2023

i on Cloud to Edge Continuum

fﬂ@u

nol -‘*- acture tter Selection anc

Application m Cloud-Centric Serwce-Oriented IDEs

’]

L

Fulya Horozal, Philip Reimer, Sebastian Scholze

ATB - Institut fur angewandte Systemtechnik Bremen, Germany

horozal@atb-bremen.de
Oct. 17,2023 Ludwigsburg, Germany

= _J:""' 2023

v |
el

» High-level structure of system components & their
interactions

« High impact on quality, success & management of software

 Architectural patterns & styles
* Principles & best practices for software architecture design
» Guidelines & templates for structuring & organizing software systems
« Common vocabulary to describe software architecture
* E.g., event-driven architecture, layered architecture, microservices

Oct. 17,2023 Ludwigsburg, Germany

3 —';l_"
asign

e = B

2023

on Cloud to Edge Continuum
<8Il

= F

* Choosing the right architectural pattern
» Strengths, drawbacks, technical knowledge
« Impact on quality attributes (“-abilities”), requirements, constraints
* Project requirements, constraints & limitations
« System complexity, scalability needs
« Team expertise, trade-offs
* Industry best practices

 Traditional methods
» Architectural pattern catalogs, architectural decision records
» Architecture tradeoff analysis, decision matrices
* Expert consultation, reference architectures

Oct. 17,2023 Ludwigsburg, Germany

2023

B

® Modeling and diagramming
® UML-based software modeling
® Architectural diagrams
® E.g., Enterprise Architect (Sparx Systems), IBM Rational Software Architect, Archimate Toolset, Eclipse Papyrus

® Architectural decision modeling framework (0. Zimmermann)

® Quality attribute analysis
® Performance & security analysis
® Scalability & maintainability assessment
® Cost & change impact analysis
® E.g., ARIS (Software AG), IBM Rational Rhapsody, QualiWare, Determine

® ML techniques to learn from architectural decisions (Mahabaleshwar)
® Decision studio web tool for technology selection & architectural patterns (Farshidi et al.)

® Code generation from architectural models
® From UML or other notations
® Scaffolding & project organization tools

Oct. 17,2023 Ludwigsburg, Germany

2023

SN

* Architectural pattern decision support feature for IDE integration

* Architectural pattern selection

* Knowledge base

Application domain

Application type

Quality attributes / non-functional requirements

Development & deployment requirements

Architectural features

* Evaluation & ranking
* Based on existing literature on pattern analyses (Farshidi et al. 2020, Richards 2022)
* Scoring system assigning weights to patterns in context of knowledge base

* Architectural pattern application
* GitHub repository templates for project & code organization

* Integrated into the cloud-native SmartCLIDE IDE

Oct. 17,2023 Ludwigsburg, Germany

2023

B

* Layered architecture
* Distinct layers for presentation, application logic, data storage

* Event-driven architecture (EDA)
* Systems communicate through events (trigger actions or reactions)

* Microkernel architecture
* Essential core (the microkernel) and various optional modules

* Microservices architecture
* Small independent services that communicate over APIs

* Service-oriented architecture (SOA)
* Loosely coupled, reusable services communicating via interfaces

* Space-based architecture (SBA)

* Distributes data & processing across a network of interconnected, distributed
spaces

Oct. 17,2023 Ludwigsburg, Germany

2023

Application Domain Associated Architectural Patterns

Web-based systems EDA, layered, microservices, SOA, SBA
Web services Microservices, SOA, SBA

Service-based systems Microservices, SOA

Distributed systems EDA, layered, microkernel, microservices, SOA, SBA
Cloud computing applications Microservices, SOA

Mobile applications Layered, microservices, SOA, SBA
Compiler design Layered

CASE and related developer tools EDA, layered, microkernel, microservices,
Database systems EDA, layered, microservices
Context-aware systems EDA, layered, microservices, SOA
Adaptable systems Microkernel, microservices

Enterprise application integration EDA, microservices, SOA

Customer relationship management EDA, layered, microservices, SOA
Information management and decision support system EDA, layered, SOA

Transaction processing EDA, layered, microservices, SOA

Oct. 17,2023 Ludwigsburg, Germany

2023

Application Type Associated Architectural Patterns

Web application / website with small components

Large scale web application like e-commerce or social website development

General desktop application
Application with a simple business logic that does not need to scale out
Enterprise or business application with traditional IT departments and processes

Application with fixed set of core functionalities and a dynamic set of functionalities that need frequent
updates

Large, complex, enterprise-wide systems that require integration with many heterogeneous applications
Application with many shared components, particularly components across the enterprise

Application with immense and rapidly growing data systems

Application with different platforms

Application that requires strict standards of testability

Oct. 17,2023

Microservices, SOA

EDA, layered, microservices, SOA, SBA
Layered

EDA, layered
Layered, SOA

Microkernel, microservices

EDA, microservices, SOA
EDA, microservices, SOA
EDA, microservices, SBA
Microservices, SOA

Layered

Ludwigsburg, Germany

2023

R

Quality Attributes / Non-functional Requirements Associated Architectural Patterns

Maintainability All six
Performance / Efficiency EDA, microservices, SOA, SBA
Portability All six
Reliability All six
Security All six

Oct. 17,2023 Ludwigsburg, Germany

N

Development & Deployment Requirements Associated Architectural Patterns

High ease of development / quick development with fewer developers Layered, microservices
Ease of rewriting and updating parts of the application EDA, microkernel, microservices, SOA
Development teams that are spread out Microservices

Adding special functionality, modules or extensions without modifying the original application Microkernel, microservices

High ease of deployment Microkernel, microservices

Rapid, frequent and independent deployment Microservices

Quick response to a constantly changing environment EDA, microkernel, microservices, SBA
Reusability of integrations and components sharing EDA, microservices, SOA

Oct. 17,2023 Ludwigsburg, Germany

Asynchronous communication / data flow
Synchronous communication / data flow
Loose coupling

Independent services

Separation of concerns

Plug-in components

Dynamic composition

High volume data

Oct. 17,2023

\>c

Architectural Features Associated Architectural Patterns

EDA, layered, microservices, SBA
Layered, microkernel, microservices, SOA
EDA, microservices, SOA

Microservices

Layered, microkernel, microservices, SOA
Microkernel

EDA, microkernel, SOA, SBA

EDA, microservices, SBA

Ludwigsburg, Germany

* 18 GitHub
repository
templates

Frameworks:
Java Spring
Node.js
Python

Template
for each
architectural
pattern &
framework

Oct. 17,2023

= O harozal / event-driven-python

<> Code () lssues [Pull requests

[l Code

¥ main - + ([Q
Q. Goto file t

I v [src
v B event_handlers
] _init__py
) event_handler.py
™ main.py
v [tests
O _init__py
[.gitignore
[README.md

(3 requirements.bxt

= o horozal / layered-architecture

<> Code (O Issues 17 Pull requests <» Code (O lssues

[1 Code [Code
¥ main - + (Q ¥ main
Q Goto file t Q, Gotofile
> I mvn I v [src
Iv & src v [core
~ B8 main [indexjs

v [javajcom/example/layered D package.json

~ [controller v [modules/module

[3 EntityControllerjava 03 modulejs

[packagejson

v @ model
[3 sampleEntity.java 3 index.js
~ B repository [.gitignore
(9 README.md

[EntityRepositary,java
v @ service (9 packsge json
[Entityservice java
] LayeredApplication.java
~ [resources
[3 application.properties
~ [test/java/com/example/layered
[LayeredapplicationTests.java
) .gitignore
[9 README.md
[mvnw
O mvnw.cmd

[pomaxml

O horozal / microkernel-nodejs

-t

2023

@ !

> |

= o horozal / microservices-python = O horozal / space-based-nodejs

<> Code () lIssues

[Code

F main

Q, Gotofile

I v [senvice 1
v [sc
O apppy
v [tests
D _init_.py
D requirements.tet
~ [senvice 2
v [s
[app.py
v B tests
[_init_py
(] requirements et
[} .gitignore
[README.md

17 Pull requests <> Code (D Issues 1’ Pull requests

[Code
- + Q P main - + Q
t Q, Gotofile t

|v & s

v [components
(] Component.js
v [data-grid
[InMemoryGrid.js
D index js
v [events
D Event,js
v [spaces
[spacejs
[mainjs
(] .gitignore
[README.md

ackagejson
P g,

Ludwigsburg, Germany

LIl Files

¥ main

microkernel-python / src / mainpy (O

%% horozal Add folder

| Q Gotofile

v [src
v [core
] _init__py
[9 kernel.py
~ & plugins
] _init__.py
O plugin.py
I (39 main.py
v & tests
0 _init_py
[3 .gitignore

[README.md

[9 requirements.txt

Oct. 17,2023

from plugins.plugin import Plugin

{

kernel = Kernel(}
kernel.print_hello()

V=R - T T - NIRRT » B - NV R % T o)

plugin = Plugin()
plugin.print_hello()

e e e
[T T -

microkernel-python / src / core [kernel.py

%% horozal Add folder

w class Kernel:
def _ init_ (self):
pass

def print_hello(self}:

1
2
3
4
5
E print{'#elle, Kernel!"}
7

8

kernel = Kernel()

<

[I PRT B O YR =

2023

<ggIlIR

microkernel-python / src / plugins / plugin.py O

<* horozal Add folder

Blame 13 lines (2 loc) - 213 Bytes Blame & lines (6 loc) - 135 B Blame & lines (& loc} - 138 Bytes

from core.kernel import Kernel

class Plugin:
def __init (self):
pass

def print_hello(self}:
print("Helle, Plugin!'}

plugin = Plugin(}

Ludwigsburg, Germany

2023

L — °

|

gl

« Backend REST API in Java Spring

» Retrieve survey content
« Select architectural pattern
« Select repository template

* Independent of survey content & evaluation values
« JSON format for survey content & evaluation values
* Reconfigurable

Oct. 17,2023 Ludwigsburg, Germany

2023

gl

H2020 EU-funded project (2020-2023)
®* https://smartclide.eu/ @ﬁ@

Novel cloud-native IDE

®* https://ide.che.smartclide.eu/ >martCLIDE
Based on Eclipse Theia

Life cycle support (development, testing, deployment, run-time)
Collaborative discovery, creation, composition, testing, deployment of services in the cloud
Source code monitoring

Cl/CD integration

4 industry pilots for validation & assessment

Real-time communication platform (Wellness Telecom, Spain)
Social security application (Netcompany-Intrasoft, Luxembourg)
loT web catalog (Unparallel, Portugal)

Project management solution (CONTACT Software, Germany)

Open sourced under Eclipse Foundation
®* Eclipse OpenSmartCLIDE

Oct. 17,2023 Ludwigsburg, Germany

https://smartclide.eu/
https://ide.che.smartclide.eu/

SmartCLIDE

Workflows

Services

Workflows

Name
Model import
Model import

Github API

Oct. 17,2023

Welcome to

)

SmartCLIDE
IDE

Version
1.0
1.0

1.0

Creation Date

22-Mar-2023 16:27

22-Mar-2023 16:20

21-Mar-2023 17:05

Get Started

Create New...

Service

Services

Name
test-04
test-03

test-python-01

2023

|

® @

Recent

testnodejsO3spacebased
testlayeredpython
nodejstestsb

Creation Date
01-Sep-2023 16:18
31-Aug-2023 19:13

31-Aug-2023 13:26

Ludwigsburg, Germany

2023

SmartCLIDE

Workflows
[Step 1/2] Git Setup

Please select which set of Git credentials to use

Services

Git System

i
L

[Please select a Git System

Credentials

4
L

[Please select a set of credentials

Cancel Next

Oct. 17,2023 Ludwigsburg, Germany

SmartCLIDE

Workflows

Services

Oct. 17,2023

2023

® @

[Step 2/2] Service Details

Provide the details of the new service

Name

[Provide the name of the service]

Description

Provide a short description of the service

Architectural Pattern (@)

[Select the architectural pattern B]
Framework

[Select the framework]]
Visibility

[Select the visibility of the repository E]]
Licence

[Select the project’s licence E]]

Cancel Previous

Ludwigsburg, Germany

Oct. 17,2023

Architectural Pattern Assistant

Please choose the domain of your application

) Web-based systems
| Web services
) Service-based systems
_) Distributed systems
_) Cloud computing applications
) Mobile applications
! Compiler design
_) Case and related developer tools
_| Database systems
_) Context-aware systems
) Adaptable systems
! Enterprise application integration
_) Customer relationship management
_ Information management and decision support system
! Transaction processing
_ None of the above

Please choose the type of your application

! Web application / website with small components
! Large scale web application like e-commerce or social website development
_ General desktop application
1 Application with a simply business logic that does not need to scale out
_) Enterprise or business application with traditional IT departments and processes
_) Application with a fixed set of core functionalities and a dynamic set of functionalities that need

frequent updates

I Large, complex, enterprise-wide systems that require integration with many heterogeneous

applications and services

) Application with many shared components, particularly components across the enterprise
_ Application with immense and rapidly growing data systems
! Application with different platforms

2023

on Cloud to Edge Continuum

Ludwigsburg, Germany

Oct. 17,2023

Architectural Pattern Assistant

Please choose the domain of your application
_ Web-hased systems

' Web services

) Service-based systems

Distributed systems

_) Cloud computing applications

_ Mobile applications

) Compiler design

_ Case and related developer tools
' Database systems

_) Context-aware systems

) Adaptable systems

_ Enterprise application integration

_ Customer relationship management
' Information management and decision support system

) Transaction processing

_ None of the above

Please choose the type of your application

' Web application / website with small components
_ Large scale web application like e-commerce or social website development
_ General desktop application
_ Application with a simply business logic that does not need to scale out
_ Enterprise or business application with traditional IT departments and processes
O Application with a fixed set of core functionalities and a dynamic set of functionalities that need

frequent updates

) Large, complex, enterprise-wide systems that require integration with many heterogeneous

applications and services

) Application with many shared components, particularly components across the enterprise
' Application with immense and rapidly growing data systems
' Application with different platforms

2023

on Cloud to Edge Continuum

Ludwigsburg, Germany

Oct. 17,2023

Architectural Pattern Assistant

Please ck the most rel non-functional requirements for your application

() Maintainability (how easy the software system can be modified to correct faults, improve performance,
or other attributes, or adapt to a changed environment)

() Performance (amount of work accomplished by a system and the limiting factor in the end-usability of
the system)

Portability (the degree in which the same architecture can be used in different environments)

(I Reliability (consistency in the anticipation of software operations - e.g., in terms of the number of
software faults (bugs), expressed as faults per thousand lines of code)

Security (the ability to control who can perform what actions on particular resources)

Please choose the desired features of your application for d t and deploy
' High ease of development / quick development with fewer developers

| Easy rewriting and updating parts of the application

) Development teams that are spread out
Adding special functionality, modules or extensions without medifying the original application
[High ease of deployment

' Rapid, frequent and independent deployment

[Quick response to a constantly changing environment

[Reusability of integrations and component sharing

Please choose the desired features of your architecture

() Asynchronous communication / data flow (interaction between components without strict requirement
for immediate or synchronized responses)
Synchronous communication / data flow (information can only be exchanged in real time)
Loose coupling (degree of dependency between compoenents is very low)
Independent services (services can be developed and deployed independently of one another)
Separation of concerns (separating an application into distinct sections each of which address a
separate concern)
Plug-in components (adding additional feature as plugins to the core application)
Dynamic composition (system components and connections can be created and destroyed during

Clear

runtime)

Uimnh vunliima Asta iciza ~f Aatacate +n ha nrarcaccad ara larmar than tarabitac)

w

2023

on Cloud to Edge Continuum

Ludwigsburg, Germany

Oct. 17,2023

Architectural Pattern Assistant

Please choose the desired features of your lication for devel t and deploy

PP P

() High ease of development / quick development with fewer developers

() Easy rewriting and updating parts of the application

() Development teams that are spread out

@ Adding special functionality, modules or extensions without medifying the original application
() High ease of deployment

() Rapid, frequent and independent deployment

() Quick response to a constantly changing environment
() Reusability of integrations and component sharing

Please choose the desired features of your architecture

() Asynchronous communication / data flow (interaction between components without strict requirement
for immediate or synchronized responses)

| Synchronous communication / data flow (information can only be exchanged in real time)

! Loose coupling (degree of dependency between components is very low)

I Independent services (services can be developed and deployed independently of one another)

| Separation of concerns (separating an application into distinct sections each of which address a
separate concern)
Plug-in components (adding additional feature as plugins to the core application)
Dynamic composition (system components and connections can be created and destroyed during
runtime)
High volume data (size of datasets to be processed are larger than terabytes)

According to your input, the most suitable patterns and corresponding scores are:

1. Microkernel (28)

2. Microservices (19)

3. Layered (14)

4. Event-driven (13)

5. Service-oriented (13)
6. Space-based (12)

2023

on Cloud to Edge Continuum

Ludwigsburg, Germany

[3

SmartCLIDE IDE

« > C

&>

SmartCLIDE

Workflows

Services

Oct. 17,2023

x | +

o E] &2 https//ide.che.smartclide.eu/services/serviceCreation

[Step 2/2] Service Details

Provide the details of the new service

Name

2023

@ !

> |

[demo-project-01

Description

demo

Architectural Pattern (2

[Microkernel

Framework

[Python B]
Visibility

[Private]]
Licence

[Eclipse Public License 2.0

‘]

Cancel

Ludwigsburg, Germany

= 2023

NN

* Increase # of patterns supported

« Support pattern combinations

* Improve survey content & evaluation

« Add explanation to pattern suggestions

» Add alternative structures to repository templates

Oct. 17,2023 Ludwigsburg, Germany

2023

i on Cloud to Edge Continuum

Vo)
11
o |

SmartCLIDE

https://ide.che.smartclide.eu/

Sponsored by: Organized by:

[@J % CODECO @NEMO £3 nephele} [

UCloudEdgeloT.eu

(ECLIPSE &

POLITECNICA FOUNDATION ~TYTUNIVERSITY]

	Folie 1: Tool Support for Architectural Pattern Selection and Application in Cloud-Centric Service-Oriented IDEs
	Folie 2: Software Architecture Design
	Folie 3: Software Architecture Design
	Folie 4: Architectural Decision Tool Support
	Folie 5: A Framework for Architectural Pattern Selection and Application
	Folie 6: Supported Architectural Patterns
	Folie 7: Application Domain
	Folie 8: Application Type
	Folie 9: Quality Attributes / NFRs
	Folie 10: Architectural Knowledge
	Folie 11: Architectural Features
	Folie 12: Architectural Pattern Application
	Folie 13: Repository Templates
	Folie 14: Implementation
	Folie 15: SmartCLIDE Project
	Folie 16: SmartCLIDE IDE
	Folie 17: SmartCLIDE IDE
	Folie 18: SmartCLIDE IDE
	Folie 19: Architectural Pattern Selection in SmartCLIDE IDE
	Folie 20: Architectural Pattern Selection in SmartCLIDE IDE
	Folie 21: Architectural Pattern Selection in SmartCLIDE IDE
	Folie 22: Architectural Pattern Selection in SmartCLIDE IDE
	Folie 23: Architectural Pattern Selection in SmartCLIDE IDE
	Folie 24: Future Work
	Folie 25

