
esaam

Privacy-friendly sharing of health data using a reference architecture

A. Shayan Ahmadian Postdoctoral researcher

Health Data Spaces – Motivation and challenges (1/2)

https://internationaldataspaces.org/why/data-spaces

Strategic requirements of International Data Spaces (IDS):

Trust

Security and data sovereignty Ecosystem of data Standardized interoperability Value adding apps Data market

Data spaces for different domains:

Automotive industry (Catena-X) Mobility, Transport and Tourism (EONA-X) Skills analytics and matching (Prometheus-X)

Health Data Spaces – Motivation and challenges (2/2)

- Empowering individuals through increased digital access to and control of their electronic personal health data.
- Fostering a single market for electronic health record systems, relevant medical devices and high risk Al systems.
- Providing a trustworthy and efficient set-up for the use of health data for research, innovation, policymaking and regulatory activities (secondary use of data).

Health Data Spaces – Motivation and challenges (2/2)

 Empowering individuals through increased digital access to and control of their electronic personal health data.

- Fostering a single market for electronic health record systems, relevant medical devices and high risk Al systems.
- Providing a trustworthy and efficient set-up for the use of health data for research, innovation, policymaking and regulatory activities (secondary use of data).

Health Data Spaces – Motivation and challenges (2/2)

Health data spaces face critical challenges in addressing privacy concerns... [1]

Maintain the privacy and confidentiality of sensitive health data.

Public

embarrassment

- Empowering individuals through increased digital access to and control of their electronic personal
 - **RQ1:** How can a data sharing contract be designed for health data spaces to

erspecify privacy and security requirements? ord systems, relevant medical devices and high risk

RQ2: How can the IDS RAM be adapted to realize a privacy friendly sensitive

data sharing in health data spaces? for the use of health data for research, innovation, policymaking and regulatory activities (secondary use of data).

[1] J. S. Marcus et. al., The European Health Data Space. Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies. December 2022.

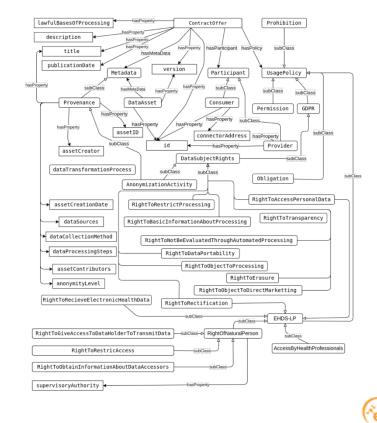
There is no formal or widely adopted structure for contract offers when it comes to health data spaces

A structured contract:

- Outlines the scop, purpose, responsibilities and terms of data sharing.
- Establishes a framework that reduces ambiguity, mitigates disputes and facilitates communication.
- Fosters trust and compliance.

First an **ontology** that represents the **domain** of **contracts** in **heath** data spaces is proposed.

The ontology defines the foundational terminologies to establish a clear and unambiguous understanding of key terms.



Initially GDPR and EHDS are used to establish an ontology

The **state of the art** is analyzed and we leverage the terminologies presented in:

- Usage Contract Language (IDS RAM),
- Policy Expression technique,
- ODRL,
- GDPRtEXT,
- PROV-0,

An excerpt structure of the contract offers

```
"@context":
   "co": "http://contract.contology#",
   *consumer": {
        "@type ": "co:Consumer" },
   *contract_id": {
        "@type": "co:contractID" },
   "contract_version": {
        "@type ": "co:contractVersion" },
   "data_asset": {
        "@type ": "co:DataAsset" },
   *description ": {
        "@type": "co:description" },
   *lawful_basis_for_sharing* {
        "@type": "xsd:string" },
   "meta_data": {
        "@type": "co:Metadata" },
   "policies": {
        "@type": "co:Policy",
        "@container ": "@set" },
   "provider ": {
        "@type": "co:Provider" },
   "publication_date ": {
        "@type": "co:publicationDate" },
   "title": {
        "@type": "xsd:string" },
   "version": {
        "@type": "co:version"} } }
```

Unique identifier, title, description, metadata, parties involved (provider, consumer), policies.

An excerpt structure of the contract offers - Example

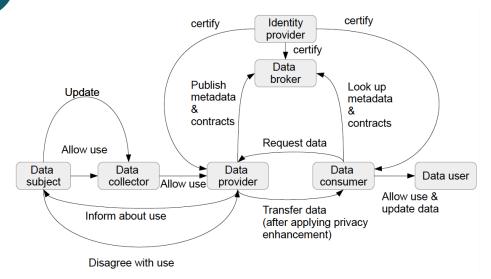
The data provider does not want **the shared data** to be **retained** for more than 3 months (Article 5(1)c of the GDPR known as **data minimization**).

```
"policy - class ": "dataMinimization",
"policy - properties ": {
    "action ": "delete",
    "constraint ": [{
        "leftOperand ": "duration",
        "operator ": "lt",
        "rightOperand ": {
            "@value ": "P90D",
            "@type ": "xsd:date" } }] }
```

An excerpt structure of the contract offers - Example

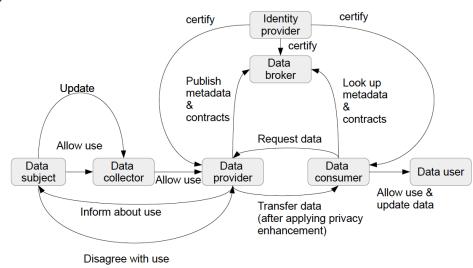
```
*@context *: {
    *co*: "http://contract.contology #*,
    *consumer *: {
        "@type *: *co:Consumer* },
    *contract_id *: {
        "@type *: *co:contractID * },
    *contract_version *: {
        "@type *: *co:contractVersion * },
    *data_asset *: {
        "@type *: *co:DataAsset" };
RQ1: How can a data sharing contract
```

RQ1: How can a data sharing contract be designed for health data spaces to specify privacy and security requirements?


```
"@type": "co:version"} }
```

The data provider does not want **the shared data** to be **retained** for more than 3 months (Article 5(1)c of the GDPR known as **data minimization**).

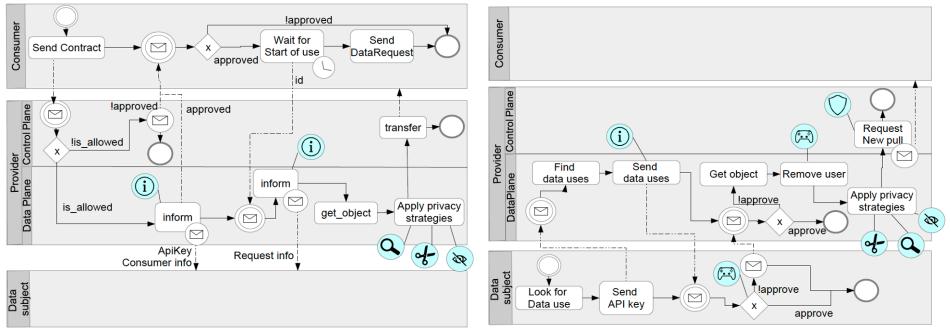
```
"policy - class ": "dataMinimization",
"policy - properties ": {
    "action ": "delete",
    "constraint ": [{
        "leftOperand ": "duration",
        "operator ": "lt",
        "rightOperand ": {
        "@value ": "P90D",
        "@type ": "xsd:date" } }]
```



Our reference architecture is an adaption of the IDS RAM

The **data subject** (patient) is introduced as an active role that has **control** over the.

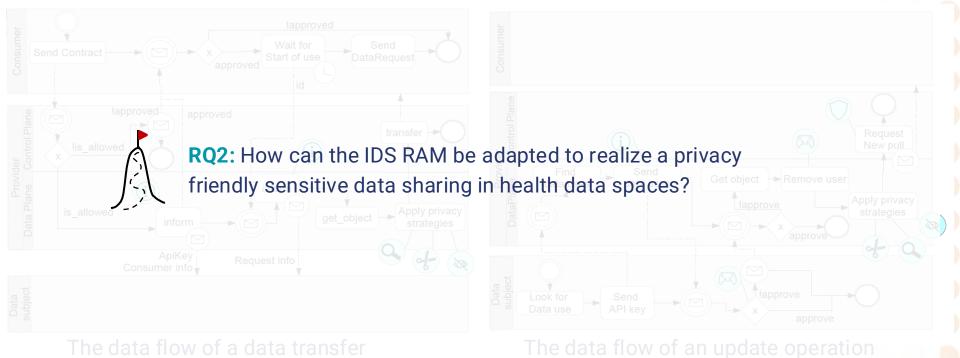
Our reference architecture is an adaption of the IDS RAM



The **data subject** (patient) is introduced as an active role that has **control** over the.

- • Minimise: Sensitive data that is not needed should be deleted.
- **Abstract**: Sensitive data should be only processed in the highest required granularity.
- (Hide: The access to sensitive data should only be granted to users with the right clearance.
- **Separate**: The processing or storing sensitive data should occur on different locations to avoid profiling.
- (i) Inform: The person to whom the data belongs, is informed about the data processing.
- (A) control: The person to whom the data belongs has the ability to update or delete their data.
- **Enforce**: All parties should enforce appropriate rules in their entire structure.

Well-established **privacy design strategies** are used to realize privacy by design principle (**GDPR - Article 25**).


The interactions between the components are adapted to particularly give data subjects control over their data

The data flow of a data transfer

The data flow of an update operation

The interactions between the components are adapted to particularly give data subjects control over their data

COPYRIGHT (C) 2024, ECLIPSE FOUNDATION

Evaluation – An ontology should accurately capture the concepts with the seeking domain (1/2)

Our focus will be accuracy and coverage. The evaluation metrics are defined as follows:

Precision = TP/(TP + FP)Recall = TP/(TP + FN)

F1 - Score = 2 * (Precision * Recall) / (Precision + Recall)

 $Coverage = \left(\frac{\#OC \in corpus}{|ontology|}\right)$

TP is the correctly identified concepts from the ontology in the reference corpus FP is incorrectly identified concepts FN are concepts not identified $\#OC \in corpus$ specifies the count of concepts of ontology in the corpus |corpus| and |ontology| signify the total number of concepts in the corpus and the ontology

Evaluation – An ontology should accurately capture the concepts with the seeking domain (2/2)

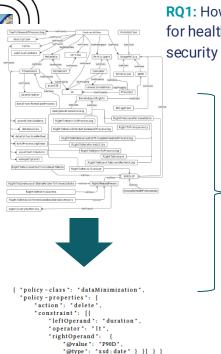
Precision, **Recall** and **F1-Score** are widely used in information retrieval and natural language processing to evaluate the accuracy of ontology-based information extracting.

	TP	FP	FN	#OC ∈ corpus	corpus
GDPR	178	0	221	178	3826
EHDS	136	0	263	136	1344

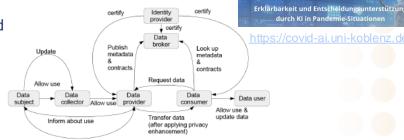
Table 1: Contract ontology evaluation properties.

Table 2: Contract ontology evaluation results.

	Precision	Recall	F1-Score	Coverage
GDPR	1.0	0.45	0.62	0.09
EHDS	1.0	0.34	0.51	0.07


Refine the **ontology** and the **contract** structure definition by considering various **regulations** such as cyber security act, resilience act, and AI Act.

Refine the **methodology** of identifying key terms in the regulations **coding** (for instance Hypothesis coding).


How **statically** (design time) and **dynamically** (run time) the principle of **data minimization** can be realized?

Privacy-friendly sharing of health data using a reference architecture for health data spaces

RQ1: How can a data sharing contract be designed for health data spaces to specify privacy and security requirements?

lapproved Wait for Send Send Contract Start of use, DataRequest approved approved approved transfer Request lis allowed New put Sand Find Get object - Remove user data user data uses inform Apply privat 1 1 1 lapprove Apply privacy is_allowed get_object inform •(⊠Ì stratecies approve (m) ApiKey Request info Consumer info Look for Send lapprove API key Data use

Disagree with use

RQ2: How can the IDS RAM be adapted to realize a privacy friendly sensitive data sharing in health data spaces?

Thank you

COPYRIGHT (C) 2024, ECLIPSE FOUNDATION