Pass-through of External Context Objects to
ODA Data Providers — Project Features
Specification

BPS #35

Version 1.45: Nevember10December 13, 2005

The Open Data Access (ODA) runtime API is currently a self-encapsulating
framework. However, when used as an embedded component in an application
server, it would be useful to provide the capability to pass in external objects
through the BIRT engine and into a custom ODA data provider (driver). This
document describes this feature enhancement and intended scope of support in
BIRT 2.0 and Data Tools Platform (DTP) ODA version 3.0.

Document Revisions

Version Date Primary Author(s) Description of Changes

Version 1.5 12/13/2005 Linda Chan Updated ODA API Javadoc in section
2.3 to reflect the behavior described
in Bugzilla 120112.

Version 1.4 11/10/2005 Linda Chan Updated section 2.1 to add a
recommended practice on what to
use for a context Map’s key value.
Updated section 2.3 to clarify how
BIRT uses the ODA setAppContext
methods.

Version 1.3 11/1/2005 Linda Chan Updated sections 2.1 and 2.2 to
reflect the Report Engine API
changes to require a Map object for
the application context object.

Version 1.2 10/7/2005 Linda Chan Renamed BPS35 proposed methods
from setContext to setAppContext to
clarify that the context object is
provided by an application and is
opaque to the BIRT and ODA
framework.

Draft 1.1 9/13/2005 Linda Chan Revised the proposed changes in DtE
and ODA API.

Features Specification Pass-through External Objects to Custom Data Sources

Version Date Primary Author(s) Description of Changes
Draft 1.0 9/11/2005 Linda Chan Initial Draft

Features Specification Pass-through External Objects to Custom Data Sources

1. Project Description and Use Cases........cccourriinimmniiissnsss s snsss s s ssssss s sssssss s sssss s 4
1.1 Use Case 1: Re-use Connection HandIESoouiiiiiiiiiii e 4
1.2 Use Case 2: Generated User Authorization KEYScoeviiiiiiiiiiiiiiie e 4
1.3 Use Case 3: External Query Parameter ODJEcCtS.........cc.eviiiiiiiiiiii e 4

20 o o o T X =Y o IS T L1 11 e o 5
2.1 REPOM ENGINEG AP ...ttt s bt e e e ab e e e s e bb et e e anbee e e e e 5
2.2 Data ENGINE AP ... 6
2 O 10N N S STPR 7

Features Specification Pass-through External Objects to Custom Data Sources

1. Project Description and Use Cases

The BIRT engine is often embedded as part of a middle-tier application server, where
the BIRT components are added to the mix of various J2EE components. During report
run-time, some of these other components may instantiate context objects, which are
served to the BIRT engine for its custom data source to use.

The BIRT engine would thus need to pass through such external Java object(s) into the
BIRT data source components for consumption. The embedding application is expected
to customize the underlying BIRT data source provider, such as an Open Data Access
(ODA) run-time driver or BIRT Scripting data source. The custom data source provider
would then know how to process the external object(s) passed to its context.

These context objects are assumed to be dynamically instantiated at report run-time,
and are not statically defined in a report design. The scope of this project thus focus on
data source specific run-time Java objects that are instantiated external of BIRT, and
are passed through to a custom data source provider plugged in the BIRT engine.

The primary use cases for passing through external context objects to a BIRT data
source provider are described below.

1.1 Use Case 1: Re-use Connection Handles

A middle-tier application manages its own data source connections, such as using its
own security model, or provides load balancing. It has established an open connection
handle that it wants to pass through to its custom ODA run-time driver plugged in the
BIRT Engine for re-use. Examples of such external connection handle are:

e A pooled connection object that participates in connection pool management, and
represents a physical connection to a data source.

e A JDBC connection object that is already open, and at a state ready for preparing
and executing a statement for data retrieval.

The BIRT JDBC ODA run-time driver can then be extended and customized to re-use
the external connection object in its ODA IDriver or IConnection implementation.

1.2 Use Case 2: Generated User Authorization Keys

An application manages its own user profiles and access control. It generates a user
authorization key object at run-time that should then be used by BIRT as a connection
property for access to the custom data source.

The authorization key should pass through the BIRT engine to the customized ODA run-
time driver. The customized ODA IConnection implementation would then take this
authorization key to open a physical connection to its data source.

1.3 Use Case 3: External Query Parameter Objects

An application collects relevant parameter values through its own user interface or API.
It then in turn passes the run-time parameter values as Java objects to its customized
ODA run-time driver in the BIRT engine. The customized implementation of the ODA
IQuery interface would then apply these external parameter objects in its execution and
data retrieval.

Features Specification Pass-through External Objects to Custom Data Sources

2. Proposed Solution

As illustrated in the various use cases, the content of the external context objects could
vary depending on the nature of individual applications and their custom data source
providers. To provide a generalized solution, the BIRT engine supports passing through
context information as a java.lang.Object instance. A BIRT consumer application is free
to define any types of object as appropriate. For example, a Map can be used to pass
through multiple objects in the context. The underlying custom data source provider,
such as an ODA run-time driver, should then be customized to process this context
object.

An application that embeds the BIRT engine should specify the context object for each
report execution task via the BIRT engine task APIl. The BIRT report engine would then
pass the context object to the Data Engine as the context for accessing all the data
sources and data sets defined in that report. The BIRT Data Engine would in turn pass
the context object to its underlying custom data source providers, which are
implemented by the embedding application.

Below sections describe the specific BIRT and ODA public APIs involved in the pass-
through runtime operation.

2.1 Report Engine API

The BIRT Report Engine public APl has an interface method that allows an application,
which embeds the BIRT engine, to pass in an external context map object to the
specialized engine task that runs a report.

package org.eclipse.birt.report.engine.api;

public interface IEngineTask

{

public abstract void setAppContext(java.util.Map context);
}

Usage sample:

IRunAndRenderTask runTask =
(IRunAndRenderTask) new MyRunAndRenderTask();
runTask.setAppContext (contextMap);

The BIRT report engine would in turn pass the same application context object to all the
components interested in the engine task context. Existing interested components
include callback methods implemented by the embedding application, e.g. the
implementation class of engine API's THTMLImageHandler. It is up to each individual
context recipient to process the external context object as appropriate.

It is very likely that an application would pass in various context objects to multiple BIRT
components, such as Java scripting objects, images, ODA data-source specific context
objects, etc. Thus, in BIRT 2.0, the IEngineTask.setContext method with an
Object argument is changed to TEngineTask.setAppContext with a Map argument.
Enforcing the use of a Map to pass in application context object(s) seeks to minimize the
need for all context-handling components to revise their implementation, whenever an
application adjusts its context object content.

Features Specification Pass-through External Objects to Custom Data Sources

Since the context Map will be available to potentially multiple recipients, the Map’s key
value is recommended (not required) to use a fully-qualified name of the intended
recipient of the corresponding value object; for example:
“‘com.company.data.myodadriver”.

In BIRT 2.0, the BIRT Data Engine component will be added to the list of components to
receive the context of the report run task. Thus the BIRT report engine will pass the
same context Map to the Data Engine as well, using the Data Engine APl method
described below, to be the context of all data set queries in that report run task.

2.2 Data Engine API

The BIRT Data Engine public API, in BIRT 2.0, adds a new interface method to allow
one to provide a context map object for preparing and executing a report’s data set
query. The BIRT Report Engine is responsible for calling this method; it is thus
transparent to the application that passes in the context. The Data Engine would in turn
pass the context map as an object to its underlying custom ODA run-time driver, using
the ODA API methods described in the next section.

package org.eclipse.birt.data.engine.api;

abstract public class DataEngine

{

/**

* Verifies the elements of a report query spec

* and provides a hint and application context object(s) to the
query

*

to prepare and optimize an execution plan.

* This has the same behavior as the

* prepare(IQueryDefinition querySpec) method,

* with an additional argument for an application to pass in a
* context map object to the underlying data provider,

* e.g. an ODA run-time driver.

* @param querySpec Specifies the data access

* and data transforms services needed

* from DtE to produce a set of query results.
* @param appContext The application context map for

* preparation and execution

* of the querySpec.

* @return The <code>IPreparedQuery</code> object that
* contains a prepared query ready for execution;
* could be null.

* @throws BirtException if error occurs during the

* preparation of querySpec

* @since 2.0

*/

abstract public IPreparedQuery prepare(IQueryDefinition querySpec,
Map appContext)
throws BirtException;

}

“¥7 Note: In BIRT 2.0, if a BIRT scripting data source provider, instead of a custom
ODA driver, supports the query definition being prepared, the context object is
not passed through. The BIRT report engine API currently provides a more
direct channel to pass through a context object to a BIRT Scripting object:

Features Specification Pass-through External Objects to Custom Data Sources

package org.eclipse.birt.report.engine.api;
IEngineTask.addScriptableJdavaObject (String jsName, Object obj);

This approach seems to be sufficient for the known use cases. When there
are use cases where a context object should pass through the BIRT Data
Engine to a BIRT Scripting data source provider, the Data Engine can then
provide further support in future releases.

2.3 ODAAPI

The DTP ODA run-time public APl in ODA version 3.0, which is used by BIRT 2.0, adds
new interface methods, setappContext, to allow an ODA consumer application to pass
an application context object into an ODA driver instance, plus each of its data source
connection and data set query instances.

Note that the ODA setappContext methods take an Object argument for application
context, whereas BIRT Engine API enforces a Map argument type due to the nature of
its expected usage. The ODA interfaces are designed for use by any ODA consumer
applications, which may or may not have the requirement to use a Map. When an
application customizes an ODA driver to handle its context, it would be in the position to
know the type of context object that it passes to an ODA driver, and would implement
the ODA setappContext methods to handle it accordingly.

The setAppContext methods may be called with a null argument, i.e. passing a null
context object to an ODA instance, only if a non-null context was previously passed
through to the same ODA instance.

In the BIRT engine implementation, the BIRT Data Engine serves as the ODA
consumer, and is responsible for calling these ODA methods to push the application
context object to an underlying ODA driver. If TEngineTask.setAppContext was not
called, or was called with a null argument, the BIRT Data Engine will not call the ODA
setAppContext method. Other ODA consumer applications may however choose to
handle it differently, and may call setappContext multiple times on the same ODA
instance, to change or reset the application context.

A custom ODA run-time driver provided by an application, which embeds the BIRT
engine, should implement these ODA interface setter methods to process the context
object, as appropriate.

package org.eclipse.datatools.connectivity.oda;

public interface IDriver

{

/**

* Sets the driver context passed through from an application.
* Its handling is specific to individual driver implementation.
* Note: This method should be called before

* getConnection(String).

* An optional method.

* If any part of the context is not recognized by the driver,
* it should simply ignore, and not throw an exception.

* @param context Application context object of this instance.
* @throws OdaException if data source error occurs

* @since 3.0

*/

Features Specification Pass-through External Objects to Custom Data Sources

public void setAppContext (Object context) throws OdaException;
}

public interface IConnection

{

*

Sets the connection context passed through from an application.
Its handling is specific to individual driver implementation.
Note: This method should be called before open(). It is
called regardless of whether the connection is already open.

An optional method.

If any part of the context is not recognized by the driver,

it should simply ignore, and not throw an exception.

@param context Application context object of this instance.
@throws OdaException if data source error occurs

@since 3.0

X% X 3k | X X X % ot

*

*/
public void setAppContext (Object context) throws OdaException;
}

public interface IQuery

{

*

Sets the query context passed through from an application.
Its handling is specific to individual driver implementation.
Note: This method should be called before prepare().

An optional method.

If any part of the context is not recognized by the driver,
it should simply ignore, and not throw an exception.

@param context Application context object of this instance.
@throws OdaException if data source error occurs
@since 3.0

L R R R .

*

*/
public void setAppContext (Object context) throws OdaException;

