

The Importance of Open Simulators and Al in a Changing Mobility Landscape

Dr. Robert Hilbrich German Aerospace Center (DLR)

Eclipse SAAM Mobility 2021 Security | Al | Architecture | Modelling

Supported by:

CLUSTER

AUTOMOTIVE

OULU


MADE AVAILABLE UNDER THE ECLIPSE PUBLIC LICENSE 2.0 (EPL-2.0)

Photo by Marc Sendra Martorell on Unsplash

German Aerospace Center

- Research branches
 - Aeronautics / Space / Transport / Energy
 - Safety / Digitalization
- Around 9.000 employees working in 40 research institutes and facilities at 20 sites in Germany.
- Offices in Brussels, Paris, Washington, and Tokyo.

Research in Real World Mobility

NATE OF THE PARTY

ALAR

Sens.

and men

Hartballo

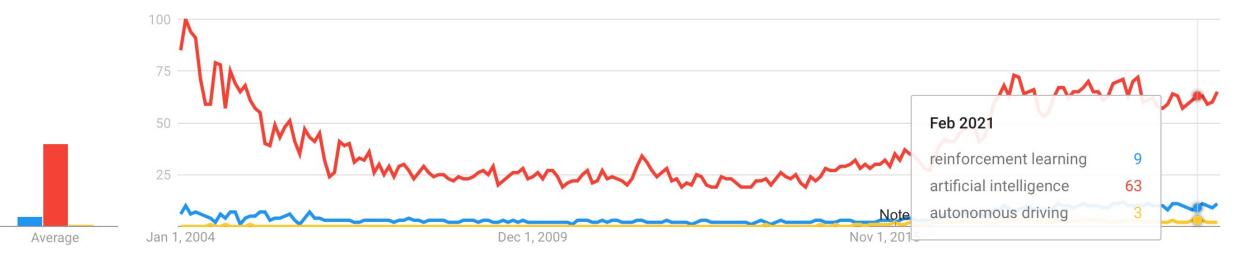
German Aerospace Center – Transport

- Green → environment-oriented traffic management, …
- Smart → automated & connected driving, intelligent traffic infrastructure, intermodal transport chains, ...
- User Friendly → human-centered design, intuitive interaction, comfortable, affordable ...
- Reliable \rightarrow safe, secure, highly available ...

- Systemic Approach

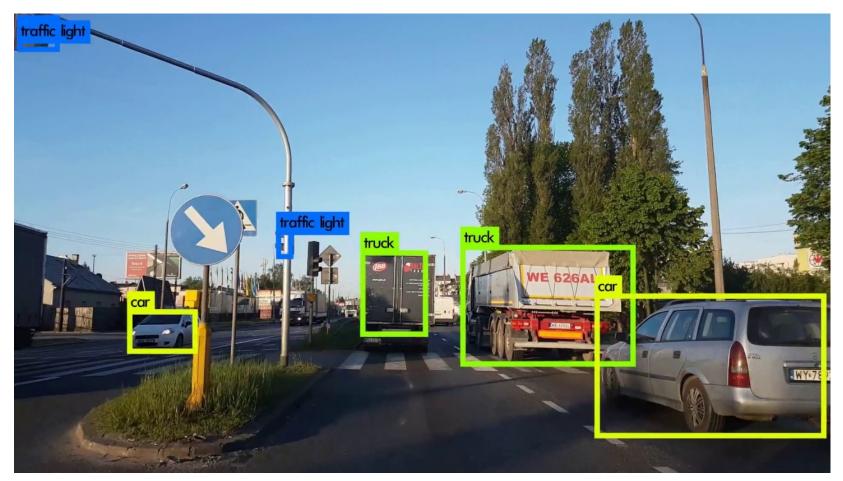
land use \leftrightarrow city planning \leftrightarrow traffic planning & management \leftrightarrow technologies \leftrightarrow humans and society ...

Figure: acatech

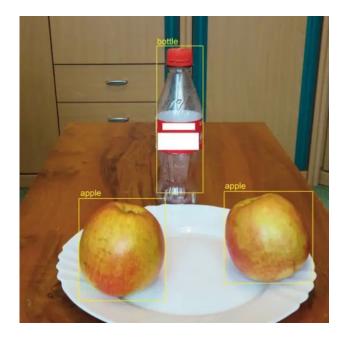

Simulation of Urban Mobility (SUMO) – Our "Real World Traffic Simulator"

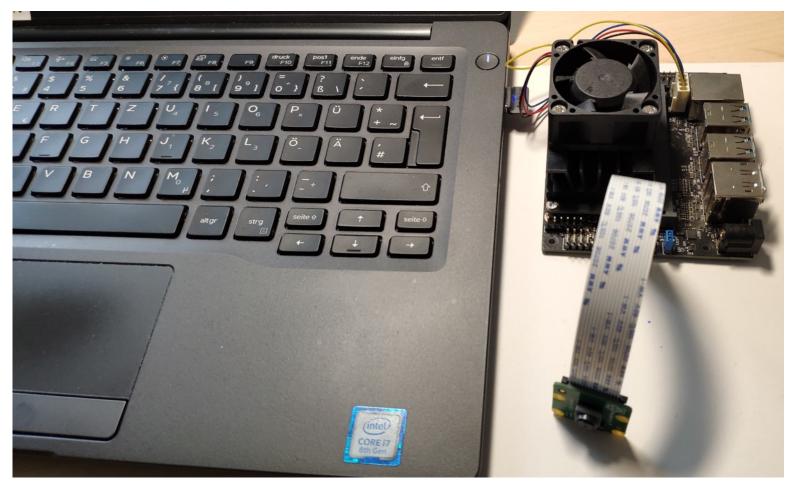
... the most popular open source software project of the German Aerospace Center (DLR) <u>www.eclipse.org/sumo</u>

GoogleTrends Comp	bare		< 😐 🖩
 reinforcement learning Search term 	 artificial intelligence Search term 	 autonomous driving Search term 	Add a search term
Worldwide 💌 2004 - pres	sent 💌 All categories 💌 Web Sea	arch 🔻	
Interest over time ⑦			± <> <
			_



Success Stories for AI in Mobility Systems


Example 1: AI for Image Recognition and Classification


- Image recognition and vehicle classification works well
- AI may have exceeded human capabilities ("super human")

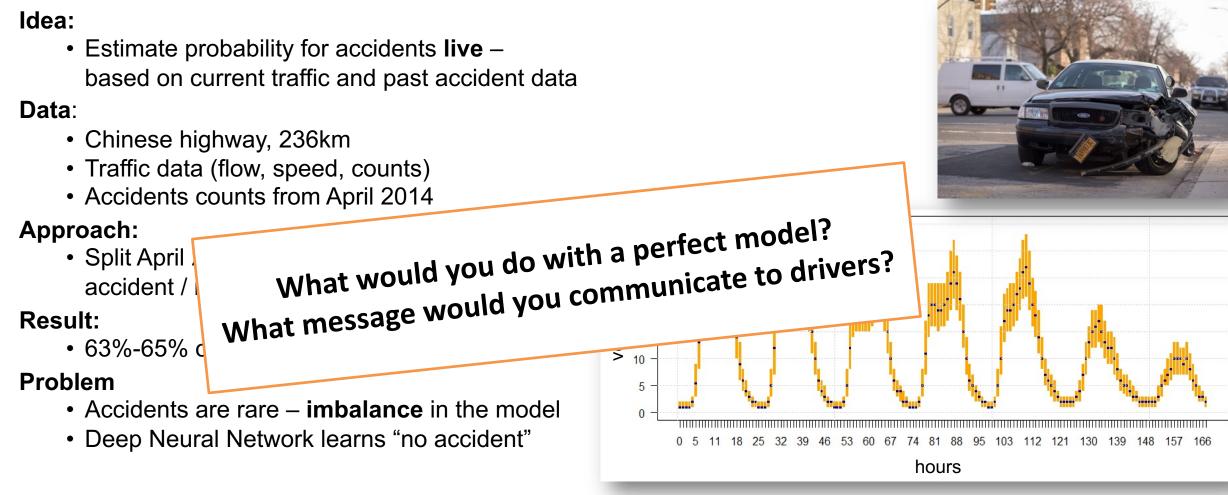
https://lazyprogrammer.me/new-deep-learning-course-advanced-computer-vision/

Example 2: Image Recognition & Classification – Do it yourself!

https://www.heise.de/select/make/2019/3/1561278575740040

Example 2: AI for Automated Driving and Traffic Management

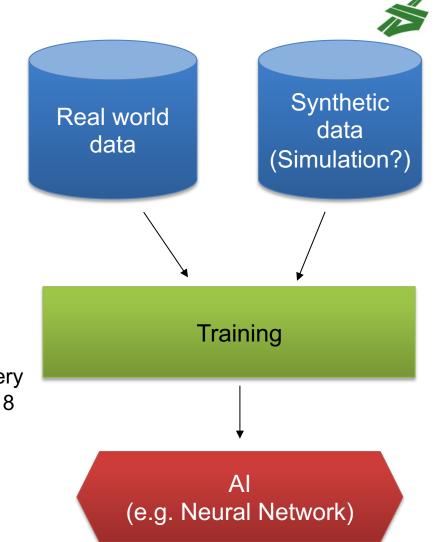
https://flow-project.github.io


Flow is ...

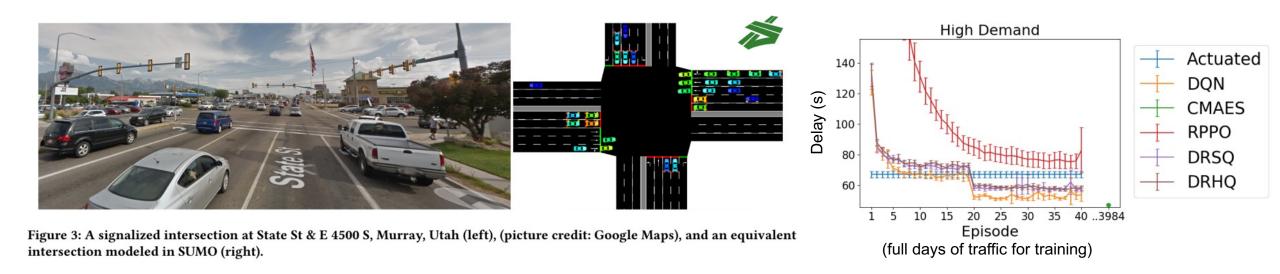
- a deep reinforcement learning framework for mixed autonomy traffic
- a traffic control benchmarking framework with
 - a suite of traffic control scenarios,
 - tools for designing custom traffic scenarios,
 - integration with deep reinforcement learning and traffic microsimulation libs

Recommended video: <u>https://youtu.be/P7xx9uH2i7w</u> (2min) - autonomous vehicles preventing traffic congestions

Example 3: Real-time Crash Prediction on Urban Expressways

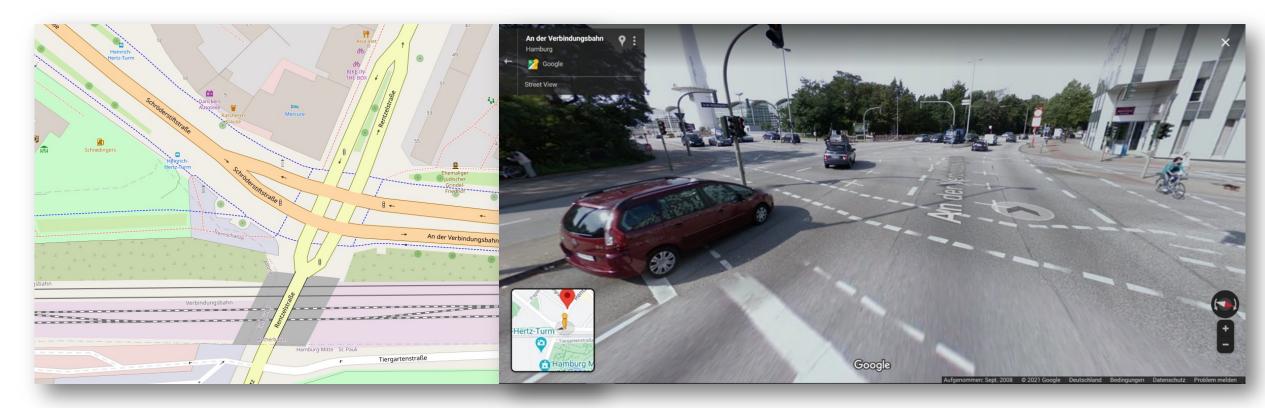

https://trid.trb.org/view/1496427

Challenges for AI in Mobility Systems

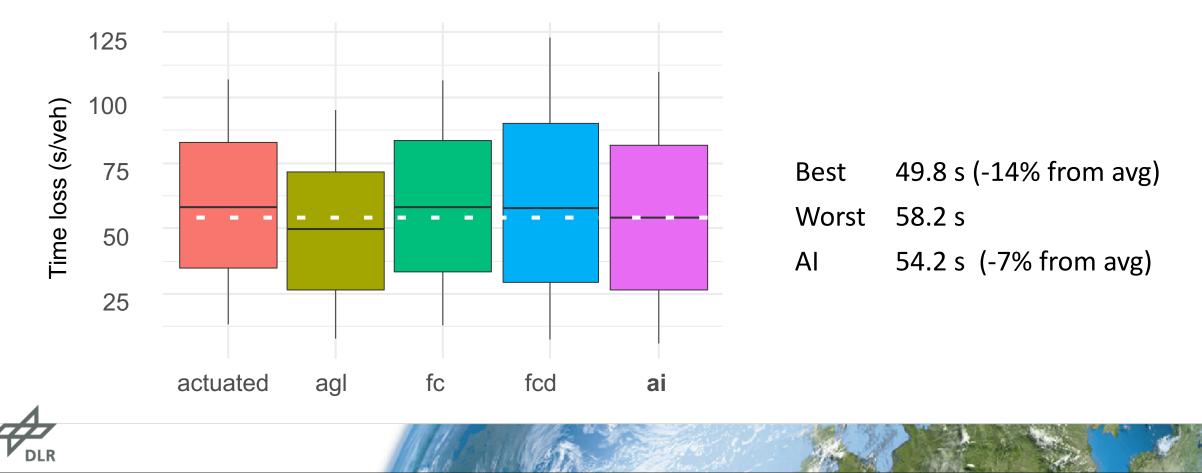


Challenge: AI Training and "Learning"

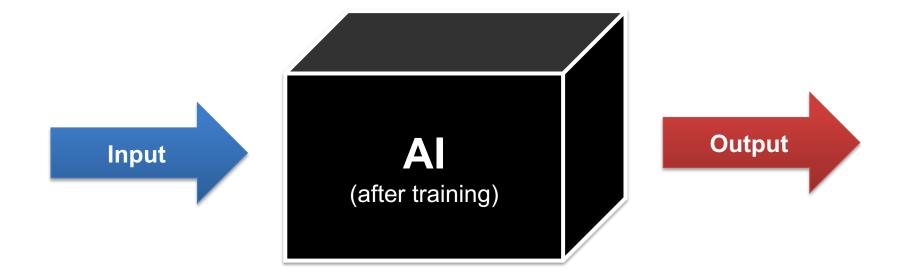
- Requires a LOT of data
 - Quality of data set? Hidden bias?
 - <u>https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing</u>
- Data captures **past** events and object encounters
- Get synthetic data from simulators
 - Reality vs. simulation do you trust the simulator?
- Energy and Carbon Footprint of Machine Learning
 - Computations required for deep learning research have been doubling every few months, resulting in an estimated 300,000x increase from 2012 to 2018 <u>https://cacm.acm.org/magazines/2020/12/248800-green-ai/fulltext</u>
- Optimization function is tricky to get right (and complete!)


Al for Traffic Lights (1) – Research from Texas A&M Uni. / Uni. of Edinburgh

- Evaluation of different Deep Q-learning algorithms
- J. Ault, J.P. Hanna, G. Sharon, "Learning an Interpretable Traffic Signal Control Policy" (2020) <u>https://arxiv.org/abs/1912.11023v2</u>
- See the code here: <u>https://github.com/jault/StateStreetSumo</u>
- Own experiments:
 - after about 1 day of computing (training): results are about as good as current actuated control strategy


Al for Traffic Lights (2) – DLR Customer Project

- DLR Project in Hamburg (Schröderstift- /Rentzelstrasse)
- Goal: Development of a custom AI-based traffic light control strategy



Al for Traffic Lights (2) – DLR Customer Project

- Reinforcement learning based on a SUMO simulation
- Optimization function: minimize the time loss for all vehicles
- Unfortunately: generated cycle time for traffic light was too long \rightarrow optimization function was incomplete(!)

Challenge: Explicit vs. Implicit Knowledge

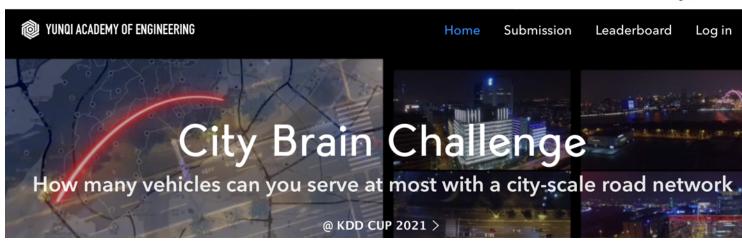
"We can either figure out how to [...] allow humans to understand these things, or we can surrender entire modalities [...] to be the sole domain of computers."

http://colah.github.io/posts/2015-01-Visualizing-Representations/

Explicit vs. Implicit Knowledge: Safety-critical Systems

- Verification/Validation Approach based on (complete) system observation
- Eclipse openGENESIS Working Group
- New DLR Institute for AI Safety and Security
 - "Safety and security by design" is a central aspect in this context, since it directly supports future requirements of safety-critical applications that are based on AI or integrate AI-based components.
 - <u>https://www.dlr.de/ki/en/</u>

Credit: Dimi TVP(CC BY-SA 4.0)

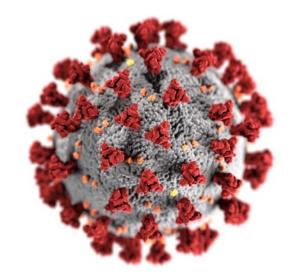


https://wiki.eclipse.org/OpenGENESIS_WG

Explicit vs. Implicit Knowledge: Benchmarking

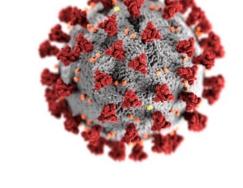
- Annual ACM SIG Knowledge Discovery und Data Mining (KDD) Cup
- "You will be in charge of coordinating the traffic signals to maximize number of vehicles served while maintaining an acceptable delay."
- "The safety distance car-following and lane-changing models used in CBEngine are similar to SUMO"
- Optimization function to minimize: average of t_{travel} / t_{free-flow} for all vehicles

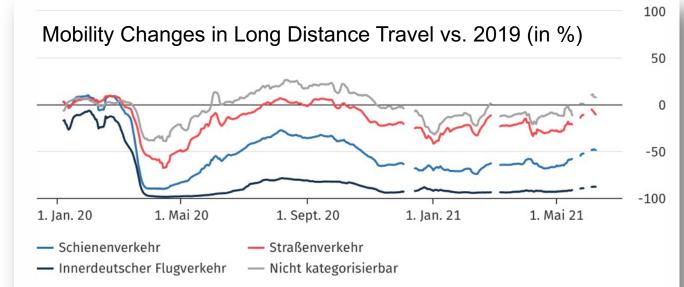
https://kddcup2021citybrainchallenge.readthedocs.io/en/latest/city-brainchallenge.html



http://www.yunqiacademy.org/poster

DLR.de • Chan 20	Rank	Team Name	Total Served Vehicle	Delay	Submission Time
<section-header><section-header><text></text></section-header></section-header>	Q	BOE_IOT_AIBD	126572	1.4849440797957865	2021-06-09 06:26:09
	2	4PQC_team	126572	1.485730405526422	2021-06-07 08:00:01
	Q	IntelligentLight	126572	1.4862501081986428	2021-06-07 14:34:56
	4	SupperNYU	126572	1.4873431719870123	2021-06-06 12:48:39
	5	GoodGoodStudy	126572	1.4926704014134926	2021-06-05 15:41:07
	6	SmartLight	126572	1.4955463604655208	2021-05-26 13:16:10
	7	polixir	126572	1.4995456913064775	2021-06-07 08:52:43
	8	SUMO	126572	1.5019871362799826	2021-06-09 08:27:27
	9	two_slices_of_bread_with_chee se	126572	1.5065601070238663	2021-06-07 10:35:42
	10	docomo_dev	126572	1.5189627245170698	2021-06-08 18:14:36
		<u>//www.yunqiacademy.</u> 6.2021	org/home/leaderboa	rd < 1 2 3 4 5	•••• 14 > 10 / page >
A				Competitors: 1408 Teams:	1156 Submissions: 2633
DLR	-	When all the	M. com Chart	- MATRI AND	AT ARE OF A




Changes in the Mobility System

Effects of CoVID-19: More Homeoffice – Less Traffic

- General German Automobile Club (ADAC):
 - Traffic jams: 513 500 (-28%)
 - Total length: 679 000 km (-52%)
 - Total hours: 256 000 h (-51%) https://www.adac.de/verkehr/verkehrsinformationen/staubilanz/
- German Federal Statistical Office (DESTATIS):
 - Mobility March 20 vs. March 19: -40%
 - Railway trips April 20 vs. April 19: -88% <u>https://www.destatis.de/DE/Service/EXDAT/Datensaetze/mobilitae</u> <u>tsindikatoren-mobilfunkdaten.html</u>
- Potential long-term effect: move to suburbs?
- How to predict these effects with historical data?

Hinweis: Mögliche Datenlücken entstehen i.d.R. aufgrund von technischen Problemen beim Mobilfunkanbieter. Quellen: eigene Berechnung | © Teralytics

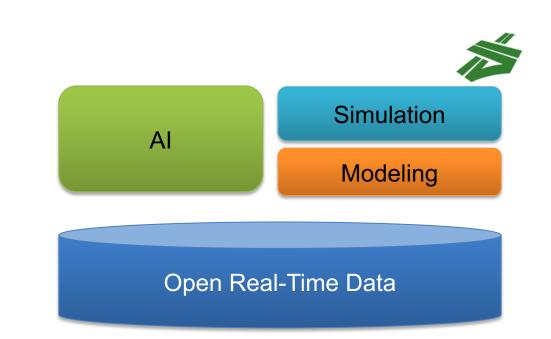
© 🖬 Statistisches Bundesamt (Destatis), 2021

Effects of New Technology

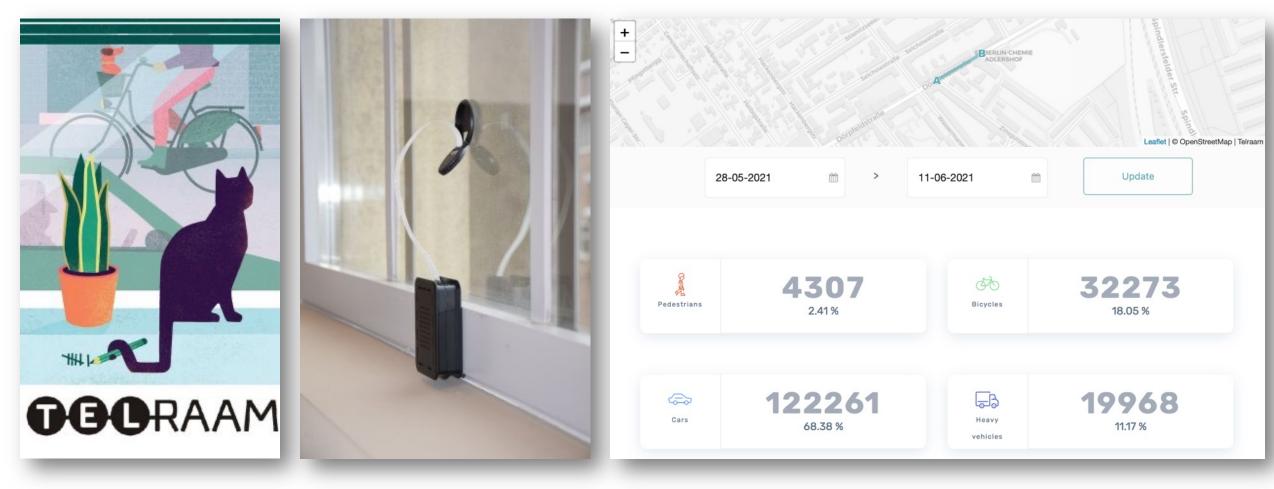
- Properties of mobility systems are affected by new technologies:
 - Smart traffic lights
 - V2X communication / Cloud-connected vehicles
 - Electric mobility
 - Autonomous vehicles (for public transport)
 - ...
- Affected properties
 - Cost, capacity and travel times
 - Predictability and passenger comfort
 - Traffic demand and mode choice
 - ...
- Mid/Long term changes
 - Germany: 48.3 Mio passenger cars "Peak Car" reached? (https://de.statista.com/statistik/daten/studie/12131/umfrage/pkw-bestand-in-deutschland/)
 - Heterogeneous mix of "active mobility" / "micro mobility"

https://tavf.hamburg

https://github.com/DLR-TS/sumo-scenarios/TAVF-Hamburg



Using AI is tricky. What can you do?



Combine AI with Open Simulators and Open Real-Time Data

- Use Open Data to facilitate collaborative data management
 - Multiple stakeholders benefit from joint data maintenance
 - Example: OpenStreetMap
- Use real-time data to detect changes in real-time
 - Example: \rightarrow next slide
- Enhance your system with modeling and mobility simulators
 - to improve your understanding ("white box")
 - to improve predictability
 - to work with a changing reality
 - to train the AI with synthetic data
 - to validate your AI results in a "Digital Twin"

Open Real-Time Data?

https://www.telraam.net https://telraam-api.net

Some Things to Take Away

- Reality of mobility systems is complex and (very) dynamic
- Apply AI wisely
 - do not overestimate its power
 - do not underestimate the resources needed for its training
 - pay attention to the optimization function
- Modeling and Simulation may be "old school"
 but still tremendously valuable and powerful
- Mobility domain affects many stakeholders openness is key for collaboration

Reports - Blogs - Multimedia - Magazine

Article | The Institute | IEEE Member News

31 Mar 2021 | 17:00 GMT

By Kathy Pretz

Stop Calling Everything AI, Machine-Learning Pioneer Says

Topics -

Michael I. Jordan explains why today's artificialintelligence systems aren't actually intelligent

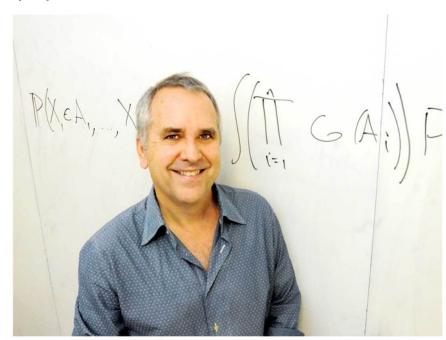


Photo: Peg Skorpinski

https://spectrum.ieee.org/the-institute/ieee-member-news/stop-calling-everything-ai-machinelearning-pioneer-says

Q & A

Robert.Hilbrich@dlr.de

@EclipseSUMO

