

* 1 *

Architectural Balkanization in the Post-Linguistic Era
(Volume Two)

Brian Foote
University of Illinois at Urbana-Champaign

foote@cs.uiuc.edu
http://www.laputan.org

25 October 2005

The Eclipse Juggernaut is one of this young
century’s most striking software phenomena. It’s
Smalltalk heritage and industrial-style roots gave
little initial indication that it would mushroom
into a bona-fide platform and potentially
challenge the likes of Windows, and whatever
laundry product (Ajax? SOAP?) is associated
with the global web services movement this
week.

Much can be said of Eclipse, most of which has
already been said by others, about its open
source heritage, and the like. I shall forego that,
for now at least.

My focus here will be on how Eclipse came to be
a platform that was good for everyone by being a
platform that was good for programmers. By
attracting programmers. By being a place that
they wanted to live. Where they were willing to
cooperate. Where they were anxious / eager to
pitch in. What’s sauce for the gander is sauce for
the geese.

Eclipse is not a construction site. The
construction metaphor for software is badly
broken, but staggers on, because the suits still
wish it were so. We don’t build software like we
build a skyscraper and walk away from it. A
viable system is a living organism, a honeycomb,
as long as the colony is there. It’s a ghosttown,
its useless, once they are gone.

If you want the honey, you have to tolerate the
bees. Sure you get stung once and a while. God
help me, now, I’m promoting a Winnie-the-Pooh
model of sustained yield software cultivation.
Blame my post-OOPSLA buzz.

So where was this going? Oh yeah. Eclipse
works because programmers live there. Lots of
them. We’re building a what? A place, a
community, a cathedral, Our Town, Houston,
Brasilia, a boomtown, a what? But we are
building it.

It works because we are focused on the code.
First and foremost. The program is our artifact of
record. It the focus of our efforts. Tending it is
what we do.

So what it is?

Before I try to answer that question, a quick
observation: Eclipse has a fascinating amalgam
of brute-force Java components held together
with XML Glue. It’s what I’ve called a Big
Bucket of Glue. It’s very post-modern, very
worse-is-better, very 21st century. It’s very
reflective. I got really excited when I realized
that it was held together with reflection. Duct
tape and mirrors.

I was amazed when my first cut and paste
plugins were two distinct black-box Java
programs neither of which anywhere directly
referenced the other. There were bound together
instead by reflection and XML glue.

XML is, generally speaking, too horrible to gaze
upon directly with the naked eye. It is sad that
one who gazed upon the Medusa, it was said,
was instantly petrified, literally turned to stone. I
find I’m figuratively petrified when I see XML.

* 2 *

When I look at it through the filters of a form
based interface, however, it doesn’t seem so
formidable…

The Five-Hundred Pound Gorilla

Nonetheless, the 500 pound gorilla in the middle
of the Eclipse room, the unspoken focus of
everything we do in this Developer Disneyland
we are creating, is The Program. It’s program
representation.

All of Eclipsedom is focused on this to some
level, though not all realize this.

Many had spoken over the years of moving
beyond our ASCII/EBCIDIC (sp?) punch card
text base 95 character legacy / notion of what a
program is.

The discussion of expanding the character sets
and type setting constraints of the punch card era
is not noew. Think of APL, or Algol 68.

The notion of moving beyond text to something
else, something more central, something more
indigenous to our world, is newer, but still old.
The Grail: buildling programs out of objects.
What we’d settle for: a much richer, more
malleable program representation than is
possible in traditional programs.

The text? We’d just “round-trip” create it from
the real, official, canonical program.

As with the Blind Men and the Elephant, we see
the Eclipse community converging on this
problem from a number of directions:

• Programmers want TEXT++, updated

documentation, etc., not simple ASCII
• Programmers need a parse tree level

representation to implement refactoring
• Modeling guys and gals want pictures and

programs to linked: round-trip reality, not
voodoo computer science where changes to
the representation have no effect on that
which is being represented

• Metric mongers want a program
representation over which they can
compute…

Thie Vision: this representation would be
somewhere around the AST level. It would be
somewhere deeper than the Outline view objects
in the JDT and CDT, somewhere around the
AST/Parsetree/DOM levels in play as we speak.

It would be naïve to think there will be a single
representation, there will be many, it would be
suicide to give up on finding out what they have
in common, and to not find a way to make them
freely convertible.

This area, in my opinion, offers some of the most
fertile ground for productive research and
practical innovation in all of the realm. May a
thousand flowers bloom.

* 3 *

No single model, no single representation, no single framework is likely to emerge. More likely what we
will see is architectural balkanization in the post-linguistic era. Whether these representations are stale,
isolated fiefdoms, silos, or part of an organic catalytic ecosystem, remains to be seem…

These architectures, these designs, will be far from perfect. This is a worse is better world. A
heterogeneous, polyglot world. But freely convertible currencies, and perhaps a lingua franca may not be
too much to hope for…

