choice. Using again the terminology described in more detail by Fowler, the
resulting APl isa Fluent Interface. Together with an Expression Builder they form the building blocks of an internal DSL API.

In terms of the familiar EMF Library example, the automatically generated Fluent Interface allows typing code snippets like the one depicted below. The example also shows
that the technique is applicable to any Ecore model, although in the rest of this article we focus on language metamodels only.

1 package shorthand.test;
2
F=import library.Book:
4 dmport library.LibraryExprBuilder;
5
=<ghumeration== 5 public class TestLibrary {
- BookCategory 7
Library oMystery 3 public static void main(String[] args) {
gnarne : String $ScienceFiction 9 Eook bil:
$Biography 10 Eook h&:

11 L.librarv()

iz .hame ["myLibrary'™)

13 .hooks(bl = L.book().tokST(),

3 0.* ™ thooks 14 b2 = L.book(),}:
+utiters o/ O Book 15 ¥ © toAST() ; Book - BookBeingBuilt
Writer ; 18 @ author{Writer arg) : BookBeingBuilt - EookEeingBuilt
gname - Sting +author +books g:::g:éss:t?:tg 17 private static class L extends g categoryBiography() : BookBeingBult - EookBeinoBuit
1 0.* | gcategory : BookCategory 18 ¥ @ categoryMystery() | BookBeingBuilk - BookBeingEul

15 @ categoryScienceFiction() : BookBeingBuilk - EoolEeingBuilk

z0 @ pages(int arg) : BookBeingBuilt - EookEeingBuilk

21 @ title{string arg) @ BookBeingBuilt - EockEBeingBuilt

Press 'Ctl+Space’ to show Ternplate Proposals

Figure 1:Fluent Interface for a (non-DSL) Ecore model: the Library example

Fluent interfaces, by themselves, do not capture all relevant well-formedness rules (WFRs) of any but the simplest DSLs. For example, most imperative languages demand
that: (a) "each variable usage must appear in scope of its single previous declaration”, and (b) "duplicate names are to be avoided in the same namespace”. As for modeling
languages, two representative WFRs can be drawn from UML: (c) in class diagrams, cyclic inheritance is not allowed, and (d) in statecharts, a composite state consists of one
or more regions, al of whose states must be uniquely named.

Our approach towards DSL embedding allows evaluating at compile-time such constraints, provided they can be discovered by the EMF Validation Framework using
reflection. Christian W. Damus covers in the article Implementing Model Integrity in EMF with MDT OCL how to annotate an . ecor e model with constraints. For
simplicity, OCL may be left out initially and the validation methods completed manually. Examples are given later showcasing both alternatives for the statechart DSL.

The combination of Fluent Interface and build-time well-formedness checking surpasses the "DSL in XML" approach in terms of usability and safety, moreover relying on
mainstream technologies: Eclipse Ecore, Eclipse OCL, and Eclipse JDT. Additional techniques (in-place translation, statement-level annotations, and DSL-specific views)
may be optionally adopted to further increase the usability of embedded DSLs. We report about our progress so far around them in Sec. Processing DL statements. But first,
more examples of existing internal DSLs are given.

Instructions for the impatient: how to use DSL2JDT in 10 seconds
If you just can't wait to start using DSL2J DT, follow these steps:

. checkout the two plugin projects that make up DSL2J DT from CV'S as explained in the Source Code section

. start a second Eclipse instance, launching it with the two plugins above enabled

. create a plugin project, create your . ecor e metamodel in it and generate its corresponding . gennodel .

. Openthe. gennodel filewith itseditor (you may want to set the Base Package property of the root package) and generate Model code (at the very least,
moreif you like).

. right-click on . gennodel , choose "Generate Embedded DSL".

. atext file named <r oot PackageNanme>Expr Bui | der . j ava iscreated in the same folder wherethe . gennodel islocated. Move this Javafile to the
root Java package generated from the. gennodel .

A WOWDN P

o Ol

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (2 of 13)27.05.2008 19:29:15

http://martinfowler.com/dslwip/InternalOverview.html
http://www.mockobjects.com/files/evolving_an_edsl.ooplsa2006.pdf
http://martinfowler.com/dslwip/MethodChaining.html
http://martinfowler.com/dslwip/InternalOverview.html#FluentAndPush-buttonApis
http://martinfowler.com/dslwip/ExpressionBuilder.html
http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

[% Package Explarer 53 Tg Hierarchﬂ Ju JLIn\q = <.===;> ¥ =0 Mew b [Z pack 22 E Hier | Ju Juni | = g /tg Pack £ . Tg Higr | Juuni | =

2 elembehido Open F3 & < SR
] ! -
S5 Emgmln\statechart Open With b f_pd elembebido f_pd elembebido
D'"ﬁ stC Show In Alb+Shift+i » Ef_;" omgministatechatt E-12 omgministatechart
[+-E, IRE Systern Library [125E-1.5] -5 src =
. i i =| Ci Chl+C F :
#l-B} Plug-in Dependencies = -op¥ ! BB IRE System Library [125-1 5] =8
[F-[= META-INF 5= Copy Qualified Mame (-2, Plug-in Dependencies
B @:30‘13' 2 Paste Chrl+y (2 META-INF [J] MinisCFactory.java
A sc.ecore 3 Delete Delete =8 5] MinisCPackage.java
[IH scem wprBuilder. java [1] Pseudastate java
A Biild Path b [J] Pseudastatekind.java
-5 seoodl Refactar Alt+Shife+T # [7] Region.java
(= templates N sc.genmodel [1] State.java
-2 text g Import... n
B " _ e ; =] sc.od m StateMachine. java
bILII|d.pr0pBrtleS] EXPOTE. ([templates [3] Transition. java
plugin. properties e
& (= text m Transitionkind. java
.@‘ plugin.xml i Refresh FS

@ build. properties m Vertex.java

Assign Wworking Sets...

- [E] plugin. properties - E minisCimpl
mbedded DSL .E(plugin. xml -8 minisC il
Reload. ..) - omaministatechart
Export Model. . -8 shorthand
Run As 3
Debug As »
Team »
Campare With »
Replace with 3

§§V Create Watch Expression

Properties Alt+Enter

If you followed steps 1-6 above, you'll have a project similar to what ongni ni st at echart . zi p deliversout of the box!

Examples of existing internal DSLs

Asfar aswe know, the APIs of all existing internal DSL s have been developed manually. The code snippetsin this subsection (from the Guice, Jequel, and KodKod projects)
illustrate some frequent idioms. Basically, repetition of enclosing lexical contexts is avoided, thus reducing syntactic noise.

Listing 1: Guice, alightweight dependency injection framework for Java5 and above, http://code.google.com/p/google-guice/

public class MyMdul e inpl enents Mdul e {
public void configure(Binder binder) {
bi nder . bi nd(Servi ce. cl ass)
.to(Servicel npl.class)
.in(Scopes. SI NGLETQN) ;

Listing 2: Jequel, Embedding SQL in Java, http://www.jequel.de
public class JEQUEL {

interface ArticleBean {
int getArticleNo();
String get Name();
}

public void testParaneterExanpl e() {
final Sql sql = Sel ect (ARTI CLE. NAME, ARTI CLE. ARTI CLE_NO)
. from ARTI CLE)
.where(ARTI CLE. O D. i n(nanmed("article_oid"))).toSql ();

final Collection articleDesc = sql.executeOn(dataSource)
.withParanms("article_oid", Arrays.asList(10, 11, 12))
. mapBeans(new BeanRowMapper () {
public String mapBean(final ArticleBean bean) {
return bean.getArticleNo() + "/" + bean.get Nane();
}
IoF
assert Equal s(1, articleDesc.size());
assert Equal s(" 12345/ Foobar", articleDesc.iterator().next());

Listing 3: Relational calculus expressions for the KodK od relational engine, http://web.mit.edu/emina/wwwi/kodkod.html

public class KodKod {

/**
* Returns a fornula stating that all vertices
* have at |east one color, and that no two adjacent
* vertices have intersecting colors.
* @eturn a fornula stating that all vertices
*

have at |east one color, and that no two adjacent
* vertices have intersecting colors.
*/
public Formula coloring() {
final Variable n = Variable.unary("n");
final Formula fO = n.join(color).intersection(Color).sone();

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingDSL Embeddings/article.html (3 of 13)27.05.2008 19:29:15

file:///C|/Archive/Reports/2008-05/article/200705271718WebContent/WebContent/Article-AutomatingDSLEmbeddings/files/omgministatechart.zip
http://code.google.com/p/google-guice/
http://www.jequel.de/
http://web.mit.edu/emina/www/kodkod.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

final Formula f1 = n.join(color).intersection(n.join(graph).join(color)).no();
return (f0.and(f1)).forAl (n.onex (Node));
}

Statecharts example

Statecharts often serve as examples in discussions on model-driven tooling and this article follows that tradition. Being a graphical formalism, any usability points that their
embedding can score should be welcomed with appreciation: a basic statechart metamodel (Figure 2) devoid of any annotation for concrete syntax is given as sole input to

DSL2JDT (by right-clicking on the . gennodel file and choosing "Generate Embedded DSL"). The screen capture in Figure 3 shows the resulting Expression Builder AP
being used to instantiate the tel ephone statechart from Figure 4.

H stateMachine

2 Transitionkind
= internal

= local

= external

1.* | region
H Redion

subvertex | 0.* “ PseudoStatekind
g vertex region | 0.* transition o = initial
= name = deepHistory
H Transition = shallowHistory
1.1 target = kind = join
= eventlD = fork
= condition = junction
= action = choice
source 1.1 = entryPoint
= exitPoint
= terminate
H PseudaState

H state
= kind

Figure 2:Metamodel for the Mini Statechart DSL

public class C {

public static StateMachine telephoneExample() {
State stateldle = 2.statel) . nane("idle") region().toldSTi);
PseudoState stateToplnitial = 5. pseudoState() nawme("start") . kindInitial () LolAST();
i
* here's where the sub-machine of state Active would be enbedded.
* That's a total of nine states, one pseudostate, and twelve
* transitions. Given that the usage of the expression builder is clear
from the rest of this method, all that iz slided.

#

=
Degion regionfctive = ¥.regiomi).subVertex().transition{).toldSTi];
State statelctive = S.s5tefe().namel"active").region({regionfctive) toldST();
Pseudoftate topTerminate = 5. pseudsStatel) name("terminsce").kindTerminate (). tolkST(};

Transition liftReceiver = 5. transitiom().source(stateldle) target (stateldctive) . eventID("liftReceiver") action("getlialTone")
StohST(); ettex ar

Transition callerHangsUp = S_tramsitiomi) . source (|

Degion toplegion = S.regiom{).subVertex{stateldld

StateMachine telephone = 3. stzteMachinme() . regioni

tatedckive topTerninate) . transitioni) . £olST();

tateToplnitial ¢

@ stateldle
return telephone;

]

private static class £ extends MiniZCExprBuilder {

}

Figure 3:Embedded DSL statements for our Mini Statechart DSL

—~

activeEntry Active

———|

Time-out
do/ play message

dial digit(n)
[incomplete]

|(/_\I
()

after (15 sec.) \

after (15 sec.)

(DialTone) dial digitin) Diaing

(do/ piay dial tone | -/ digil(n}[\nvalid/[/L
7

dial digit(n)[valid]
Invalid = '} fconnect

lift
receiver
/get dial tone

die |= do/ play message Connecting
(Pinned Busy busy connected
callee do/ play busy
callee hangs up tone

caller answers
hangs up —
/disconnect (\ Ringing

\ Talking callee answers dof play ringing

\ fenable speech tone /
abort terminate

W

® aborted

Ay
|/

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (4 of 13)27.05.2008 19:29:15

Automating the embedding of Domain Specific Languages in Eclipse JDT

H (X) avorted é H

Figur e 4: Statechart of a simple telephone
(reproduced as-isfrom OMG UML 2.1.1 Superstructure Specification)

When using a Fluent Interface, Content Assist suggestions contain by default the methods declared inj ava. | ang. Obj ect , which are distracting.
They can be filtered away with the Java > Type Filter s preference page (that will elide them also in the Open Type dialog, quick fix and organize imports, but
will not affect the Package Explorer and Type Hierarchy views).

What does the expression builder API for the statechart DSL ook like? Consider for example class Regi on containing zero o more Ver t ex and zero o more
Transi ti on. At edit time, Content Assist should offer first subVert ex(. . .) ascompletion proposal (only). After accepting that suggestion, the next method in the
chainshouldbet ransi ti on(...) (only). And that'sjust two structural features. Well, the fragment of the expression builder defining such API is reproduced below:

public class M ni SCExprBui |l der {
() /1 start of the nethod chain for class Region

public static RegionBeingBuiltO region() {
return new Regi onBei ngBui | t (m ni SC. M ni SCFact ory. el NSTANCE. cr eat eRegi on());
}

[/|l steps of the method chain
public interface Regi onBeingBuilt0 {

publ i ¢ Regi onBei ngBuilt1 subVertex(mni SC. Vertex... itens);
}
public interface Regi onBeingBuiltl {

public RegionBeingBuilt2 transition(mniSC. Transition... itemns);
}

public interface RegionBeingBuilt2 {
publ i c m ni SC. Regi on t 0AST();
}

= /1 the class holding state between nethod invocations in a chain
public static class RegionBeingBuilt inplenents
Regi onBei ngBui | t 0, Regi onBei ngBui It1, Regi onBeingBuilt2 {
private final mni SC Regi on nyExpr;

Regi onBei ngBui I t (m ni SC. Regi on arg) {
this.nyExpr = arg;

}

publ i ¢ Regi onBei ngBuilt1 subVertex(mni SC. Vertex... itens) {
this. nyExpr. get SubVertex().clear();
thi s. nyExpr. get SubVertex().addAl | (java.util.Arrays.asList(itens));
return this;

}

public Regi onBeingBuilt2 transition(mni SC. Transition... itens) {
this. nyExpr.getTransition().clear();
this.nyExpr.getTransition().addAll(java.util.Arrays.asList(itens));
return this;

}

public mni SC. Regi on toAST() {
return this. nmyExpr;

}
}

11

As can be seen, three parts are generated for each concrete class: [» afactory method that simply wallpapers over afactory invocation. The freshly instantiated ECbj ect is
not directly returned but wrapped first in adecorator (class [E» Regi onBei ngBui | t in this case) which selectively discloses update methods on the wrapped EQbj ect .
Such update methods are grouped into [Z> batches (three in this case, from Regi onBei ngBui | t 0 to Regi onBei ngBui | t 2).

The choices offered by a progressive interface are not as linear as the example above might suggest. DSL2J DT performs the following optimizations:

. optional fields (i.e., EMF structural features having | ower Bound of 0) are packed together in a batch of options, and thus may be omitted.

. dternatives (e.g. due to an EEnum) are similarly offered in a single batch by Content Assist. Antoher idiom consists in having a single update method (taking an enum
literal as argument) in the generated Expression Builder, by specifying a(GenModel or Ecore) annotation with source Gyrmast and key-value pair
("term nal 2met hod", "fal se")

. for boolean fields so called yes/no methods can be specified, by means of a GenModel or Ecore annotation with source Gynmast and two key-value pairs: (" yes",
"met hodNanmeToSet True") and (" no", "nmethodNaneToSet Fal se").

. owned classes having primitivefields only (El nt , ESt r i ng, etc.) are instantiated with a single method invocation, its parameters being assigned to such fields.

. progressive interfaces can be disabled (on aclass or package basis) so that al update methods are offered in a single batch by Content Assist. For disabling, an annotation
with source Gyrmast and key-value pair (" progr essi velnterface ", "fal se") should be specified (thiswasin fact used way back in Figure 1).

Besides relying on JDT Content Assist, another potential venue for speeding up typing of embedded DSL statements are fill-in-the-blanks templ ates, a capability that
DSL2JDT as of now does not exploit (but feel free to extend our source code to generate them from the input . gennodel).

Checking DSL well-formedness during editing

As stated in the introduction, we want to engage the IDE in checking the static semantics of DSL expressions. Two ways are feasible, which we dub The Pragmatic Way and
The Grand Plan Way. We cover the former in this section and leave the latter for Sec. Processing DL statements (that section is much longer). In anutshell, the infrastrucure
required for the second alternative is overkill for well-formedness checking, however it enables other use cases (in-place trandlation, statement-level annotations, and DSL-
specific views).

The pragmatic approach simply leverages existing JUnit support in JDT:

1. Each group of embedded DSL statements (making up a DSL expression) is encapsulated in a dedicated Java method that returns the self-contained AST (obtained with

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (5 of 13)27.05.2008 19:29:15

http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://wiki.eclipse.org/FAQ_How_can_templates_make_me_the_fastest_coder_ever%3F

Automating the embedding of Domain Specific Languages in Eclipse JDT

2. aJUnit test is created for each method above, invoking the default EMF validation on the AST root node. That way, the particular WFRs of al the nodesin the tree will be

3. The following utility function encapsulates the invocation to EMF validation, from JUnit'sasser t Tr ue() . Although not shown here, debugging the unit

t 0AST())

evaluated, without having to enumerate them explicitly (EMF determines all the applicable validators using reflection).

tests with an exception breakpoint of Asserti onEr r or alowsinspecting detailed diagnostic messages for each malformed AST node.

public class MyEcoreltil {
public static bool ean isWel | For ned(EObj ect

Di agnosti ci an di agnostician =
final
bool ean res = di agnosti c. get Severity()
return res;

}

I

}

root) {

new Di agnostician();
Di agnostic diagnostic = diagnostician.validate(root);
Di agnostic. OK;

For example, the static semantics for the telephone example from Figure 4 can be checked with:

public class TestTel ephone extends junit.franmework. Test Case {

public void testTel ephoneExanpl e() {

St at eMachi ne dsl Expr

= C.tel ephoneExanpl e();

assert True(MyEcoreltil.isWel | Formed(dsl Expr));

}

The particular WFRs to evaluate for each DSL construct can be given as Java or OCL. In both cases an annotation with source ht t p: / / www. ecl i pse. or g/ enf/ 2002/
Ecor e should be made on the constrained class, listing the name of the constraint methods (as shown in Figure 6). If no OCL is specified, the generated validator method has
to be completed manually as shown in Figure 5 for constraint noDupl i cat es in classRegi on.

1] Package Explaorer £3 fhf. Plug-insw = <fp ¥ =0 (article. bkl (sc.genmodel (m MinisCWalidator.java &2 @ sC.ecore 1»1 =08
omgrinistatechart d il d
0 s Flaz P
...EEl RIS i:j : :r?lld:cE§ the noI;upl:.c:t,Es constraint of '<emrRegion</em='.
e egln-user—doc —-
"'EE miniSC.impl 145 - eng—user—doc .
Bl minisc,util e .
m MiniSCadapterFactory . java 147 £y
[3] MinisCSwitch.java 145 public boolean walidateRegion nobuplicates(Region region, DiamosticChain
Em MiniSCyalidator., java [NES] £ implement the constraint
E@ MiniSCYalidator 150 Ff —r specify the condition that wiolates the constraint
- 3F DIAGMNOSTIC CODE_COUNT 151 ff —# werify the diagnostic details, including severity, code, and me
L BF DIAGNOSTIC SOURCE 15E Ff Ensure that wou remove @generated or mark it Bgenerated NOT
- 153 if (false) {
g GEMERATED_DIAGNOSTIC _CCODE_COUNT 154 if (diagnostics 1= null) {
W INSTANCE 155 diagnostics. add
o MiniSCyalidator) 155 inew EBasicDiagmostic
< getEPackage() 157 (Diagnostic. ERROR,
- < walidatedint, Object, DiagnosticChain, Map<Object, Object:) 155 DIAGNOSTIC SOURCE,
- @ validatePseudoState(PseudoState, DiagnosticChain, Map<Object, Object=) 153 o,
- @ validatePseudoStatekind{PseudosStatekind, DiagnosticChain, Map <Object, Object =) 160 EcoreP.}ug:‘m. INSTANC_:E' getdtring (" _UI_GenericConstrainm
- @ validateRegion{Region, DiagnosticChain, Map <Object, CObjeck>) i:; } new Object (] { region }hi:
Sl v alidate an_nabuplic Cl 63 return false;
- @ walidatesState(State, DiagnosticChain, Map<Object, Object=) 1654 }
@ validateStateMachine{StateMachine, DiagnosticChain, Map<Object, Object=) 165 return true;
- @ walidateTransition{ Transition, DiagnosticChain, Map <Object, Object =) 2 lce }
- @ validateTransitionkind(Transitionkind, DiagnosticChain, Map <Cbiject, Ohject=) 187
@ validatevertex(Wertex, DiagnosticChain, Map<Object, Object=) 168 L
- 144 # alom harinonzar—dam ——3

Figure 5:Constraint to complete when no OCL boolean expression was specified

Additionally, the Java method body above can be generated from OCL as explained in the article Implementing Model Integrity in EMF with MDT OCL. The constraint "no
duplicate names for states within aregion" can be expressed as:

sel f.subVertex->forAll (sl : Vertex |
sel f.subVertex->forAll (s2 : Vertex |
sl <> s2 inplies sl.name <> s2.nane))

For that, an additional annotation with sourceht t p: / / www. ecl i pse. or g/ ocl / exanpl es/ OCL is made on Regi on, as shown in Figure 6. The code generated in
method val i dat eRegi on_noDupl i cat es will parsethe OCL constraint and evaluate it (not shown).

=] @ platform:/resource/amgministatechart fmodel/sc. ecare
EIB miniSC
- statemachine
[=1-5¢ region : Region
i (:) Region
-1- H Regio

@Ecor e(constrai nts="noDupl i cates")
@http://ww. eclipse. org/ocl/exanpl es/ OCL" (
noDupl i cat es="
sel f.subVertex->forAll (sl : Vertex |
sel f.subVertex->forAll(s2 : Vertex |
sl <> s2 inplies sl.nane <> s2.nane)))

[

skraints -> noDuplicates

&5k oCuplicats elf sub' Verkex ")

. o stateMachine | StateMachine cl ass Region {
=+ state : State ref StateMachi ne#regi on stateMachi ne;
7 subiertex : Yertex ref State#region state;
o transition ; Transition val Vertex[*]#container subVertex;
=8 Vertex val Transition[*]#container transition;
#- B Transition
- H Pseudostate -» Vertex }
- State -> Vertex
#- 2 PseudoStatekind
-2 Transitionkind

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (6 of 13)27.05.2008 19:29:15

http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

Figure 6:A WFR that Regi ons should fulfill,
as seen in the Ecore editor (left) and in the Emfaticeditor (right)

KGN Armed with thistutorial and with the DSL2J DT generator (from the Source Code section), pick your DSL of choice, optionally declare OCL WFRs for
it, and start embedding it in the Eclipse JDT!

The majority of the language metamodels available out there lack OCL-based WFRs (remember the story about the cobbler's children?). Those listed below not only include
WFRs but also discuss them in some length (we would like to hear about your contributions to thislist):

. BPEL 1.1, http://www.cs.kent.ac.uk/pubs/2004/2027/content.pdf
. JPQL 1.0, http://www.sts.tu-harburg.de/~mi.garcia/pubs/atem06/JPQL MM .pdf
. QVT-Relationa [URL TODO]

Aslong as tests are manually coded following the pattern above, all embedded DSL statements will be checked for well-formedness. If the developer overlooks testing some
embedded expression, its well-formedness will be known only at runtime (potentially remaining as a bug waiting for happen). The problem is due to the opaque nature (as far
asthe DT is concerned) of the embedded DSLs: there is no infrastructure so far to explore the Java code being edited, looking for occurrences of DSL embeddings to check,
thus ensuring coverage of WFRs. Achieving such coverage automatically is possible with techniques belonging to The Grand Plan Way, the topic of the remaining sections of
this article. Before delving into absrtact syntax in those sections, we make first some observations on concrete syntax.

Sidenote: from EBNF grammar to Ecore model and back again

We have been assuming all aong that the input to DSL2JDT is the metamodel of a DSL, the metamodel that captures the abstract syntax. After all, at the end of the day we
want to process ASTS, right? Alas, there are exceptions to that: sometimes we need to process Concrete Syntax Trees (CSTSs). Let me explain.

In non greenfield scenariosiit is often the case that an existing EBNF grammar is available, most likely with a dedicated text editor. Such scenarios have prompted the
development of tools to derive an Ecore model from a grammar. The obtained Ecore model can be fed asinput to DSL2JDT (being an Ecore model as any other, DSL2JDT
won't tell the difference between one representing abstract syntax vs. another representing concrete syntax) thus making possible their embedding in Java. Even if an existing
editor is available, embedding may still make sense, for example in the early iterations of porting their AST processing algorithmsto EMF. It has been our experience that
embedding CST's makes sense only when unparsing of the CSTsis needed (for example, to generate the input to alegacy tool, atool not using internally EMF).

Thetoolsin the Textual Modeling Framework allow obtaining an . ecor e model out of an EBNF grammar. Those tools also generate parsing and unparsing operations,
which are inverses of each other (modulo text layout) so that regression tests like the following always pass:

1. parsefilef 1 into EMF-based treeel

2. unparseel intofilef 2

3. parsef 2 intoe2

4. assert org.eclipse.enf.ecore.util.EcoreUtil.equals(el, e2);

Soweget an. ecor e model from EBNF. Isit a"language metamodel"? Not really:

1. when embedded in Java, the CSTs thus built are similar to those prepared by a parser, before the phase where usages are resolved to declarations (i.e. before
their conversion to Abstract Syntax Trees)

2. anInternal DS purely generated from an EBNF grammar will lack any constraints to capture static semantics, so you'll have to write them down (which is
easier done at the AST level rather than at the CST level)

But, isthat a problem? Sometimes it's not. CSTs are ideal for generating structured text (for example, for consumption in a pipes and filters architecture). Besides, the TMF
developers have extended EBNF with constructs to specify usual patterns of usages-to-declarations resolving. So the obtained . ecor e does allow such references. Coming
back to pure EBNF, an example of the the CST vs. AST dichotomy for a non-toy DSL can be seen in the Eclipse OCL plugin, where both OCLCST. ecor e and OCL. ecor e
are available.

To complicate matters further, unparsing can also be done directly from a (well-formed) AST. Given that no layout information is kept there, some pretty-printing mechanism
may be necessary. Model-to-text proponents suggest dedicated languages (http://www.eclipse.org/modeling/m2t/). There are DSLs for pretty-printing too, for example one
being added to Eclipse IMP (the Box language).

If faced with the alternatives ASTs vs. CSTs, the best choice may be both: before unparsing from a CST, such tree is computed by AST processing. For example, the
pseudocode shown left in Figure 7 for a business process can be expanded into the BPEL code shown right. If only the "pseudocode” could be formalized into an embeddable
DSL, then its AST could be trandlated into a CST for unparsing.

Continuing with the example, the DSL part (allowing expressing business processes) need not cover the full spectrum of BPEL (for that, one can directly embed the BPEL
metamodel). Rather, the pseudocode-variant could focus on expressing only best practices, which usually amount to subsetting a language. Taking as example another
choreography language, the use of XOR-gateways in BPMN programs may express arbitrary (control flow) cycles, just like GOTOdoes in 3GL programs. A "pseudocode”
DSL for business proceses could avoid the use of XOR-gateway constructs. The example in Figure 7 and the XOR-gateway observation are reproduced from the diploma
thesis of David Schumm (in German).

With this, we conclude our sidenotes on concrete syntax. The remaining sections focus on the advanced uses cases around embedded ASTs, those beyond compile-time well-
formedness checking with JUnit.

<sequence>
<recei ve partnerLink="custonmer" operation="shippi ngRequest" vari abl e="shi pRequest ">
<correl ati ons>
<correl ation set="shipOrder" initiate="yes" />
</correl ations>
</ receive>
<if>
<condi tion>
bpel : get Vari abl eProperty(' shi pRequest', ' props: shi pConpl ete')
</ condi tion>
<sequence>
<assi gn>
<copy>
<from vari abl e="shi pRequest" property="props: shi pOrderlD" />
<to vari abl e="shi pNoti ce" property="props:shipOderlD" />

</ copy>
shi pOrder := receive(); <copy>
if (shipConplete) then <from vari abl e="shi pRequest" property="props:itensCount" />

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (7 of 13)27.05.2008 19:29:15

http://wiki.eclipse.org/Emfatic
http://www.cs.kent.ac.uk/pubs/2004/2027/content.pdf
http://www.sts.tu-harburg.de/~mi.garcia/pubs/atem06/JPQLMM.pdf
http://wiki.eclipse.org/TMF
http://martinfowler.com/dslwip/InternalOverview.html
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/imp/documents/impFormattingHowto.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-2720/DIP-2720.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-2720/DIP-2720.pdf

Automating the embedding of Domain Specific Languages in Eclipse JDT

shi pNoti ce := shi pRequest; <to vari abl e="shi pNoti ce" property="props:itenmsCount" />
send(shi pNotice); </ copy>
el se </ assi gn>
itensShiped : = 0; <i nvoke partnerLink="customer"
while (itensShiped < itensTotal) oper ati on="shi ppi ngNot i ce" i nput Vari abl e="shi pNoti ce">
do ... <correl ations>

<correl ation set="shi pOrder" pattern="request" />
</correl ati ons>
</i nvoke>
</ sequence>
<el se>
<sequence>
<assi gn>
<copy> <fromr0</fronr
<t 0>$i t ens Shi pped</t o> </ copy>
</ assi gn>
<whi | e>
<condi ti on>
$i t ensShi pped <
bpel : get Vari abl eProperty(' shi pRequest',"' props:itensTotal ')
</ condi ti on>
<sequence> ...

Figure 7:Further evidence on BPEL's verbosity
Processing DSL statements beyond well-formedness checking
Setting the stage: useful APIs for the task at hand

The DT incrementally checks the static semantics of Java during editing. A similar capability for embedded DSL s can be achieved by implementing a compilation
participant:

A new extension point [asof 3.2] (or g. ecl i pse. jdt. core. conpil ationPartici pant) alowspluginsthat are dependent onor g. ecl i pse. j dt. coreto
participate in the Java build process, aswell asin the reconciling of Java editors.

By implementing or g. ecl i pse. j dt. core. conpil er. Conpi | ati onParti ci pant and extending this extension point, one can be notified when a build is starting,
when aclean is starting, or when aworking copy (in a Java editor) is being reconciled. During these notifcations, types can be added, changed or removed, build markers can be
created, or errors can be reported to the Java editor.

Code that participatesin the build should in general be implemented with a separate Builder, rather than a CompilationParticipant. It is only necessary to use a
CompilationParticipant if the build step needs to interact with the Java build, for instance by creating additional Java source files that must themselves in turn be compiled.

[ClassReconci | eCont ext] ... A reconcile participant can get the AST for the reconcile-operation using get AST3() . If the participant modifiesin any way the AST (either
by modifying the source of the working copy, or modifying another entity that would result in different bindings for the AST), it is expected to reset the AST in the context using
reset AST() .

A reconcile participant can also create and return problemsusing put Pr obl ens(St ri ng, Cat egori zedPr obl en{]) . These problems are then reported to the problem
requestor of the reconcile operation.

These excerpts are reproduced from the Javadoc of Conpi | ati onParti ci pant and Reconci | eCont ext .

What to do with the AST of a Java compilation unit once we have it? Samples answering that question can be found in the reports listed in subsection Inspection and
manipulation of Java ASTs, under Related Work.

For the record, there are at least two other approaches (besides compilation participants) for performing Java language processing: (a) annotation processors and (b) an
Eclipse workbench builder. Annotation processors are ruled out as they cannot explore the AST of Java method bodies, and thus cannot access the embedded DSL statements.
A workbench builder can inspect the AST of the Java compilation units being built, and would otherwise be a viable solution were it not for one of the use cases of interest, in-
place translation, where such Java AST is modified, aswill be seen shortly.

Before getting into the discussion of a sample compilation participant, we review first by means of example the additional uses cases around DSL embedding (in-place
trandation, statement-level annotations, and DSL-specific views). We believe that the additional implementation effort can be justified if such functionality is encapsulated
for reuse across DSLs. Although we're not there yet, this section highlights the design decisions involved (you may interpret this as an invitation to contribute to this project).
Unlike the DSL2JDT generator it is still in a prototype phase, and has not been checked into CVS.

In-place translation

GUI programming using APIs like Swing or JFace can get quite verbose, a situation that has sparked a number of GUI description languages (mostly in the form of XML
dialects, usualy for interpretation at runtime) such as XUL, AIUML, and XForms, with alonger list at http://en.wikipedia.org/wiki/

List of user interface markup languages. In terms of Eclipse RCP, the closest examples known to this author are Glimmer (which is Ruby-based and embedded) and
StUIML.

Such languages are a prime candidate not only for embedding, but also for in-place trandation: we want aJDT extension to expand (say) embedded XUL snippetsinto their
verbose Swing (or JFace or ...) formulation. That way, Java code appearing afterwards may refer to the GUI widgets implicit in the GUI description snippet (for example, to
wire event handlers to the widgets, as many GUI description languages only specify the structural and layout aspects of a user interface).

Theideais so compelling that others have already implemented it, which allows us to quote an example from their work and see what adaptations are necessary in the context
of DSL2JDT. The example we've chosen comes from the JavaSwul DSL, and is itself based on a Sun tutorial example on setting up menus using Swing. The resulting GUI
widgets are shown left in Figure 8, with the JavaSwul snippet for them shown just below. Most of the real estate in Figure 8 however is taken up by an excerpt of the
expanded Swing code without event handlers, which is shown on the rightmost column.

The original JavaSwul involves extending the Java grammar and writing so called assimilators to desugar JavaSwul snippetsinto Java ASTs. The resulting embedded syntax
looks better (once you've managed to get it right without Content Assist ;-) and has more degrees of freedom than DSL2J DT's bag of tricks (method chaining, static imports,
variable length argument lists). In contrast, the approach to embedding favored by DSL2JDT does not require up-front knowledge of the productions of the Java grammar.
Moreover, one could in principle use a compilation assistant to behave as an assimilator (i.e., weave information gathered from the surrounding Java AST nodes and the
embedded snippets into the output).

The prototype we're building for a GUI description language avoids however the weaving scenario. So far, we've found that self-contained embeddings include all the input

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (8 of 13)27.05.2008 19:29:15

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/compiler/CompilationParticipant.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/compiler/ReconcileContext.html
https://www.mozilla.org/projects/xul/
http://www.alphaworks.ibm.com/tech/auiml
http://www.w3.org/MarkUp/Forms/
http://en.wikipedia.org/wiki/List_of_user_interface_markup_languages
http://en.wikipedia.org/wiki/List_of_user_interface_markup_languages
http://www.eclipse.org/proposals/glimmer/Glimmer%20Project%20Creation%20Review.pdf
http://www.eclipsecon.org/2008/?page=sub/&id=56
http://www.program-transformation.org/Stratego/JavaSwulExamples
http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

required for our target use cases, because of a simple reason: whenever we've stumbled upon missing input necessary for expansion, we have updated our DSL metamodel to
account for it.

/1vhere the GUl is created:
JMenuBar nenuBar;
JMenu menu, submenu;

MenuLookDemo

A Menu | Another Menu JMenul t em menul tem
JRadi oBut t onMenul t em r bMenul t emy
Atext-only menu item Alt-1 JCheckBoxMenul t em cbMenul t em
m Both text and icon /lCreate the menu bar.

menuBar = new JMenuBar () ;

o

/1Build the first nmenu.

® Aradio button menu item menu = new JMenu("A Nenu");
nmenu. set Mhenoni c(KeyEvent . VK_A) ;
O Angther one menu. get Accessi bl eCont ext ()
) . set Accessi bl eDescription("“The only menu in this programthat has nenu itens");
O Acheck boxmenu itermn menuBar . add(menu) ; P (Y prog)
[0 Anotherone

/la group of JMenultens

A submenu B Anitem in the submenu A2 nmenultem = new JMenulten("A text-only nmenu itenf, KeyEvent.VK T);
— nenul t em set Accel er at or (KeySt r oke. get KeySt roke(KeyEvent. VK 1, ActionEvent.ALT_MASK));
Anaother item menul t em get Accessi bl eCont ext ()

. set Accessi bl eDescription("This doesn't really do anything");
menu. add(menul tem ;

nmenul tem = new JMenul ten("Both text and icon", new | magel con("images/mddle.gif"));
menul t em set Mhenoni c(KeyEvent . VK_B) ;
nenu. add(menul ten ;

menu item { menul tem = new JMenul ten(new | magel con("i mages/ middl e.gif"))
— : " u = new u w i . gi H
F ext = BOI ht eXF and i FZOI'] menul t em set Mhenoni c(KeyEvent . VK_D) ;
icon = "inmages/mddle.gif" menu. add(menul ten) ;
menonic = b /la group of radio button menu itens
menu. addSeparat or () ;

H Butt onGroup group = new ButtonG oup();
"E.n” It en’lt{ . - rbMenul tem = new JRadi oBut t onMenul ten("A radi o button nenu itent);
icon = "images/ mddle.gif rbMenul tem set Sel ected(true);
menonic = d rbMenul t em set Mhenoni c(KeyEvent . VK_R) ;
group. add(rbMenul ten);
} nmenu. add(rbMenul ten) ;

menu separ at or

nmenu radi obutton { rbMenul tem = new JRadi oBut t onMenul t en(" Anot her one");

rbMenul t em set Menoni c(KeyEvent. VK _O);

text = "A radio button nenu itent group. add(rbMenul tem;

group = a nmenu. add(rbMenul ten) ;

selected = true /la group of check box menu itens

menmonic =r nenu. addSepar at or () ;

cbMenul tem = new JCheckBoxMenul ten{"A check box nenu itent);

} cbMenul t em set Menoni c(KeyEvent. VK_C);
menu radi obutton { menu. add(cbMenul tem ;

text :_ Anot her one cbMenul tem = new JCheckBoxMenul t en(" Anot her one");

menonic = 0 cbMenul t em set Menmoni c(KeyEvent . VK_H) ;

group = a menu. add(cbMenul ten) ;
} /1 a subnenu

nenu. addSepar ator () ;
submenu = new JMenu("A subnenu”);
subnenu. set Menoni c(KeyEvent . VK_S);

nmenul tem = new JMenulten("An itemin the subnenu");
menul t em set Accel er at or (KeyStroke. get KeyStroke(KeyEvent.VK_2, ActionEvent.ALT_MASK));
subnenu. add(nenul ten ;

menul tem = new JMenul ten(" Anot her itent);
subnenu. add(nenul ten) ;
menu. add(submenu) ;

/1Build second menu in the menu bar.

nmenu = new JMenu("Anot her Menu");

menu. set Mhenoni ¢c(KeyEvent . VK_N) ;

nmenu. get Accessi bl eCont ext (). set Accessi bl eDescription("This nmenu does nothing");
menuBar . add(menu) ;

frame. set IMenuBar (t heJMenuBar) ;

Figure 8:A menu as seen by the user (top left), its GUI description snippet (bottom left), and its abridged Java Swing counterpart (right)
Statement-level annotations

Several language processing applications call for decorating Java programs with additional structured information. A lightweight approach to providing such metadata (short of extending Java

syntax) involves defining custom annotations. These and other usages of annotations will only increase. Two examples can be mentioned:

. Aspart of the ongoing JSR-308 (Annotations on Java types), extensions to the Java 7 syntax are proposed: http://groups.csail.mit.edu/pag/jsr308. The current prototype
patches OpendDK for parsing and for generating bytecode in an extended class format.

. Similarly, Harmon and Klefstad propose a standard for worst-case execution time annotations at the stamement level, metadata that isimportant for Real-Time Java

The projects above require modifications to the Java grammar, parser, and compiler, thus explaining why those efforts take so long in the making. This integration burden is unfortunate as it

stifles innovation, making more difficult the early adoption of language extensions. How many of the following extensions do you regularly use?

. static analyses around references: @donNul |, @ mmut abl e, @ReadOnl . http://groups.csail.mit.edu/pag/pubs/

. bug-finding and verification tools such as IML which extend Java with pre- and postconditions, loop and class invariants, and behavioral interfaces (The JDT vs. non-JDT
way's to extend Java syntax for IML are compared in this report)

. security-typed languages such as Jifclipse

Aswe have seen, embedded DSL s are a non-intrusive way to enrich a Java program with non-Java information. From the point of view of language processing, they lower the
cost of proofs of concept. If implemented together with the other use cases described in this section, the resulting IDE extensions are also comparable in usability with
dedicated I DEs, as the additional language constructs they manipulate are just that: syntactic extensions to Java, not completely new grammars.

DSL-specific views

Some graphical notations are considered standard, with textual counterparts playing aminor role although they convey the same information (for example, musical notation
vs. MIDI sequences, bond diagrams vs. chemical formulas, etc.) In these cases, the usability of an embedded DSL would be increased by displaying aongside the textual
formulation aread-only view of its 2D or 3D representation. This may be derided as a poor man's WY SIWY G, but as with DSL2J DT in general we see instead alot of
leverage being gained from a no-frills architecture. And not to be forgotten, textual notations improve the accessibility of IDE tooling for the visually impaired.

In fact, some Eclipse-based plugins aready adopt this "editable text mapped to readonly diagram” metaphor, only that one-way view update is triggered by the build process
or auser action. Thisto make sure that the data source has reached a stable state, unlike the case during interactive editing. For example, the TextUML plugin follows that

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (9 of 13)27.05.2008 19:29:15

http://groups.csail.mit.edu/pag/jsr308
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4228074
http://groups.csail.mit.edu/pag/pubs/
http://www.eecs.ucf.edu/~leavens/tech-reports/UCF/CS-TR-08-05/TR.pdf
http://siis.cse.psu.edu/jifclipse/index.html
http://abstratt.com/textuml/

Automating the embedding of Domain Specific Languages in Eclipse JDT

metaphor, as shown below, with the PDE Dependency Visualization tool being another case in point.

@Resource - tutorial /shopping_cart.tuml - TextUML Toolkit - |E| |L|
. Fle Edt Mavigate Search Project Source Run Window Help
package shopping_cart;
Ci |~ |+ | s e R R £ | Resource
inport dataType;) # inventory.tuml | #shopping_cart.tuml &3 = 0| = outh., [Lt; Proj.. 2 |T O
import inventory; TS =
end; LI = ,gb
class Cart o dataType.ml 4|
end; association CariternProduct &) dataType.uml
navigable role itern : Cartltern[*]; .
| Cartl role product : Product[1]; J & payment.fuml
c a§s rtitem end: #) payment.urml
end; <on CartHios! # shopping_cart. tuml
aggreqgation CatHasltems hd @) shi 0 tuml
associ ation CartltenProduct 4| | >] shopping_cart.um =
navigable role item: Cartlten]*]; Sourcel ﬂ |,|_
rol e product : Product[1];
end; 2 Image Yiewer - shopping_cart.um| &2] =0
tion CartHaslt Cart
aggra\e/igaalbrz r 0:’ e czrt em;Cart [1: +oreatelternproduct | Product, quantity : Integer) Cartltern
X g _ : M +removelter(item ;. Cartltem)
navigable role item: Cartlten]*]; +checko()
end,
end.
i |

Figure 9: Textua input notation (left) in TextUML, alongside visual (output) notation for feedback
(reproduced from TextUML tutorial)

Given that 2D graph layout libraries are available for Eclipse (for example, GraphViz and Zest) we believe that a subset of the mapping files created as part of a GMF project
are enough to realize the embedded-DSL -to-diagram use case in the JDT.

Implementation of in-place translation

Of the three advanced use cases, the one we would like to see implemented first isin-place translation. The previous summary of the compilation participant extension point is
augmented in this section with an example that shows (&) how to identify Java methods marked with the Ret ur nsEnmbeddedDSL annotation, and (b) how to visit the AST
of their method bodies. We stop short of translating the embedded DSL (because we're working on that, and we couldn't wait to let others know about our progress with
DSL2JDT so far).

Although the examplein this section directly builds upon the compilation participant API, there are tools and frameworks to simplify the inspection and
manipulation of Java 1.5 ASTs. For example, SpoonJDT allows defining spoonlets, Java classes that can be plugged in a pipes and filters architecture to process
Java ASTs. SpoonJDT also contributes preference pages to configure spoonlets to be active on a per project basis. Interestingly, spoonlets can be developed (and
debugged) in the same workspace where the target projects reside (with a compilation participant a second Eclipse instance is required). Finally, a converter from
JDT Core ASTsto EMF-based counterparts is available. The prototype we're working on for DSL-specific processing is based on SpoonJDT. We choose however
to base our example on the compilation participant API only, as the underlying concepts are the same irrespective of the particular implementation technique.

Listing 4: A compilation participant to add problem markers to methods annotated with Ret ur nsEnbeddedDSL
public class MyConpil ationPartici pant extends Conpil ationPartici pant {

@verride
public bool ean isActive(lJavaProject project) {

return true; // springs into action for all Java projects
}

@verride
public void reconcil e(Reconcil eContext context) {
super. reconci |l e(cont ext);
try {
org. eclipse.jdt.core.dom ConpilationUnit ast = context.get AST3();
org.eclipse.jdt.core.dom ASTVisitor nyVisitor = new MVisitor(); // see declaration bel ow
for (Object oTypeDecl : ast.types()) {
if (oTypeDecl instanceof org.eclipse.jdt.core.dom TypeDecl aration) {
TypeDecl aration td = (TypeDecl aration) oTypeDecl ;
for (MethodDeclaration md : td.getMethods()) {
for (Cbject oModifier : nd.nodifiers()) {
if (oModifier instanceof org.eclipse.jdt.core.dom Annotation) {
Annotation ann = (Annotation) oMdifier;
String fgn = ann. get TypeNane(). get Ful I yQual i fi edNanme();
if ("dsl2jdt.annotation. ReturnsEnbeddedDSL". equal s(fqgn) ||
" Ret ur nsEnbeddedDSL" . equal s(fqgn)) {
addSanpl eProbl en(ast, nd, context);

}
}
ast.accept(nyVisitor);
} catch (JavaMdel Exception e) {
e.printStackTrace();

}

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (10 of 13)27.05.2008 19:29:15

http://www.eclipse.org/pde/incubator/dependency-visualization/index.php
http://abstratt.com/wiki/index.php?title=TextUML_Tutorial
http://eclipsegraphviz.wiki.sourceforge.net/
http://www.eclipse.org/gef/zest/
http://spoon.gforge.inria.fr/TutorialJDT/TutorialJDT

Automating the embedding of Domain Specific Languages in Eclipse JDT

private voi d addSanpl eProbl en{ Conpi | ati onUni t ast,
Met hodDecl arati on nd, Reconcil eContext context) {

char[] originatingFileNane = ast.getJavaEl enent (). getPath().to0SString().toCharArray();
String message = "default dsl2jdt error nessage";
int severity = Probl enBeverities.Error;

int startPosition = nd.getNane().getStartPosition();
int endPosition = startPosition + nmd. get Nane(). getLength();

int line = -1;
int colum = -1;

EnbeddedDSLPr obl em pro = new EnbeddedDSLPr obl en{
ori gi nati ngFi |l eNane, nessage, severity, EnbeddedDSLProbl em NO ARGUMENTS, severity,
startPosition, endPosition, line, colum);
Cat egori zedProbl en{] probl ens = new EnbeddedDSLProbl eni] { pro };
cont ext . put Probl ens(EnbeddedDSLPr obl em DSL2JDT_PROBLEM MARKER, probl ens);
/|l see al so | JavaMbdel Mar ker

}
@verride
public void buildStarting(BuildContext[] files, boolean isBatch) {
/1 TODO Aut o-generated nethod stub
super. buil dStarting(files, isBatch);
}

Listing 5: And the accompanying visitor (more examples can be found in Satic Analysis for Java in Eclipse)

package conpa. basi c;
i nport org.eclipse.jdt.core.dom Si npl eNang;
public class MyVisitor extends org.eclipse.jdt.core.domASTVisitor {

public bool ean visit(org.eclipse.jdt.core.dom Methodl nvocation inv) {

org. eclipse.jdt.core.dom Expression rcvr = inv.getExpression();

/1 null if inplicit "this' call

Systemout. println(inv);

if (revr == null) { // skip
return false; // don't bother |ooking at children (actual argunents)

} else if (!(rcvr instanceof org.eclipse.jdt.core.dom SinpleNanme)) {
return true; // exanine children (actual argunents)

}

org. eclipse.jdt.core.dom Si npl eNane rcvrNm = (Si npl eNane) rcvr;

org. eclipse.jdt.core.dom|Binding rcvrBinding = rcvrNmresol veBi ndi ng();
System out. println(rcvrBinding);

return true;

}

publ i ¢ bool ean visit(org.eclipse.jdt.core.dom MethodDecl arati on node) {
return true;

}

public bool ean visit(org.eclipse.jdt.core.dom TypeDecl arati on node) {
return true;

}
}
Related Work

Language tooling is avast field. We summarize four areas directly related to DSL embedding: (a) proposed embeddingsin other languages (Scala and Ruby), (b) well-formedness checking
over XML artifacts, (c) inspection and manipulation of Java ASTs, and (d) the competing approach of IDE generation.

DSL Embedding in Scala and Ruby

The syntax of Java 5 contributes to the readability of internal DSLs (variable length argument lists, static imports). Still, DSLs embedded in Java cannot circumvent the

subj ect . ver b(obj ect) biasof the language: no additional infix operators can be defined nor existing ones overloaded. In Scala, binary operators can be overloaded.
The resulting advantages for DSL embedding are reported by Dubochet in this paper. In turn, DSL embedding in functional languages has along tradition, Leijen and Meijer
were aready reporting in 1999 how to embed SQL in Haskell. Although superficially similar to other embedding efforts like SQL/J, the DSL embeddings we're talking about
do not require modifying the front-end of a compiler, asisthe case with SQL/J.

DSL embedding is also popular with dynamically typed languages. Two recent examplesin Ruby include:

. Glimmer, an embedding of a high-level language for JFace/SWT programming
. embedding SVG: SVuGy and RVG

Both Scalaand Ruby allow for amore compact notation, and the same techniques reported here can be applied in their respective IDEs to take care of well-formedness
checking at compile time. That might suggest they are a better choice for DSL embedding. We seeiit differently. To us, what all these examples have in common isthe tension
between language-level as opposed to IDE-level extensibility, a matter that exceeds the particular host-embedded language pair being considered. Our reasoning can be
summarized as follows: aslong asthe JDT (including extensions) allows for reasonable solutions, it pays off to stick with it for DSL embedding. Or maybeit's just me who
don't know how to write auto-morphing code in Scala ("ASTs as first-class citizens"). In any case, the debate will likely go on among the language camps.

Besides, any improvements to Content Assist in JDT can be leveraged by all DSL embeddingsin Java. For example, ideas around APl completion as a planning problem have

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (11 of 13)27.05.2008 19:29:15

http://kathrin.dagstuhl.de/files/Materials/05/05251/05251.FuhrerRobert1.Slides.ppt
http://phoenix.labri.fr/DSPD/final/dubochet2006zytyg.pdf
http://www.haskell.org/haskellDB/doc.html
http://www.eclipse.org/proposals/glimmer/Glimmer%20Project%20Creation%20Review.pdf
http://www.svgopen.org/2007/papers/SVuGyProceduralDeclarative/index.html
http://www.simplesystems.org/RMagick/doc/rvgtut.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

been explored in Prospector. Unlike with custom generated | DES, we benefit from all those improvements for free.

Heuristics to derive more "abstract" metamodels out of EBNF are discussed by Kunert in his paper Semi-Automatic Generation of Metamodels and Models from Grammars
and Programs.

Static analysis of XML artifacts

The proliferation of XML dialects has prompted the development of tools to check good old static semantics. A tool in this problem space is SmartEMF, being devel oped by
Hessellund as part of his PhD. He identifies typical kinds of integrity constraints to check across the XML artifacts developed for consumption by some framework (for
example, referential integrity constraints across configuration filesin projects extending the Apache Open for Business (OFBiz) framework). Once such constraints have been
made explicit, SmartEMF takes charge of checking them. Additionally, those editing operations that are feasible for the current editing state are found, much like Content
Assist worksin the JDT:

Given aportfolio of metamodels specified in SmartEMF, i.e., DSLs conforming to Ecore, we can represent languages, domain constraints, and models in auniform way. All
artifacts are mapped into a single constraint system implemented in Prolog that facilitates constraint checking and maintenance, and allows us to infer possible editing operations
on aset of models.

Anders Hessellund. SmartEMF: Guidance in Modeling Tools. Doctoral Symposium, OOPSLA'07, Montreal, Canada, October 2007.
http://www.itu.dk/people/hessellund/work/Hessel lund07b. pdf

Taking into account the large number of XML dialectsin use today, it makes sense to think about ways to embed them in Java, while keeping the XML format asa
serialization format (for communication between machines, not humans). We have not explored this scenario with a case study, but plan to do so (and would like to hear about
the application of DSL2J DT for this purpose). After all, although Scala supports an object syntax for XML, the Scala IDE does not check the well-formedness of whatever
DSL that XML represents.

Proposals are regularly made around non-XML syntaxes for XML dialects, acasein point for XUL (GUI description language) is the shorthand syntax Compact XUL. A
once-and-for-all solution to this recurrent problem is offered by Dual Syntaxes: http://www.brics.dk/~amoeller/papers/xsugar/journal .pdf

Inspection and manipulation of Java ASTs
The SpoonJDT tutorial contains examples of in-place code modifications (not in-place translations, however) such as adding Javadoc and preconditions to existing methods.
The processing of ASTs s the focus of the following reports:

. Robert M. Fuhrer, Satic Analysis for Javain Eclipse

. Thomas Kuhn, Olivier Thomann. Abstract Syntax Tree. Eclipse Technica Article,

. Tobias Widmer. Unleashing the Power of Refactoring. Eclipse Technical Article,

. Manoel Marques Exploring Eclipse's ASTParser: How to use the parser to generate code. DeveloperWorks article.
. ASTView, visualization of AST of Java source file. http://www.eclipse.org/jdt/ui/astview/index.php

. Other plugins involving code management: http://eclipse-plugins.info/eclipse/ plugins.jsp?category=Code+mngt

A capability similar to in-place trandlation is realized by Octel, where instructions about what to generate appear in Java comments following an XML syntax. For example,
the comment below generates a setter method for an UML attribute:

public void generateAttributelnd ass(lStructural Feature att, OJC ass owner){

FEATURE = new Structural FeatureMap(att);
owner . addTol npor t s(FEATURE. j avaTypePat h());

/**<octel var="owner">
<met hod type="%EATURE. j avaTypePat h() %
nanme="%EATURE. setter ()%
static="%EATURE.isStatic()%
visibility="%EATURE. visibility()%>
<conmment > inplenents the setter for feature '%tt.getSignature()% </conmrent>
<par am t ype="9%-EATURE. j avaTypePat h() % nane="el enent"/>
<body>
<i f> %EATURE.] avaFi el dNane() % ! = el enent
<t hen>
%-EATURE. j avaFi el dNane() % = el enent ;
</then></if>
</ body>
</ met hod>
**/

}

Given that the DSL input appears as a comment, there is no guidance on the part of the IDE about how to get the dedicated syntax right, nor compile-time checking of its
static semantics.

Checking Java source code beyond static semanticsis the realm of tools like FindBugs, which operates in a batch manner. Other tools however perform background yet non-
incremental checks, as implemented by EzUnit and by the Continuous Testing Plug-in for Eclipse:

Continuous testing uses excess cycles on a devel oper's workstation to continuously run regression tests in the background, providing rapid feedback about test failures as source
code s edited. It reduces the time and energy required to keep code well-tested, and prevents regression errors from persisting uncaught for long periods of time.

Competing approach: IDE generation

Before getting involved with Internal DSLs and starting the DSL2J DT tool, | spent my fair amount of time with IDE generators. So | guess a comparison isin order. Here it
goes.

The generation of custom text editorsis an active field. The following isa partial list (in aphabetic order) of projects offering such capability:
. MontiCore, http://www.sse-tubs.de/monticore/

. Sdf2imp, https.//svn.strategoxt.org/repos/WebD SL /imp/trunk/

. TCS, http://wiki.eclipse.org/index.php/TCS, part of the Eclipse Textual Modeling Framework (TMF)

. TEF, http://www2.informatik.hu-berlin.de/sam/meta-tool S'tef/index.html

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (12 of 13)27.05.2008 19:29:15

http://www.cs.berkeley.edu/~mandelin/Prospector-OSQ-2004-final.ppt
http://www.inf.mit.bme.hu/GT-VMT2006/ProceedingsGTVMT2006.pdf
http://www.inf.mit.bme.hu/GT-VMT2006/ProceedingsGTVMT2006.pdf
http://www.itu.dk/people/hessellund/smartemf/index.php
http://www.itu.dk/people/hessellund/work/Hessellund07b.pdf
http://xul.sourceforge.net/compact.html
http://www.brics.dk/~amoeller/papers/xsugar/journal.pdf
http://spoon.gforge.inria.fr/TutorialJDT/TutorialJDT
http://kathrin.dagstuhl.de/files/Materials/05/05251/05251.FuhrerRobert1.Slides.ppt
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-Refactoring/index.html
http://www-128.ibm.com/developerworks/opensource/library/os-ast/
http://www.eclipse.org/jdt/ui/astview/index.php
http://eclipse-plugins.info/eclipse/ plugins.jsp?category=Code+mngt
http://eprints.eemcs.utwente.nl/5691/01/00000179.pdf
http://www.fernuni-hagen.de/ps/prjs/EzUnit/
http://groups.csail.mit.edu/pag/continuoustesting
http://www.sse-tubs.de/monticore/
https://svn.strategoxt.org/repos/WebDSL/imp/trunk/
http://wiki.eclipse.org/index.php/TCS
http://wiki.eclipse.org/TMF
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/index.html

Automating the embedding of Domain Specific Languages in Eclipse JDT

. XText, http://wiki.eclipse.org/Xtext, part of the Eclipse Textual Modeling Framework (TMF)

By itself, acustom text editor generated from a grammar aone does not enforce the static semantics of the DSL (which by definition, are those well-formedness rules that
exceed the expressive power of the grammar). So some additional coding is necessary. Those text editors internally maintaining an Ecore-based representation of the AST
simplify the integration of such additional code.

The Eclipse IDE Meta-Tooling Platform Eclipse IMP goes beyond the generators above in that it aims at generating debugging infrastructure, moreover enabling the
integration of complex analyses, such as control- or data-flow based. The integration of translation capabilities remains however the task of the developer. Another tool
addressing debugging (and visual interpretation) of aDSL is EProvide. Eclipse IMP is rather unique in addressing user-provided analyses, which can get quite elaborate very
quickly. For example, aweb search for the phrases "sqgl injection” and "static analysis" will return papers describing such analyses, ready for implementation.

The ASTswe embed with DSL2JDT have all been self-contained: their terminal's are compile-time constants. We a so skipped on providing any kind of refactoring support
for the embedded DSL, as they are necessarily DSL-specific. Similarly, staged compilation, partial evaluation, and weaving (to account for the surrounding Java AST nodes)
areall very interesting yet unsupported use cases from the DSL2J DT perspective. Completing the infrastructure put forward in this article is afirst step towards enabling the
implementation of DSL-aware language processing in the JDT.

Conclusions

We see many application areas for embedded DSL s, with the discussion about in-place translation and DSL-specific views just showing some of the possibilities. All along
we've tried to maintain the main value proposition of well-designed DSLs: offering an easily consumable form of expert knowledge. We think embedding makes a DSL only
easier to consume.

In particular, the capability to perform in-place trand ation brings together two seemingly opposite camps: those favoring "abstractionsin DSLs" and those promoting design
patterns. As we have seen, in-place translation keeps side by side the source DSL statements and their Java translation (wich follows the design patterns captured by the DSL
implementation).

Open platforms like Eclipse and EMF (and their communities) make possible the kind of cross-pollination that DSL2JDT has benefited from. Now it's your turn to take these
techniquesto anext level.

Acknowledgments

Aninitial version of the statechart example was developed by Paul Sentosa as part of his master thesis on generating text editors for custom DSLs. The conceptsin Martin Fowler's online notes
on Internal DS acted as a catalyzer to develop DSL2JDT.

Source Code

TODO Thereis an issue with the URIs that the the . gennmodel may contain (thisis due to my lack of expertise with EMF URIs :-) In all examples (including
ongm ni st at echart), I'm using workspace-relative URIs, of the form

"pl atform/resource/ ongm ni st atechart/nodel / sc. ecore#// PseudoStateKind/initial".

If you use other kinds of URIsthen

method gener at el nner (I Fil e genMbdel File, | Progresshonitor nonitor)

inclassor g. ecl i pse. gymmast . gener at or s. enbeddedds| . EDSLGener at or

won't be able to get the contents of the . gennodel file.

| have no ideawhy. | only know that I'm opening the filewith URI . cr eat eFi | eURI (genMbdel Pat h. t oString()) . Helpiswelcome.

. DSL2JDT can be downloaded from CVS (user anonynous, host dev. ecl i pse. or g, repository path: / cvsr oot / nodel i ng). And then

HEAD

. org. eclipse. enf

. org.eclipse.enf.enfatic

. pl ugi ns

. check out or g. ecl i pse. gymast . gener at or s. enbeddeddsl

. check out or g. ecl i pse. gymast . gener at or s. enbeddeddsl! . ui

oA wWNER

. The Statechart example is available for import into the workspace as a zipped Eclipse project: ongni ni st at echart. zip_

file://IC|/Archive/Reports/2008-05/article/20070527171...ebContent/Article-AutomatingD SL Embeddings/article.html (13 of 13)27.05.2008 19:29:15

http://wiki.eclipse.org/Xtext
http://wiki.eclipse.org/TMF
http://www.eclipse.org/imp/
http://eprovide.sourceforge.net/Welcome.html
http://www.tu-harburg.de/~sips0478/
http://martinfowler.com/dslwip/InternalOverview.html
file:///C|/Archive/Reports/2008-05/article/200705271718WebContent/WebContent/Article-AutomatingDSLEmbeddings/files/omgministatechart.zip

	Local Disk
	Automating the embedding of Domain Specific Languages in Eclipse JDT

