

 DIRECTION DE LA RECHERCHE TECHNOLOGIQUE
LABORATOIRE D'INTEGRATION DES SYSTEMES ET DES TECHNOLOGIES

DEPARTEMENT DES TECHNOLOGIES DES SYSTEMES INTELLIGENTS
SERVICE OUTILS LOGICIELS

CEA/SACLAY – 91191 GIF-SUR-YVETTE CEDEX
TÉL 01 69 08 33 53 - FAX 01 69 08 83 95 – E-MAIL jan.stransky@cea.fr

Etablissement public à caractère industriel et commercial
R.C.S. PARIS B 775 685 019

DIRECTION DE LA RECHERCHE TECHNOLOGIQUE

CEA/SACLAY
DEPARTEMENT DES TECHNOLOGIES DES SYSTEMES INTELLIGENTS
SERVICE OUTILS LOGICIELS

Service Outils Logiciels

 Saclay, 04/11/2009

REF. : DTSI/SOL/09-0231/RS

Palette Customisation in Papyrus MDT

Par

Remi Schnekenburger

DTSI/SOL/LISE (CEA)

Palette Customisation in Papyrus MDT
__

__

1/21

Ce document est la propriété du CEA. Il ne peut être reproduit ou communiqué sans son
autorisation.
This document is the property of the CEA. It can not be copied or disseminated without its
authorization.

REDACTEURS
WRITERS

VERIFICATEUR
CONTROLLER

CHEF DE SERVICE
SERVICE HEAD

NOM

Remi
SCHNEKENBURGER

F. TERRIER

Jan STRANSKY

DATE

SIGNATURE

IDENTIFICATION : Rapport DTSI/SOL/09-0231/RS

Title : Palette Customisation in Papyrus MDT

Authors : Remi Schnekenburger
Keywords : Papyrus, MDT, Eclipse, Palette, Customisation

Unit : DRT/LIST/DTSI/SOL/LISE

Abstract/Context Eclipse project

Palette Customisation in Papyrus MDT
__

__

2/21

Diffusion : Papyrus website: http://www.eclipse.org/modeling/mdt/?project=papyrus

Palette Customisation in Papyrus MDT
__

__

3/21

1. Introduction

This report contains developer documentation for the implementation of diagram palettes in
Papyrus.

In this document, Papyrus will always refer to the Eclipse MDT implementation (see
http://www.eclipse.org/modeling/mdt/?project=papyrus).

The various step of the GMF process used to produce the GMFgen file of a diagram are not
reminded in this document. This document focuses on modification directly made over the
GMFgen file. For more information regarding GMF, the user should read dedicated document
available on GMF website (http://www.eclipse.org/modeling/gmf/).

2. Installing the development environment

The basic steps first:

� Install the "Modelling" bundle of Eclipse (http://www.eclipse.org/downloads/)
� Install the SVN client over Eclipse (http://www.eclipse.org/subversive/)
� Get Papyrus sources from its repository
(svn+ssh://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus)

Do not forget to download gmfgen extension plugin and other development tools located in
trunk/plugins/developers:

�org.eclipse.papyrus.codegen (specific code generation)
� org.eclipse.papyrus.def (code generation templates)
� org.eclipse.papyrus.gmfgenextension (gmfgen model extension and tools)

For an easier access (directly usable in your development environment without starting a test
workbench), it may be better to export a build of "codegen" and "gmfgenextension" in your
development Eclipse installation:

� Open the plugin.xml file (from either "codegen" or "gmfgenextension")
� Select "export wizard" in the overview tab
� Select the plugins to export ("codegen" and "gmfgenextension" here)
� Choose "Install into host repository" as shown in the picture below.

Palette Customisation in Papyrus MDT
__

__

4/21

3. Overview of the Papyrus extension for GMFGEN model

An extension point exists in GMF framework to define palettes in a plug-in. This extension
point lets users complete or modify an existing palette defined in another extension. This
extension point is divided into 3 aspects.

A first aspect is the “pre-definition” of tool entries. These predefinitions can be later used in
other editors. The zoom + and -, the selection tool, the geoshapes are defined this way. So
each gmf-based editor is able to use these entries. If you don't want these basic predefined
entries, you even have to remove them using the palette extension point. They are present by
default.

The second aspect is using the predefined entries to describe the palette. For example, the
palette A can use a tool with a particular id predefined in a palette B, it removes another one
from palette C, etc.

The last aspect is the standard definition of tool entries. It is similar to the first aspect. The
only difference is a simple field in the extension point that indicates if the specification of the
tool entry is only a definition, or both definition and usage.

By default, GMF-generated diagrams do not use this extension point. They generate a pseudo
factory. As the editor is created, the palette root is programmatically filled with entries. This
method has 2 disadvantages:

Palette Customisation in Papyrus MDT
__

__

5/21

• Standard palette does not have the same behaviour as other palettes. As it is not
provided using a standard provider/factory couple, it is not possible to manipulate it
like other palettes. It is easier considering the standard palette like other ones. This
way, customization tools are directly manipulating custom elements; no special
treatment has to be done for the standard palette.

• The standard provides standard tools! In fact, it provides the basic elements to create a
class, a package, a comment.... If these definitions are embedded in the code, it is not
possible to use them using palette extension point. How can the user remove an
element that has not be define using the standard extension point!

The goal of the document is to describe how overwrite the standard generation using Papyrus
tools.

4. Modifying an existing GMFgen model

The default GMFgen generated from the various input models already contains a definition of
the palette. This definition is not complete. In fact, it does not contain the icon definition for
the tool entries (the group, node and link tools do not have their smallIconPath and
largeIconPath filled).

An action has been added to the GMFgen editor context menu. It works on Palette/Tool
Group /Tool entry elements. It generates (or tries to) the two fields for the icon path. For the
palette elements, it delegates the generation to all subgroups. For the Group element, it
generates the icon for the group and its sub tools. For the tool entries, it generates the icon
fields for the selected element only.

It currently only works for elements directly linked to the UML model. For example, it works
correctly with Comment Node, but not with the Comment Links. In the class diagram,
Comment links and Constraint links were the only 2 elements that were not filled correctly. If
an element has already been filled, it does not override previous values.

Palette Customisation in Papyrus MDT
__

__

6/21

5. Generating code

After icons fields are valued, standard Papyrus code generation is made. The only
modifications to apply are the removal of the already existing extension points in the
plugin.xml file. In fact, xpand has sometimes problems to override previous extension points.
In the class diagram, the only palette definition was the removal of the note tool. Once this
extension has been removed, generation is generally safe (from an xpand point of view!).

Thanks to the private and package visibility used in GMF editor basic class, it was not
possible to complete or modify the menu provided in the palette! So some code has been
duplicated and modified in the custom class defining the class diagram editor. In fact, only
one line was modified.

Palette Customisation in Papyrus MDT
__

__

7/21

<code>

viewer.setContextMenu(new PapyrusPaletteContextMenuProvider(viewer));

</code>

This new context menu overrides the standard palette menu provider, to add the possibility to
select the list of palettes that should be visible or not.

Some custom code was also added to the diagram editor class, it has been added in the code
generation instead of the custom class. This code concerns the preference listeners. In fact, the
editor is listening to the palette provider, so it knows when preferences have change for the
palette. If the palette display selection has changed, it can update the palette viewer.

For archive, code that has been added:

Editor now implements a new interface

<code>

public class UmlClassDiagramForMultiEditor extends
org.eclipse.papyrus.diagram.clazz.part.UMLDiagramEditor implements
IProviderChangeListener {

</code>

interface implementation

Palette Customisation in Papyrus MDT
__

__

8/21

<code>

/**

* @generated

*/

public void providerChanged(ProviderChangeEvent event) {

// update the palette if the palette service has changed

if (PapyrusPaletteService.getInstance().equals(event.getSource())) {

PapyrusPaletteService.getInstance().updatePalette(getPaletteViewer().getPal
etteRoot(), this,

getDefaultPaletteContent());

}

}

</code>

Listener add/remove

lines added in constructor

Palette Customisation in Papyrus MDT
__

__

9/21

<code>

/**

* @generated

*/

public UMLDiagramEditor() {

super(true);

// adds a listener to the palette service, which reacts to palette
customizations

PapyrusPaletteService.getInstance().addProviderChangeListener(this);

}

</code>

dispose method updated

<code>

/**

* @generated

*/

public void dispose() {

// remove palette service listener

// remove preference listener

PapyrusPaletteService.getInstance().removeProviderChangeListener(this);

super.dispose();

}

</code>

palette menu provider

Palette Customisation in Papyrus MDT
__

__

10/21

<code>

protected PaletteViewerProvider createPaletteViewerProvider() {

[...]

}

</code>

6. Customizing palettes

This concerns the local definition of palettes. Local definition means that the xml file defining
the palette is stored in a predefined place on the disk. These palettes are not provided using a
plugin, but are referenced in the workbench using preferences. This way, every user can
define its own palette without creating a plugin, export it and install it. The local definition
should be exportable using a wizard. Such wizard should extend the new plugin wizard. This
way, users could define locally a palette, and could publish it with a plugin.

Another way of exchanging the palette should be an import/export XML palette definition.
This would allow users to use their local palette definitions through several different
workspaces. In fact, eclipse preferences are not always kept from one workspace to another.
An example of this feature is the java code formatter. It is possible to exchange format
profiles with people using a xml file.

A customized palette can also provide new tools. These new tools in Papyrus can be for
example the creation of elements with stereotypes already applied on them. This let the user
adapt the standard Papyrus tool to a particular domain of modeling. More explanation on this
feature can be found in chapter 6.2

6.1. Toggling palette visibility

When selecting the “customize” menu of the palette, a new window appears. This let users
select which palettes are displayed, and which one are hidden for the current kind of diagram.
For example, if the user is currently using the class diagram editor, all palettes for the class
diagram will be shown. User can check or uncheck the palettes to toggle the visibility of the
palette.

Palette Customisation in Papyrus MDT
__

__

11/21

The icon describes a palette defined by the GMF standard palette extension point. In this
case, 2 plugins have contributed to the palette for the class diagram. The first one is the one
generated from the GMFgen file. The second one comes from a second plugin.

The icon describes local palettes. These palettes are only available in the current
workspace, as they are defined using the eclipse preferences system.

The check box on the left side indicates that the palette is visible or not.

6.2. Defining a new palette

Local definitions of palettes can be managed using the button above the list of available
palettes. Some of these buttons are available only when a local palette is selected in the
window. A local palette is the palette with the sign

Palette Customisation in Papyrus MDT
__

__

12/21

Creating a new local definition of a palette

This can be achieved by selecting the button. A new wizard appears, it is divided into 2
pages.

The first page asks for information about the palette. The most important thing here is to give
a name to the palette. This name is the information shown when the user wants to toggle the
palette visibility, the list of available palettes, etc.

Palette Customisation in Papyrus MDT
__

__

13/21

The advanced button toggles advanced information fields visiblity. Standard users should
never modify these fields. The fields in this part allow fine customisation for the palette. For
example, the id of this palette is defined here. A unique ID is generated, so user should not
modify it.

The second page is the definition of the palette content.

Palette Customisation in Papyrus MDT
__

__

14/21

On the left side of the window, all predefined tools are available. For example, each tool from
the standard class diagram is available for selection in this window.

Palette Customisation in Papyrus MDT
__

__

15/21

The combo menu provides the list of already applied profiles on the current model -
remember we use an opened editor to customize the palette. This list also displays the
standard UML tools for the given diagram.

The "UML tools" displays all UML elements that have a creation tool for the diagram.

As one profile is selected in the combo, a new set of tools is presented. We present the
customization of the palette using the Standard profile in this case. It is important to note that
this generation is automatic; this means that the user does not have to manipulate some code
or install plugins to have access to these tools. They are generated as soon as the user wants to
customize his palette. These palette containing generated tools for a given profile disappear
when the profile is removed, and are shown as soon as the profile is applied.

It is also interesting to see that a single palette can contain several tools that create elements
stereotyped from different profile! There is no limitation for a single profile. If the palette is
dependant of several profiles, the palette will be hidden as soon as one profile is not applied.
All profiles must be applied if the user wants the palette to be shown.

Palette Customisation in Papyrus MDT
__

__

16/21

As we can see in the available tools list, a set of elements is displayed. They correspond to the
list of metaclasses having a creation tool for the current diagram type (the same list displayed
when the UML Tools item is selected in the combo). In the example above, the tool creating
an Operation is selected. The sub-items of this tool are new tools. These new tools also create
an Operation, but with a stereotype already applied on it. In the case of the Standard profile,
we can create an Operation stereotyped Create or Destroy.

The available tools list can be ordered differently, using the icon on top right of the
available tools viewer. This icon toggles the kind of display for the tool.

• The first kind of view is the structure described above: a tree composed by UML tools.
The tools have leafs, which are tools that create the same kind of UML element, but
with a particular stereotype on them.

• The second kind of view is a tree structure also. The first level is composed by the set
of stereotypes present in the profile. The leafs of these stereotypes are the set of tools
that can create a stereotypable element. For example, there will be the stereotype
Create, with leafs for creating an operation stereotyped Create, a reception, a usage,
etc.

Palette Customisation in Papyrus MDT
__

__

17/21

Palette Customisation in Papyrus MDT
__

__

18/21

On the right side, a preview of the palette is shown. The tools on the top right corner build
new elements in the palette. For example, the first icon creates a new “Drawer”, the second
one a new “separator” and the third one a new “Stack”.

Drag and drop from the list of available tools to the palette preview is possible, as the drag
and drop inside the palette preview. When dragging an element from the available tools, it
creates a tool in the palette preview. When dragging inside the palette preview, it moves the
element from one place to another.

There are a few rules to respect when building a palette:

• Drawers must always be direct children of the palette root. Thus a drawer can not be
placed in a drawer.

• Tools and separators must be placed in a container – a stack or a drawer, they can not
be placed directly on the palette root. This means that the first step when creating a
palette is to create a new Drawer.

• A stack must contain only tools, no separator and no stacks.

• If a tool is present twice in the same drawer or stack, it will be present only once in the
real editor palette.

Palette Customisation in Papyrus MDT
__

__

19/21

6.3. Updating a new local palette

It is very hard, if not impossible, to create a good palette from scratch. There is always a
misplaced element, a missing one, etc. Thus, the local palette definitions can be edited and
updated. This is done when selecting a local palette in the customize dialog window, and
pushing the “edit” button .

This opens a wizard similar to the previously presented one, the only difference is the fact that
fields and palette preview are already filled with existing configuration.

6.4. Deleting a local palette definition

When a user wants to remove a local palette definition from its workspace, he can delete the
definition he wants. He can select a local palette and select the “delete” button.

WARNING: This removes definitely the palette. It is impossible to recover this palette
configuration!

6.5. Export a palette

Not implemented yet... the PDE wizard for a new plugin project should be extended for this
functionality.

6.6. Import a palette

Not implemented yet... an XML parser should be build upon the plugin.xml file, to build a
local palette from palette defined by a plugin.

A second import action should be done to exchange local palettes. The xml file is currently
stored in the “.metadata” hidden folder in the workspace. This file can be copied to export a
local palette. A way to import such XML files should be done in the new palette wizard.

7. Defining palette using plugins

As said in previous chapters, the goal of the gmf generation modification was to allow the
reuse of predefined elements. These predefined elements, like the tool that creates a Class,
can be used in a palette definition using the GMF palette extension point. The standard palette
generated by the gmfgen itself currently uses this kind of extension.

Thus, a tool developer or a methodology provider can build and publish his own palettes. For
example, several palettes could be furnished for the class diagram.

Two possibilities for the palette selection can be developed.

• Selection by the user

This first solution is already present. User can select through a context menu in the
palette which palettes he wan to display.

Palette Customisation in Papyrus MDT
__

__

20/21

• Selection by configuration

A tool like a model-based configuration or eclipse activities should be able to
configure the tool given the current step in the development process. The tool can be
configured; activities or configuration should now be implemented to have such
behaviour. The user would not have the right to modify his palette in this kind of
situation.

