Extending Eclipse with Languages Other Than Java
Position Paper for Eclipse Languages Workshop
Bjorn Freeman-Benson
October 3, 2005

I’'m interested in writing Eclipse plug-ins (extensions) in languages other than Java,
specifically, in dynamic languages like Lisp, Smalltalk, Python, Groovy, Perl, Ruby,
PHP, etc. I'm motivated by this problem because I'm concerned that Eclipse’s growth is
limited by the “plug-ins are Java” requirement. There are a wide variety of developers,
potential users of Eclipse, would are not happy with Java. Some will tolerate it, some will
not even bother. So far, Eclipse has tapped into the “willing to write Java” community as
is evidenced by the number of Eclipse-based environments for these languages: EPIC,
STDT, PyDev, Groovy Eclipse, RDT, TruStudio, RDT, PHPEclipse, etc. Imagine the
proliferation of Eclipse for these languages if developers could write these environments
in their native language...

I see three ways to support these languages: shared virtual machine, embedded virtual
machine, and separate virtual machines. In all cases, I’d like to see the plugin.xml
extended in two ways:
1. An attribute on <plugin> that specifies which language extension this plug-in is
written in. For example <plugin language="org.eclipse.ruby”>.
2. All attributes and nodes that specific a class are extended so that anywhere a
x.y.class class name is used, one could specific an alternate language and class,
e.g., “perl:Foo”.

Shared Virtual Machine. In the shared virtual machine model, Eclipse contains
(through a plug-in) a compiler that translates the alternate language into Java byte-codes.
Thus the Java code and the alternate language run on the same VM. Groovy using
groovyc would work this way.

Embedded Virtual Machine. In the embedded virtual machine model, Eclipse contains
(through a plug-in) an interpreter for the alternate language written in Java. Thus the
alternate language VM is embedded in the JVM. Jython would work this way.

Separate Virtual Machine. In the separate virtual machine model, Eclipse would
effectively run on two VMs: one the JVM and one the alternate language VM. The two
VMs would communicate through some channel (TCP?) to handle
calls/returns/exceptions/etc.

In order for any of these schemes to work effectively, the alternate language developer
needs to use all the APIs and extension points of Eclipse including all the call-backs and
event handlers. For the Java-derived languages, such as Jython, this is relatively simple.
For non-Java-derived languages, the language environment will probably need to use
reflection to build stubs or we need to set some conventions for class and method naming.

Page 1 of 1



