
Platform Debug I/F

Compiled Language I/F

Device Debug I/F

Compiled Language Debug as Extensions to Platform
Debug vs. Parallel Hierarchy

Position Paper for Eclipse Languages Workshop
Martin Imrisek

October 13, 2005

The debugger implementer faces a dilemma of choice when implementing debug support for their
favourite compiled language today – Does one implement a debugger to the Eclipse platform
APIs or to CDT’s C Debugger Interface (CDI) APIs?

The Platform and CDI API and debug models are very similar and in fact they parallel each other
closely as a result of the history of the development and evolution of the platform APIs and CDT.
The CDI has the concepts needed to implement a debugger for a compiled language, concepts
such as instruction stepping, dis-assembly for example, but the CDT itself is geared towards
C/C++ support with little granularity for integrating support for other languages.

So as debugger developers we have this dilemma of choice – choose to implement to the
Platform and one does not get needed support for instruction stepping and code disassembly.
Choose CDI and one does not get to easily integrate the other aspects of language support such
as language specific editors.

At this time I don’t think it makes sense to carry these parallel debug hierarchies forward or to
encourage other projects to create parallel hierarchies to the platform or CDT to add extensions
that do not fit into either one.

As implementers of debuggers we are interested in a hierarchy of debug APIs that provide core
abstractions (which the platform does well) with compiled language debug capabilities being
extensions on the core APIs. The compiled language debug APIs , and likely some abstract
implementation as well, could be shared amongst the CDT and other compiled language debug
projects.
As we are currently targeting device debugging with the CDT we similarly see that the compiled
language debug APIs could be extended with support for features that are specific to device
debugging which is part of the discussions in the DSDP project.

In the scenario of this hierarchy CDI would cease to exist and instead CDT debuggers would be
written to the Compiled Language interfaces.

There are probably concepts and capabilities in
the CDI interface that should be migrated to the
platform so further analysis is needed to identify
these precisely.

An example of an important concept that is

currently handled abstractly in CDI but not in the platform is the notion of an ‘Address’. The
platform’s notion of an address is a integer or a BigInteger, while CDI’s is an abstraction – an
opaque object. This is significant because CDI is being used to debug platforms with paged
memory architectures and therefore cannot represent addresses as a single integer.

Moving this concept of an address as an opaque object is required to be able to get a hierarchy of
interfaces as in the diagram – however this specific change would result in significant rippling
through the platform, JDT, PDE and other projects that rely on the platform debug APIs.

