
EclipseLink
Solutions Guide for EclipseLink

Release 2.6

June 2014

Beta Draft

Solutions Guide for EclipseLink

Copyright © 2014 by The Eclipse Foundation under the Eclipse Public License (EPL)

http://www.eclipse.org/org/documents/epl-v10.php

The initial contribution of this content was based on work copyrighted by Oracle and was submitted with
permission.

Print date: June 9, 2014

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It
may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

iii

Contents

Audience.. vii
Related Documents ... viii
Conventions ... viii
New and Changed Features for Release 2.6 .. ix
Other Significant Changes in this Document for Release 2.6 ... ix
New and Changed Features for 12c (12.1.2) .. ix
Other Significant Changes in this Document for 12c (12.1.2) ... x

1 Introduction

1.1 About This Guide ... 1-1
1.2 What You Need to Know First ... 1-1
1.3 The Use Cases ... 1-2

2 Installing EclipseLink

2.1 Prerequisites ... 2-1
2.2 Installing EclipseLink for Java SE and Java EE Development .. 2-1
2.3 Installing EclipseLink NoSQL Support .. 2-2
2.4 Installing EclipseLink with OSGi Support .. 2-2

3 Using EclipseLink with WebLogic Server

3.1 Introduction to the Solution ... 3-2
3.2 Implementing the Solution ... 3-2
3.3 Additional Resources ... 3-13

4 Using EclipseLink with GlassFish Server

4.1 Introduction to the Solution ... 4-1
4.2 Implementing the Solution ... 4-2
4.3 Additional Resources ... 4-9

5 Using EclipseLink with JBoss 7 Application Server

5.1 Introduction to the Solution ... 5-1
5.2 Implementing the Solution ... 5-1
5.3 Additional Resources ... 5-5

iv

6 Using EclipseLink with IBM WebSphere Application Server

6.1 Introduction to the Solution ... 6-1
6.2 Implementing the Solution ... 6-2
6.3 Additional Resources ... 6-5

7 Migrating from Native TopLink

7.1 Introduction to the Solution ... 7-1
7.2 Implementing the Solution ... 7-2
7.3 Additional Resources ... 7-9

8 Migrating from Hibernate to EclipseLink

8.1 Introduction to the Solution ... 8-1
8.2 Main Tasks ... 8-2
8.3 Additional Resources ... 8-7

9 Using Multiple Databases with a Composite Persistence Unit

9.1 Introduction to the Solution ... 9-1
9.2 Implementing the Solution ... 9-3
9.3 Additional Resources ... 9-4

10 Scaling Applications in Clusters

10.1 Introduction to the Solution ... 10-1
10.2 Implementing the Solution ... 10-2
10.3 Additional Resources ... 10-11

11 Providing Software as a Service

11.1 Introduction to the Solution ... 11-1

12 Making JPA Entities and JAXB Beans Extensible

12.1 Making JPA Entities Extensible .. 12-1
12.2 Making JAXB Beans Extensible ... 12-7
12.3 Additional Resources ... 12-14

13 Using an External MetaData Source

13.1 Introduction to the Solution ... 13-1
13.2 Using the eclipselink-orm.xml File Externally ... 13-1
13.3 Main Tasks ... 13-1
13.4 Additional Resources ... 13-2

14 Tenant Isolation Using EclipseLink

14.1 Introduction to the Solution ... 14-1
14.2 Using Single-Table Multi-Tenancy ... 14-2
14.3 Using Table-Per-Tenant Multi-Tenancy ... 14-10
14.4 Using VPD Multi-Tenancy ... 14-13

v

14.5 Additional Resources ... 14-15

15 Mapping JPA to XML

15.1 Introduction to the Solution ... 15-2
15.2 Binding JPA Entities to XML .. 15-3
15.3 Mapping Simple Java Values to XML Text Nodes ... 15-14
15.4 Using XML Metadata Representation to Override JAXB Annotations 15-21
15.5 Using XPath Predicates for Mapping ... 15-22
15.6 Using Dynamic JAXB/MOXy .. 15-27
15.7 Additional Resources ... 15-32

16 Converting Objects to and from JSON Documents

16.1 Introduction to the Solution ... 16-1
16.2 Implementing the Solution ... 16-2
16.3 Additional Resources ... 16-10

17 Testing JPA Outside a Container

17.1 Understanding JPA Deployment .. 17-1
17.2 Configuring the persistence.xml File .. 17-2
17.3 Using a Property Map .. 17-3
17.4 Using Weaving ... 17-4
17.5 Additional Resources ... 17-5

18 Enhancing Performance

18.1 Performance Features ... 18-1
18.2 Monitoring and Optimizing EclipseLink-Enabled Applications 18-11

19 Exposing JPA Entities Through RESTful Data Services

19.1 Introduction to the Solution ... 19-1
19.2 Implementing the Solution ... 19-2
19.3 Additional Resources ... 19-11
19.4 RESTful Data Services API Reference ... 19-11

Entity Operations ... 19-12

Entity Operations on Relationships .. 19-18

Query Operations ... 19-22

Single Result Queries .. 19-26

Base Operations .. 19-27

Metadata Operations .. 19-29

20 Using Database Events to Invalidate the Cache

20.1 Introduction to the Solution ... 20-2
20.2 Implementing the Solution ... 20-3
20.3 Limitations on the Solution .. 20-6
20.4 Additional Resources ... 20-6

vi

21 Using EclipseLink with NoSQL Databases

21.1 Introduction to the Solution ... 21-1
21.2 Implementing the Solution ... 21-2
21.3 Additional Resources ... 21-7

22 Using EclipseLink with the Oracle Database

22.1 Introduction to the Solution ... 22-1
22.2 Implementing the Solution ... 22-2
22.3 Additional Resources ... 22-14

vii

Preface

EclipseLink delivers a standards-based enterprise Java solution for all of your
relational, XML, and JSON persistence requirements, based on high performance and
scalability, developer productivity, and flexibility in architecture and design.

Audience
A variety of engineers use EclipseLink. Users of EclipseLink are expected to be
proficient in the use of technologies and services related to EclipseLink (for example,
Java Persistence API). This guide does not include details about related common tasks,
but focuses on EclipseLink functionality.

Users of this guide include:

■ Developers who want to develop applications using any of the following
technologies for persistence services:

■ Java Persistence API (JPA) 2.n plus EclipseLink JPA extensions

■ Java Architecture for XML Binding 2.n (JAXB) plus EclipseLink Object-XML
extensions

■ EclipseLink Database Web Services (DBWS)

Developers should be familiar with the concepts and programming practices of
Java Platform, Standard Edition (Java SE platform), and Java Platform, Enterprise
Edition (Java EE platform).

Developers using EclipseLink JPA should be familiar with the concepts and
programming practices of JPA 2.1, as specified in the Java Persistence Architecture
2.1 specification at http://jcp.org/en/jsr/detail?id=338.

Developers using EclipseLink Object-XML should be familiar with the concepts
and programming practices of JAXB 2.0, as specified in the Java Architecture for
XML Binding 2.0 specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.ht
ml.

Developers using EclipseLink DBWS should be familiar with the concepts and
programming practices of JAX-WS 2.0, as specified in the Java API for XML-Based
Web Services 2.0 specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.ht
ml.

■ Administrators and deployers who want to deploy and manage applications using
EclipseLink persistence technologies. These users should be familiar with basic
operations of the chosen application server.

viii

Related Documents
For more information, see the following documents:

■ EclipseLink Concepts

■ Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Developing Persistence Architectures Using EclipseLink Database Web Services
Developer's Guide

■ Developing JAXB Applications Using EclipseLink MOXy

■ Java API Reference for EclipseLink

■ EclipseLink Documentation Center at
http://www.eclipse.org/eclipselink/documentation/

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

bold monospace Bold monospace type is used in code examples to emphasize certain
items.

ix

What's New in This Guide

The following topics introduce the new and changed features of EclipseLink and other
significant changes that are described in this guide, and provides pointers to
additional information.

New and Changed Features for Release 2.6
■ Serialized object policy, for storing a serialized version of an entity into a single

column in the database. See "Serialized Object Policy" on page 18-7.

■ Auomated tuning, for a dynamic single tuning option. See "Automated Tuning" on
page 18-8.

Other Significant Changes in this Document for Release 2.6

New and Changed Features for 12c (12.1.2)
EclipseLink 2.4.2 includes the following new and changed features that are
documented in this book. This list does not necessarily include all new or changed
features in this release. It only includes the new features that are documented in this
book.

■ Client isolation, where multiple application tenants may share database tables and
schemas. This allows applications to manage entities for multiple tenants in the
same application. See Chapter 14, "Tenant Isolation Using EclipseLink."

■ JSON bindings, for converting objects directly to and from JavaScript Object
Notation (JSON). This can be useful when creating RESTful services, using JSON
messages with Java API for RESTful Web Services (JAX-RS) services. See
Chapter 16, "Converting Objects to and from JSON Documents,"

■ RESTful persistence, where Java Persistence API (JPA) entities can be exposed
through standards-based RESTful services such as JAX-RS, using either JSON or
XML media. See Chapter 19, "Exposing JPA Entities Through RESTful Data
Services."

■ Support for TopLink Database Change Notification (DCN), which allows the
database to notify TopLink of database changes so that cached objects can be
invalidated in the shared cache. See Chapter 20, "Using Database Events to
Invalidate the Cache."

x

■ NoSQL database support, allowing objects to be mapped to non-relational
(NoSQL) data sources. See Chapter 21, "Using EclipseLink with NoSQL
Databases,".

For a complete list of the changes in this release, see
http://www.eclipse.org/eclipselink/releases/2.5.php.

Other Significant Changes in this Document for 12c (12.1.2)
For this release of EclipseLink, this guide has been updated in several ways. Following
are the sections that have been added or changed.

■ Moved installation information from appendix to Chapter 2, "Installing
EclipseLink,".

■ Added new chapter, Chapter 5, "Using EclipseLink with JBoss 7 Application
Server," to describe how EclipseLink can be used with applications deployed to
JBoss Application Server 7.1.

■ Added new chapter, Chapter 6, "Using EclipseLink with IBM WebSphere
Application Server," to describe how EclipseLink can be used with applications
deployed to IBM WebSphere Application Server

■ Added new chapter, Chapter 7, "Migrating from Native TopLink," to describe
migrate applications using "native" TopLink object-relational mapping (ORM)
APIs to the current EclipseLink APIs.

■ Added information about data partitioning in Chapter 10, "Scaling Applications in
Clusters."

■ Split Chapter 11, "Providing Software as a Service." into four chapters:

– Chapter 11, "Providing Software as a Service." This is now just an overview of
the following three chapters.

– Chapter 12, "Making JPA Entities and JAXB Beans Extensible"

– Chapter 13, "Using an External MetaData Source"

– Chapter 14, "Tenant Isolation Using EclipseLink" and also updated this
chapter with information about Virtual Private Database (VPD) multi-tenancy
and table-per-tenant multi-tenancy

■ Added new chapter, Chapter 16, "Converting Objects to and from JSON
Documents," to describe how to convert objects directly to and from JSON

■ Added information about weaving to Chapter 17, "Testing JPA Outside a
Container," to describe how to use the persistence unit JAR file to test an
application outside the container (for instance, in applications for the Java
Platform, Standard Edition (Java SE platform)).

■ Added new chapter, Chapter 19, "Exposing JPA Entities Through RESTful Data
Services," to describe how to expose JPA entities through Java Persistence
API-RESTful Services (JPA-RS), using either JSON or XML media.

■ Added new chapter, Chapter 20, "Using Database Events to Invalidate the Cache,"
to describe how to use EclipseLink Database Change Notification (DCN) for
shared caching in a JPA environment. DCN allows the database to notify
EclipseLink of database changes. The changed objects are invalidated in the
EclipseLink shared cache. Stale data can be discarded, even if other applications
access the same data in the database.

xi

■ Added new chapter, Chapter 22, "Using EclipseLink with the Oracle Database," to
describe how to use the Oracle Database features that are supported by
EclipseLink.

xii

1

Introduction 1-1

1Introduction

EclipseLink is a powerful and flexible Java persistence framework for storing Java
objects in a data store, such as a relational database or a NoSQL database, and for
converting Java objects to XML or JSON documents. EclipseLink provides APIs and a
run-time environment for implementing the persistence layer of Java Platform,
Standard Edition (Java SE platform), and Java Platform, Enterprise Edition (Java EE
platform) applications.

EclipseLink implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies and also includes
extensions beyond those standards. For more information about the EclipseLink
project, see "Eclipse Persistence Services Project (EclipseLink) home" at
http://www.eclipse.org/eclipselink/. For the EclipseLink Documentation,
Center see http://www.eclipse.org/eclipselink/documentation/.

1.1 About This Guide
This guide, Solutions Guide for EclipseLink, documents a number of scenarios, or use
cases, that illustrate EclipseLink features and typical EclipseLink development
processes. These are not tutorials that lead you step-by-step through every task
required to complete a project. Rather, they document general processes and key
details for solving particular problems and then provide links to other documentation
for more information.

1.2 What You Need to Know First
To make good use of this guide, you should already be familiar with the following:

■ The concepts and programming practices of the Java SE platform and the Java EE
platform. In the current release, EclipseLink supports Java EE 6. For more
information, see the following.

Java

– Java home page:
http://www.oracle.com/us/technologies/java/index.html

– Java EE 5 Tutorial:
http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.htm
l

– Java EE 6 Tutorial:
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.htm
l

The Use Cases

1-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

– Any of the thousands of books and websites devoted to Java.

Eclipse Integrated Development Environment

– Eclipse IDE: http://www.eclipse.org/

■ EclipseLink from the Eclipse Foundation

– EclipseLink project home: http://wiki.eclipse.org/EclipseLink

– EclipseLink Documentation Center:
http://wiki.eclipse.org/EclipseLink/Documentation_Center

■ If you are working with EclipseLink JPA, you should be familiar with the concepts
and programming practices of JPA 2.1, as specified in the Java Persistence API,
Version 2.1 specification at http://jcp.org/en/jsr/detail?id=338.

■ If you are working with EclipseLink JAXB, you should be familiar with the
concepts and programming practices of JAXB 2.0, as specified in the The Java
Architecture for XML Binding (JAXB) 2.0 specification at
http://jcp.org/en/jsr/detail?id=222.

■ If you are using JSON data-interchange format, you should be familiar with the
concepts and programming practices of JSON, as described at
http://www.json.org/. For XML, see http://www.w3.org/XML/

■ If you are working with EclipseLink MOXy, you should be familiar with the
concepts and programming practices of JAXB 2.0, as specified in the The Java
Architecture for XML Binding (JAXB) 2.0 specification at
http://jcp.org/en/jsr/detail?id=222. If you are using the JavaScript
Object Notation (JSON) data-interchange format, you should be familiar with the
concepts and programming practices of JSON, as described at
http://www.json.org/. For XML, see http://www.w3.org/XML/

■ If you are working with EclipseLink DBWS, you should be familiar with the
concepts and programming practices of JAX-WS 2.0, as specified in the Java API
for XML-Based Web Services (JAX-WS) 2.0 specification at
http://jcp.org/en/jsr/detail?id=224.

■ If you are working with REpresentational State Transfer (REST) service, you
should be familiar with concepts and programming practices of REST, as specified
in "JSR 311: JAX-RS: The Java API for RESTful Web Services" at
http://jcp.org/en/jsr/detail?id=311.

1.3 The Use Cases
The use cases documented in this guide are as follows:

■ Chapter 2, "Installing EclipseLink" - How to download and install EclipseLink.

■ Chapter 3, "Using EclipseLink with WebLogic Server" - How to use EclipseLink
with WebLogic Server.

■ Chapter 4, "Using EclipseLink with GlassFish Server" - How to use EclipseLink
with GlassFish Server.

■ Chapter 5, "Using EclipseLink with JBoss 7 Application Server" - How to use
EclipseLink with JBoss 7 Application Server.

■ Chapter 6, "Using EclipseLink with IBM WebSphere Application Server" - How to
use EclipseLink with IBM WebSphere Application Server.

The Use Cases

Introduction 1-3

■ Chapter 7, "Migrating from Native TopLink" - How to how to migrate applications
using native EclipseLink object-relational mapping (ORM) API to the current
EclipseLink API.

■ Section 8, "Migrating from Hibernate to EclipseLink" - How to migrate
applications from using Hibernate JPA to using EclipseLink JPA.

■ Chapter 9, "Using Multiple Databases with a Composite Persistence Unit" - How
to expose multiple persistence units (each with unique sets of entity types) as a
single persistence context.

■ Chapter 10, "Scaling Applications in Clusters" - How to configure EclipseLink
applications to ensure scalability in clustered application server environments.

■ Chapter 11, "Providing Software as a Service" - Overview of EclipseLink Software
as a Service (SaaS) features..

■ Chapter 12, "Making JPA Entities and JAXB Beans Extensible" - How to make JPA
entities or JAXB beans extensible.

■ Chapter 13, "Using an External MetaData Source" - How to use an external
metadata source.

■ Chapter 14, "Tenant Isolation Using EclipseLink" - How to support multiple
application tenants who share data sources, including tables and schemas.

■ Chapter 15, "Mapping JPA to XML" - How to map JPA entities to XML using
EclipseLink MOXy.

■ Chapter 17, "Testing JPA Outside a Container" - How to test your EclipseLink JPA
application outside the container.

■ Chapter 18, "Enhancing Performance" - Getting the best performance out of
EclipseLink.

■ Chapter 19, "Exposing JPA Entities Through RESTful Data Services" - How to
expose entities through RESTful services using EclipseLink Java Persistence API
for RESTful Services (JPA-RS).

■ Chapter 20, "Using Database Events to Invalidate the Cache" - How to use
EclipseLink Database Change Notification (DCN) for caching with a shared
database in JPA.

■ Chapter 21, "Using EclipseLink with NoSQL Databases" - How to use EclipseLink
to map objects to non-relational (that is, no SQL) data sources.

The Use Cases

1-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

2

Installing EclipseLink 2-1

2Installing EclipseLink

This chapter tells how to install EclipseLink.

EclipseLink is available in several distributions which are installed in a variety of
ways, as described in the following sections:

■ Section 2.1, "Prerequisites"

■ Section 2.2, "Installing EclipseLink for Java SE and Java EE Development"

■ Section 2.3, "Installing EclipseLink NoSQL Support"

■ Section 2.4, "Installing EclipseLink with OSGi Support"

2.1 Prerequisites
EclipseLink requires a Java Virtual Machine (JVM) compatible with JDK 1.5.0 (or
higher). EclipseLink also requires internet access to use URL-based schemas and
hosted documentation.

2.2 Installing EclipseLink for Java SE and Java EE Development
Use the following procedures to install EclipseLink for Java SE and EE development.
Before you proceed with the install, it is recommended that you back up any existing
project data.

1. Set the following system environment variables before installing EclipseLink:

■ JAVA_HOME - Set JAVA_HOME to where you installed your Java SDK home
directory. For example:

– Windows example: JAVA_HOME = C:\JDK

– UNIX example: JAVA_HOME = ...:/usr/java/jdk

■ PATH - Set PATH to include JDK/bin directory. For example:

– Windows example: PATH = C:\JDK\bin

– UNIX example: PATH = ...:/usr/java/jdk/bin

2. Download the EclipseLink install archive zip file, eclipse-ver_no.zip, from the
EclipseLink downloads page at
http://www.eclipse.org/eclipselink/downloads/

Note: In addition to all the EclipseLink libraries, the archive includes
EclipseLink Workbench, a graphical interface that allows you to
configure descriptors and map projects using native (pre-JPA)
object-relational mapping, object-XML mapping (MOXy), and
Enterprise Information System (EIS) usage.

Workbench is provided for users of those older native APIS, and it is
useful for migrating from native EclipseLink. However, it is
recommended that you use an IDE with support for current versions
EclipseLink, for example Dali (see
http://www.eclipse.org/webtools/dali/).

Installing EclipseLink NoSQL Support

2-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

3. Unzip the downloaded file in the desired installation directory. When you unzip
the file, you will find an eclipselink subdirectory, containing multiple
subdirectories. This directory is your new ECLIPSELINK_HOME directory. For
example:

– Windows example: ECLIPSELINK_HOME = <INSTALL_DIR>/eclipselink

– UNIX example: ECLIPSELINK_HOME = ...:/usr/el/INSTALL_
DIR/eclipselink

4. If you want to use EclipseLink Workbench, additional steps are required. See
"Configuring the Workbench Environment" at
http://wiki.eclipse.org/Using_Workbench_
%28ELUG%29#Configuring_the_Workbench_Environment.

2.3 Installing EclipseLink NoSQL Support
Support for NoSQL databases was introduced in EclipseLink 2.4.

To add support for NoSQL databases to EclipseLink, download and install
eclipselink-plugins-nosql-ver_no.zip file from
http://www.eclipse.org/eclipselink/downloads/. Use this bundle in
conjunction with eclipselink.jar or the EclipseLink JPA bundles.

For information about NoSQL support, see Chapter 21, "Using EclipseLink with
NoSQL Databases."

2.4 Installing EclipseLink with OSGi Support
EclipseLink JPA support in OSGi is provided by the Eclipse Gemini JPA project. For
more information, including installation instructions, see
http://wiki.eclipse.org/Gemini/JPA/Documentation.

3

Using EclipseLink with WebLogic Server 3-1

3Using EclipseLink with WebLogic Server

This chapter describes how to use EclipseLink as the persistence provider for
applications deployed to Oracle WebLogic Server.

The chapter includes the following sections:

■ Section 3.1, "Introduction to the Solution"

■ Section 3.2, "Implementing the Solution"

■ Section 3.3, "Additional Resources"

Use Case
WebLogic Server developers, administrators, and user want to take advantage of all
the persistence and transformation services provided by EclipseLink.

Solution
While WebLogic Server can use other persistence providers and EclipseLink can be
used with other application servers, using WebLogic Server with EclipseLink provides
a number of advantages.

Components
■ WebLogic Server 12c or later. WebLogic Server includes EclipseLink.

Note: EclipseLink’s core functionality is provided by EclipseLink,
the open source persistence framework from the Eclipse Foundation.
EclipseLink implements Java Persistence API (JPA), Java Architecture
for XML Binding (JAXB), and other standards-based persistence
technologies, plus extensions to those standards. EclipseLink includes
all of EclipseLink, plus additional functionality from Oracle.

■ A compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, and so on.

■ While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development.

Samples
See the following EclipseLink samples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/WebLogic_
Web_Tutorial

Introduction to the Solution

3-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/WLS_
AppScoped_DataSource

■ http://wiki.eclipse.org/EclipseLink/Examples/Distributed

3.1 Introduction to the Solution
WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition (Java
EE platform) application server. WebLogic Server's complete implementation of the
Java EE 6 specification provides a standard set of APIs for creating distributed Java
applications that can access a wide variety of services, such as databases, messaging
services, and connections to external enterprise systems. In addition to the Java EE
implementation, WebLogic Server enables enterprises to deploy critical applications in
a robust, secure, highly available, and scalable environment. These features allow
enterprises to configure clusters of WebLogic Server instances to distribute load, and
provide extra capacity in case of hardware or other failures. For more details about
these and other WebLogic Server features, see Introduction to WebLogic Server.

EclipseLink provides APIs and a run-time environment for implementing the
persistence layer of Java EE applications (as well as Java SE applications).

3.1.1 Advantages to Using EclipseLink with WebLogic Server
While WebLogic Server can use other persistence providers and EclipseLink can be
used with other application servers, using WebLogic Server with EclipseLink provides
a number of advantages:

■ EclipseLink is the default persistence provider for WebLogic Server domains, with
support for JPA 2.1.

■ The EclipseLink implementation of Java Architecture for XML Binding (JAXB) is
the default JAXB implementation in WebLogic Server. EclipseLink fully
implements JAXB and also includes other advanced features. By default, you can
take advantage of EclipseLink JAXB in Java API for XML Web Services (JAX-WS)
and Java API for RESTful Web Services (JAX-RS) applications.

■ EclipseLink logging integration in WebLogic Server provides a comprehensive,
integrated logging infrastructure. See Section 3.2.3, "Task 4: Use or Reconfigure the
Logging Integration."

3.2 Implementing the Solution
To run EclipseLink JPA applications in WebLogic Server, you must configure
WebLogic Server and coordinate certain settings in it and in your application, as
described in the following tasks:

■ Task 1: Prerequisites

■ Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)

■ Task 3: Configure JMX MBean Extensions in WebLogic Server

■ Task 4: Use or Reconfigure the Logging Integration

■ Task 5: Add Persistence to Your Java Application Using EclipseLink

■ Task 6: Configure a Data Source

■ Task 7: Extend the Domain to Use Advanced Oracle Database Features

■ Task 8: Start WebLogic Server and Deploy the Application

Implementing the Solution

Using EclipseLink with WebLogic Server 3-3

■ Task 9: Run the Application

■ Task 10: Configure and Monitor Persistence Settings in WebLogic Server

3.2.1 Task 1: Prerequisites
This document is based on the following products and tools, although the principles
apply to any supported database or development environment. It is assumed that the
software is already installed, except where noted in later sections.

■ WebLogic Server 12c or later.

For more information and downloads, see
http://www.oracle.com/technetwork/middleware/weblogic/overvie
w/index.html on the Oracle Technology Network.

■ Any compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, and so on.

For Oracle Database, see
http://www.oracle.com/technetwork/database/enterprise-edition
/overview/index.html. For Oracle Database, Express Edition, see
http://www.oracle.com/technetwork/database/express-edition/ov
erview/index.html. For MySQL, see
http://www.oracle.com/us/products/mysql/index.html.

■ While it is not required, you may want to use a Java development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE
development tools. Both JDeveloper and Oracle Enterprise Pack for Eclipse
include embedded versions of WebLogic Server, although this guide describes a
standalone instance of WebLogic Server.

For JDeveloper, see
http://www.oracle.com/technetwork/developer-tools/jdev/downlo
ads/index.html. For Oracle Enterprise Pack for Eclipse, see
http://www.oracle.com/technetwork/developer-tools/eclipse/ove
rview/index.html. For NetBeans, see
http://www.oracle.com/us/products/tools/050845.html.

3.2.2 Task 3: Configure JMX MBean Extensions in WebLogic Server
WebLogic Server uses Java Management Extensions (JMX) MBeans to configure,
monitor, and manage WebLogic Server resources. For EclipseLink applications,
MBeans are used to monitor and configure aspects of persistence units and are also
used for logging.

Note: When deployed to WebLogic Server, EclipseLink applications
deploy MBeans when they connect to the database, not at deployment
time.

For information about how MBeans are used in WebLogic Server, see Oracle Fusion
Middleware Developing Custom Management Utilities With JMX for Oracle WebLogic Server
and Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server.

For information about EclipseLink logging in WebLogic Server, see Section 3.2.3, "Task
4: Use or Reconfigure the Logging Integration."

Implementing the Solution

3-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

By default, when you deploy an EclipseLink application to WebLogic Server, the
EclipseLink runtime deploys the following JMX MBeans to the WebLogic Server JMX
service for each EclipseLink session:

■ org.eclipse.persistence.services.DevelopmentServices - This class provides
facilities for managing an EclipseLink session internal to EclipseLink over JMX.

■ org.eclipse.persistence.services.RuntimeServices - This class provides
facilities for managing an EclipseLink session external to EclipseLink over JMX.

Use the API that this JMX MBean exposes to access and configure your EclipseLink
sessions at runtime, using JMX code that you write, or to integrate your EclipseLink
application with a third-party JMX management application, such as JConsole.

To find out how to access information about custom MBeans, you must first enable
anonymous lookup and then use a separate tool to access the MBean information.

To enable anonymous lookup in the WebLogic Server Administration Console, do the
following:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane, select your domain to open the Settings page for your domain.

3. Expand Security > General.

4. Select Anonymous Admin Lookup Enabled.

5. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For the information about accessing the MBean information using various tools, see
"Accessing Custom MBeans," in Oracle Fusion Middleware Developing Manageable
Applications With JMX for Oracle WebLogic Server.

For information about monitoring custom MBeans in the Administration Console, see
"Monitor Custom MBeans" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help.

3.2.3 Task 4: Use or Reconfigure the Logging Integration
By default, EclipseLink logging is integrated into the WebLogic Server logging
infrastructure. Details about how the integration works and how to override it are
described in the following sections. For detailed information about WebLogic Server
logging, see the following:

■ Oracle Fusion Middleware Using Logging Services for Application Logging for Oracle
WebLogic Server

■ Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server

■ The logging topics in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help

For information about configuring logging for JPA persistence units, see "How to
Configure Logging" in the EclipseLink documentation at
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging.

Implementing the Solution

Using EclipseLink with WebLogic Server 3-5

3.2.3.1 How the Logging Integration Works
By default, the WebLogic Server logging implementation is injected into the
persistence context, which results in all EclipseLink logging messages being produced
according to the WebLogic Server logging configuration.

As a result of this integration, EclipseLink logging levels are converted to WebLogic
Server logging levels as shown in Table 3–1.

Table 3–1 Mapping of EclipseLink Logging Levels to WebLogic Server Logging Levels

EclipseLink Logging Levels WebLogic Server Logging Levels

ALL, FINEST, FINER, FINE DEBUG

CONFIG INFO

INFO NOTICE

WARNING WARNING

SEVERE ALERT

OFF OFF

WebLogic Server logging levels are mapped to EclipseLink levels as shown in
Table 3–2.

Table 3–2 Mapping of WebLogic Server Logging Levels to EclipseLink Logging Levels

WebLogic Server Logging Levels EclipseLink Logging Levels

TRACE, DEBUG FINEST

INFO CONFIG

NOTICE INFO

WARNING WARNING

ERROR, CRITICAL, ALERT SEVERE

EMERGENCY, OFF OFF

3.2.3.2 Viewing Persistence Unit Logging Levels in the Administration Console
You can see the EclipseLink logging level defined for the persistence unit in the
Administration Console, as described in Section 3.2.9, "Task 10: Configure and Monitor
Persistence Settings in WebLogic Server." However, be aware that this logging level,
set in the persistence.xml file, is overridden when the default WebLogic Server and
EclipseLink logging integration is used. For information about overriding the
integration, see Section 3.2.3.3, "Overriding the Default Logging Integration."

When the default integration is used, the Enterprise JavaBeans (EJB) logging options
for persistence are mapped through and control EclipseLink's logging output in the
Administration Console.

3.2.3.3 Overriding the Default Logging Integration
You set EclipseLink logging levels in the persistence.xml file. However, when you
accept the default logging integration with WebLogic Server, those settings are
ignored, and the logging configuration set in WebLogic Server is used. The EclipseLink
logging levels are used only when you use the native EclipseLink logging
implementation.

Implementing the Solution

3-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

You can override the default logging integration by setting the
eclipselink.logging.logger property name to a different setting. For example, to
enable the default EclipseLink logging, set the eclipselink.logging.logger property
as follows:

<property name="eclipselink.logging.logger" value="DefaultLogger"/>

You can also use a different logging implementation for EclipseLink messages, for
example the java.util.logging package:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

3.2.3.4 Configuring WebLogic Server to Expose EclipseLink Logging
If you use the native EclipseLink logging implementation, you can still display
EclipseLink logging messages in the WebLogic Server domain's log files by
configuring WebLogic Server to redirect Java Virtual Machine (JVM) output to the
registered log destinations.

For more information and instructions for redirecting, see "Redirecting JVM Output" in
Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server. To set this option in the Administration Console, see "Redirect JVM
output" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Online Help.

3.2.3.5 Other Considerations
Other things to consider include the following:

■ The message ID 2005000 is used for all EclipseLink log messages.

■ Some logging messages handled by the WebLogic Server integrated logger may
show up in the WebLogic Server console or the server log (depending on the
settings of logging levels) during deployment, even though at runtime the
application's entity manager factory will use only the EclipseLink logging
infrastructure and only the EclipseLink logging settings.

■ If you use a different release of EclipseLink than the release bundled in your
WebLogic Server installation (by using a filtering class loader), then trying to use
the default integrated logging can lead to errors, due to classloading conflicts. To
work around this issue, explicitly set the eclipselink.logging.logger property
to something other than the integrated WebLogic Server logger.

3.2.4 Task 5: Add Persistence to Your Java Application Using EclipseLink
Using EclipseLink JPA to provide persistence for an application is the fundamental
task presumed by all the other tasks described in this chapter; yet the actual JPA
programming practice is mostly outside the scope of this guide. WebLogic Server
imposes no special requirements on your EclipseLink application, other than the
details described in this chapter.

This chapter describes features, settings, and tasks that are specific to using
EclipseLink (runtime and API) with WebLogic Server. For information about
developing, packaging, and deploying a Java application using JPA, see the following:

■ The EclipseLink project wiki at http://wiki.eclipse.org/EclipseLink

■ The EclipseLink Documentation Center at
http://wiki.eclipse.org/EclipseLink/Documentation_Center

Implementing the Solution

Using EclipseLink with WebLogic Server 3-7

■ The Java Persistence API, Version 2.1 specification at
http://jcp.org/en/jsr/detail?id=317

■ "Part V, Persistence" in "The Java EE 6 Tutorial" at
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html

■ Any third-party book that describes programming Java applications using JPA

For more information about EclipseLink features and concepts, see Chapter 1,
"Introduction" and EclipseLink Concepts.

For related WebLogic Server programming topics, see any book in the WebLogic
Server documentation set, in particular the following:

■ Oracle Fusion Middleware Programming Enterprise JavaBeans, Version 3.0, for Oracle
WebLogic Server

■ Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server

■ Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

■ Oracle Fusion Middleware Programming JDBC for Oracle WebLogic Server

3.2.5 Task 6: Configure a Data Source
In WebLogic Server, you configure database connectivity by adding JDBC data sources
to WebLogic Server domains. Each WebLogic data source contains a pool of database
connections. Applications look up the data source on the Java Naming and Directory
Interface (JNDI) tree or in the local application context and then reserve a database
connection with the getConnection() method. Data sources and their connection
pools provide connection management processes to keep the system running
efficiently.

For information about using JDBC with WebLogic Server, see the following:

■ For complete documentation about working with JDBC in WebLogic Server, see
Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server, in particular:

– "Configuring WebLogic JDBC Resources"

– "Configuring JDBC Data Sources"

■ For information about working with JDBC data sources in the WebLogic Server
Administration Console, see the topics under "Configure JDBC" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

3.2.5.1 Ways to Configure Data Sources for JPA Applications
You can configure data sources for JPA applications deployed to WebLogic Server in a
variety of ways, including the following:

■ Configure a Globally Scoped JTA Data Source

■ Configure an Application-Scoped JTA Data Source

■ Configure a non-JTA Data Source and Manage Transactions in the Application

3.2.5.2 Configure a Globally Scoped JTA Data Source
The most common data source configuration is a globally-scoped JNDI data source,
using Java Transaction API (JTA) for transaction management, specified in the
persistence.xml file. Configuration is straightforward, as shown in the following
steps, and multiple applications can access the data source:

Implementing the Solution

3-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Create the Data Source in WebLogic Server

■ Configure the persistence.xml File

3.2.5.2.1 Create the Data Source in WebLogic Server To set up a globally scoped JNDI data
source in the WebLogic Server Administration Console, do the following:

1. Create a new data source, as described in "Configure JDBC generic data sources"
in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online
Help.

Note: EclipseLink is compatible with any WebLogic Server data
source that can be accessed using standard JNDI data source lookup
by name. These instructions describe the wizard for a generic data
source.

2. Enter values in the Create a New JDBC data source wizard, according to your
requirements. For more information, see "Create a JDBC Data Source" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

Important: The value used for JNDI Name (on the JDBC Datasource
Properties page must be the same as the value used for the
<jta-data-source> element in the persistence.xml file.

3. Configure connection pools, as described in "Configuring Connection Pool
Features" in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources
for Oracle WebLogic Server. The connection pool configuration can affect
EclipseLink's ability to handle concurrent requests from the application. Properties
should be tuned in the same way any connection pool would be tuned to optimize
resources and application responsiveness.

3.2.5.2.2 Configure the persistence.xml File In the persistence.xml file, specify that
transaction-type is JTA, and provide the name of the data source in the
jta-data-source element (prefaced by jdbc/ or not), as shown in Example 3–1:

Example 3–1 persistence.xml File With JNDI Data Source Using JTA

...
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>JDBC Data Source-1</jta-data-source>
 <class>org.eclipse.persistence.example.jpa.server.business.Cell</class>

<class>org.eclipse.persistence.example.jpa.server.business.CellAttribute</class>
 </persistence-unit>

3.2.5.3 Configure an Application-Scoped JTA Data Source
To configure an application-scoped data source that uses JTA for transaction
management, perform the following steps:

1. "Specify that the Data Source Is Application-Scoped"

2. "Add the JDBC Module to the WebLogic Server Application Configuration"

Implementing the Solution

Using EclipseLink with WebLogic Server 3-9

3. "Configure the JPA Persistence Unit to Use the JTA Data Source"

3.2.5.3.1 Specify that the Data Source Is Application-Scoped To define an
application-scoped data source, create a name-jdbc.xml JDBC module file and place it
in the META-INF folder of the application's EAR file. In that file, add
<scope>Application</scope> to the jdbc-data-source-params section, as shown in
Example 3–2.

Example 3–2 JDBC Data Source Defined in the name-jdbc.xml File

<jdbc-data-source ...>
...
 <jdbc-data-source-params>
 <jndi-name>SimpleAppScopedDS</jndi-name>
 <scope>Application</scope>
 </jdbc-data-source-params>
</jdbc-data-source>

Hint: You can create the framework for the a name-jdbc.xml file by
creating a globally scoped data source from the WebLogic Server
Administration Console, as described in Section 3.2.5.2, "Configure a
Globally Scoped JTA Data Source," with these differences:

■ Do not associate the data source with a server.

■ Add the <scope> element manually.

For more information about JDBC module configuration files and jdbc-data-source
(including <jdbc-driver-params> and <jdbc-connection-pool-params>), see
"Configuring WebLogic JDBC Resources" in Oracle Fusion Middleware Configuring and
Managing JDBC Data Sources for Oracle WebLogic Server.

3.2.5.3.2 Add the JDBC Module to the WebLogic Server Application Configuration Add a
reference to the JDBC module in the /META-INF/weblogic-application.xml
application deployment descriptor in the EAR file, as shown in Example 3–3. This
registers the data source for use in the application.

Example 3–3 JDBC Module Defined in the weblogic-application.xml File

<wls:module>
 <wls:name>SimpleAppScopedDS</wls:name>
 <wls:type>JDBC</wls:type>
 <wls:path>META-INF/simple-jdbc.xml</wls:path>
</wls:module>

For more information about weblogic-application.xml application deployment
descriptors, see "Understanding Application Deployment Descriptors" in Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server and "Enterprise Application
Deployment Descriptor Elements" in Oracle Fusion Middleware Developing Applications
for Oracle WebLogic Server.

3.2.5.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source To make it possible
for EclipseLink runtime to lazily look up an application-scoped data source, you must
specify an additional data source property in the definition of the persistence unit in

Implementing the Solution

3-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

the persistence.xml file. For a JTA data source, add a fully qualified
javax.persistence.jtaDataSource property, with the value java:/app/jdbc/data_
source_name, as shown in Example 3–4.

The values of the <jta-data-source> and <javax.persistence.jtaDataSource>
properties must match.

Example 3–4 JTA Data Source Definition in the persistence.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>java:/app/jdbc/SimpleAppScopedDS</jta-data-source>
 <properties>
 <property name="javax.persistence.jtaDataSource"
 value="java:/app/jdbc/SimpleAppScopedDS" />
 </properties>
 </persistence-unit>
</persistence>

3.2.5.4 Configure a non-JTA Data Source and Manage Transactions in the
Application
To configure a non-JTA data source managed by the application, follow the procedures
described in Section 3.2.5.3, "Configure an Application-Scoped JTA Data Source," but
configure the JPA persistence unit to use a non-JTA data source by specifying a
not-JTA data source, as shown in Example 3–5.

Example 3–5 non-JTA Data Source Definition in the persistence.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <non-jta-data-source>OracleDS</non-jta-data-source>
 <properties>
 <property name="javax.persistence.nonJtaDataSource"
 value="OracleDS" />
 </properties>
 </persistence-unit>
</persistence>

Write the code in your application to handle the transactions as described, for
example, in "Transactions in EJB Applications" in Oracle Fusion Middleware
Programming JTA for Oracle WebLogic Server.

3.2.5.5 Ensure the Settings Match
Certain settings in the data source configuration must match certain settings in the
application's ejbModule/META-INF/persistence.xml file. For the data source
configuration in WebLogic Server, you can check the settings in the configuration files
or in the Administration Console.

Implementing the Solution

Using EclipseLink with WebLogic Server 3-11

In the Administration Console, review the settings as follows:

1. In the Domain Structure tree, expand Services, then select Data Sources.

2. On the Summary of JDBC Data Sources page, click the name of the data source.

3. On the Settings for data_source_name > Configuration > General page, find the
value for JNDI Name, for example localDS. If you are using JTA, then the name
must match <jta-data-source> in the persistence.xml file.

4. On the Settings for data_source_name > Configuration > Connection Pool page,
review these settings:

■ The value for URL must match the javax.persistence.jdbc.url value in the
persistence.xml file, for example, jdbc:oracle:thin:@127.0.0.1:1521:XE.

■ The value for Driver Class Name must match the
javax.persistence.jdbc.driver value in the persistence.xml file, for
example (for a JTA data source),
oracle.jdbc.xa.client.OracleXADataSource.

Example 3–6 shows the values that must be shared in the domain's config.xml file
and the application's persistence.xml file.

Example 3–6 Server Domain config.xml File

...
<domain...>
 <jdbc-system-resource>
 <name>localJTA</name>
 <target>AdminServer,ManagedServer_1,ManagedServer_2</target>
 <descriptor-file-name>jdbc/localJTA-4636-jdbc.xml</descriptor-file-name>
 </jdbc-system-resource>
</domain>

3.2.6 Task 7: Extend the Domain to Use Advanced Oracle Database Features
To fully support Oracle Spatial and Oracle XDB mapping capabilities (in both
standalone WebLogic Server and the JDeveloper Integrated WebLogic Server), you
must use the toplink-spatial-template.jar file and the toplink-xdb-template.jar
file to extend the WebLogic Server domain to support Oracle Spatial and Oracle XDB,
respectively.

To extend your WebLogic Server domain:

1. Download the toplink-spatial-template.jar (to support Oracle Spatial) and
toplink-xdb-template.jar (to support Oracle XDB) files from:

■ http://download.oracle.com/otn/java/toplink/111110/toplink-s
patial-template.jar

■ http://download.oracle.com/otn/java/toplink/111110/toplink-x
db-template.jar

2. Copy the files, as shown in Table 3–3 and Table 3–4.

Table 3–3 File to Support Oracle Spatial

File From... To...

sdoapi.jar ORACLE_DATABASE_HOME/md/jlib WL_HOME/server/lib

Table 3–4 Files to Support Oracle XDB

File From... To...

xdb.jar ORACLE_DATABASE_HOME/rdbms/jlib WL_HOME/server/lib

xml.jar ORACLE_DATABASE_HOME/lib WL_HOME/server/lib

xmlparserv2.jar ORACLE_DATABASE_HOME/lib WL_HOME/server/lib

Implementing the Solution

3-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

3. Start the Config wizard (WL_HOME/common/bin/config.sh (or .bat)).

4. Select Extend an existing WebLogic domain.

5. Browse and select your WebLogic Server domain.

6. Select Extend my domain using an existing extension template.

7. Browse and select the required template JAR file (toplink-spatial-template.jar
for Oracle Spatial, toplink-xdb-template.jar for Oracle XDB).

8. Complete the remaining pages of the wizard.

For information about using WebLogic Server domain templates, see Oracle Fusion
Middleware Domain Template Reference.

3.2.7 Task 8: Start WebLogic Server and Deploy the Application
For information about deploying to WebLogic Server, see Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server. See also "Deploying Fusion Web
Applications" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

3.2.8 Task 9: Run the Application
For instructions for starting a deployed application from the WebLogic Server
Administration Console, see "Start and stop a deployed Enterprise application" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.

3.2.9 Task 10: Configure and Monitor Persistence Settings in WebLogic Server
In the WebLogic Server Administration Console, you can configure a persistence unit
and configure JTA and non-JTA data sources of a persistence unit, as follows:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the Administration Console, select Deployments.

3. In the right pane, select the application or module you want to configure.

4. Select Configuration.

5. Select Persistence.

6. Select the persistence unit that you want to configure from the table.

7. Review and edit properties on the configuration pages. For help on any page, click
the Help link at the top of the Administration Console.

Properties that can be viewed include:

■ Name

■ Provider

Additional Resources

Using EclipseLink with WebLogic Server 3-13

■ Description

■ Transaction type

■ Data cache time out

■ Fetch batch size

■ Default schema name

■ Values of persistence unit properties defined in the persistence.xml file, for
example, eclipselink.session-name, eclipselink.logging.level, and
eclipselink.target-server

You can also set attributes related to the transactional and non-transactional data
sources of a persistence unit, on the Data Sources configuration page.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For links to other help topics about working with persistence in the Administration
Console, search for "Persistence" in the Table of Contents of Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Online Help.

3.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Oracle WebLogic Server documentation

■ Java API Reference for EclipseLink, including:

■ org.eclipse.persistence

■ org.eclipse.persistence.jpa.PersistenceProvider

■ org.eclipse.persistence.services.mbean

Additional Resources

3-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

4

Using EclipseLink with GlassFish Server 4-1

4Using EclipseLink with GlassFish Server

This chapter describes how to use EclipseLink as the persistence provider for
applications deployed to Oracle GlassFish Server.

This chapter includes the following sections:

■ Section 4.1, "Introduction to the Solution"

■ Section 4.2, "Implementing the Solution"

■ Section 4.3, "Additional Resources"

Use Case
Users want to run applications that employ JPA on Oracle GlassFish Server.

Solution
The Oracle GlassFish platform provides full support for EclipseLink. Developers
writing applications for the GlassFish Server platform can achieve full Java-to-data
source integration that complies with the Java Persistence API (JPA) 2.0 specification.
EclipseLink allows you to integrate Java applications with any data source, without
compromising ideal application design or data integrity.

Components
■ GlassFish Server 3.1.2.

■ EclipseLink 2.3.0 or later.

■ Any compliant JDBC database including Oracle Database, Oracle Database
Express Edition, MySQL, and so on.

■ While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development.

4.1 Introduction to the Solution
Oracle GlassFish Server is the reference implementation of the Java Platform,
Enterprise Edition (Java EE platform) specification. Built using the GlassFish Server
Open Source Edition, GlassFish Server delivers a flexible, lightweight, and
production-ready Java EE platform.

GlassFish Server is part of the Oracle Fusion Middleware application grid portfolio of
products and is ideally suited for applications requiring lightweight infrastructure
with the most up-to-date implementation of the Java EE platform. GlassFish Server
complements Oracle WebLogic Server, which is designed to run the broader portfolio
of Oracle Fusion Middleware and large-scale enterprise applications.

Implementing the Solution

4-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

4.1.1 Advantages to Using EclipseLink with GlassFish Server
By adding EclipseLink support, developers writing applications for the GlassFish
Server platform can achieve full Java-to-data source integration that complies with the
Java Persistence API (JPA) 2.0 specification. EclipseLink allows you to integrate Java
applications with any data source, without compromising ideal application design or
data integrity. In addition, EclipseLink gives your GlassFish Server platform
applications the ability to store (that is, persist) and retrieve business domain objects
using a relational database or an XML data source as a repository.

While GlassFish Server can use other persistence providers and EclipseLink can be
used with other application servers, using GlassFish Server with EclipseLink provides
a number of advantages:

■ EclipseLink is included in all GlassFish Server distributions and is the default JPA
provider.

■ EclipseLink logging integration in GlassFish Server provides a comprehensive,
integrated logging infrastructure.

■ EclipseLink MOXy is also included in GlassFish versions 3.1.2 and later. Although
it is not the default JAXB implementation, it can be used in JAX-WS and JAX-RS
applications. For more information, see:
http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-mox
y.html

4.2 Implementing the Solution
To run EclipseLink JPA applications in GlassFish Server, you must configure the server
and coordinate certain server and application settings. These are described in the
following tasks.

■ Task 1: Prerequisites

■ Task 2: Install GlassFish Server

■ Task 3: Set Up the Data Source

■ Task 4: Create the persistence.xml File

■ Task 5: Set Up GlassFish Server for JPA

■ Task 6: Create the Application

■ Task 7: Deploy the Application to GlassFish Server

■ Task 8: Run the Application

■ Task 9: Monitor the Application

4.2.1 Task 1: Prerequisites
This document is based on the following products and tools, although the principles
apply to any supported database or development environment. It is assumed that the
software is already installed, except where noted in later sections.

■ GlassFish Server 3.1.2.

For more information and downloads, see
http://www.oracle.com/technetwork/middleware/glassfish/overvi
ew/index.html on the Oracle Technology Network.

■ EclipseLink 2.4.1.

Implementing the Solution

Using EclipseLink with GlassFish Server 4-3

For more information and downloads, see
http://www.eclipse.org/eclipselink/ on the EclipseLink website.

■ Any compliant JDBC database including Oracle Database, Oracle Database
Express Edition, MySQL, and so on.

For Oracle Database, see
http://www.oracle.com/technetwork/database/enterprise-edition
/overview/index.html.

For Oracle Database Express Edition, see
http://www.oracle.com/technetwork/database/express-edition/ov
erview/index.html.

For MySQL, see
http://www.oracle.com/us/products/mysql/index.html.

■ While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development. For example, Oracle
JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans all provide
sophisticated Java EE development tools.

For JDeveloper, see
http://www.oracle.com/technetwork/developer-tools/jdev/downlo
ads/index.html.

For Oracle Enterprise Pack for Eclipse, see
http://www.oracle.com/technetwork/developer-tools/eclipse/ove
rview/index.html.

For NetBeans, see
http://www.oracle.com/us/products/tools/050845.html.

4.2.2 Task 2: Install GlassFish Server
EclipseLink is included with the GlassFish Server distribution. You can find
instructions for installing and configuring GlassFish Server at this URL:

http://docs.oracle.com/cd/E26576_01/index.htm

The EclipseLink modules appear as separate JAR files in the modules directory.

* \glassfish\modules
 .
 .
 .
 o org.eclipse.persistence.antlr.jar
 o org.eclipse.persistence.asm.jar
 o org.eclipse.persistence.core.jar
 o org.eclipse.persistence.jpa.jar
 o org.eclipse.persistence.jpa.modelgen.jar
 o org.eclipse.persistence.moxy.jar
 o org.eclipse.persistence.oracle.jar
 .
 .
 .

Note:

■ The org.eclipse.persistence.oracle.jar file is available with
GlassFish and provides Oracle Database-specific functionality for
EclipseLink. This file is used only for applications running against
an Oracle Database.

Implementing the Solution

4-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Object-XML (also known as JAXB support, or MOXy) is a component that enables you
to bind Java classes to XML schemas. This support is provided by the
org.eclipse.persistence.moxy.jar.

4.2.3 Task 3: Set Up the Data Source
Configuring an Oracle database as a JDBC resource for a Java EE application involves
the following steps:

1. Integrate the JDBC Driver for Oracle Database into GlassFish Server

2. Create a JDBC Connection Pool for the Resource

3. Create the JDBC Resource

4.2.3.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server
To integrate the JDBC driver, copy its JAR file into the domain and then restart the
domain and instances to make the driver available.

1. Copy the JAR file for the JDBC driver into the domain's lib subdirectory, for
example:

cd /home/gfuser/glassfish3
cp oracle-jdbc-drivers/ojdbc6.jar glassfish/domains/domain1/lib

Note that you do not have to restart GlassFish Server; the drivers are picked up
dynamically.

If the application uses Oracle Database-specific extensions provided by
EclipseLink, then the driver must be copied to the lib/ext directory. For more
information, see "Oracle Database Enhancements" in the Oracle GlassFish Server
Application Development Guide at:

http://docs.oracle.com/cd/E26576_
01/doc.312/e24930/jpa.htm#giqbi

2. You can use the GlassFish Server Administration Console or the command line to
restart instances in the domain to make the JDBC driver available to the instances.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Cluster node. Select
the node for the cluster and on its General Information page, click the Instances
tab. Select the instances you want to restart. For more information, see "To Start
Clustered GlassFish Server Instances" in GlassFish Server Administration Console
Online Help.

To start a standalone instance, expand the Standalone Instances node. For each
instance that you are starting, select the instance in the Server Instances table.
Click Start. The status of each instance is updated in the Server Instances table
when the instance is started. For more information, see "To Start Standalone
GlassFish Server Instances" in GlassFish Server Administration Console Online Help.

Implementing the Solution

Using EclipseLink with GlassFish Server 4-5

To use the command line:

Run the restart-instance subcommand to restart the instances. These commands
assume that your instances are named pmd-i1 and pmd-i2.

restart-instance pmd-i1
restart-instance pmd-i2

4.2.3.2 Create a JDBC Connection Pool for the Resource
You can create a JDBC connection pool from the GlassFish Server Administration
Console or from the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Common Tasks node,
then click the Create New JDBC Connection Pool button in the Common Tasks page.
Specify the name of the pool, the resource type, the name of the database provider, the
data source and driver class names, and other details. For more information, see "To
Create a JDBC Connection Pool" in GlassFish Server Administration Console Online Help.

To use the command line:

1. Use the create-jdbc-connection-pool subcommand to create the JDBC
connection pool, specifying the database connectivity values. In this command,
note the use of two backslashes (\\) preceding the colons in the URL property
value. These backslashes cause the colons to be interpreted as part of the property
value instead of as separators between property-value pairs, for example:

create-jdbc-connection-pool
 --datasourceclassname oracle.jdbc.pool.OracleDataSource
 --restype javax.sql.DataSource
 --property User=smith\\:Password=password\\:url=jdbc\\:oracle\\:thin\\:@node_
name.example.com\\:1521\\:smithdb
 poolbvcallbackbmt

2. Verify connectivity to the database.

ping-connection-pool pool_name

4.2.3.3 Create the JDBC Resource
You can use the GlassFish Server Administration Console to create the JDBC resource
or you can use the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Resources node, then the
JDBC node, then the JDBC Resources node to open the JDBC Resources page. Provide
a unique JNDI resource name and associate the resource with a connection pool. For
more information, see "To Create a JDBC Resource" in the GlassFish Server
Administration Console Online Help.

To use the command line:

Use the create-jdbc-resource subcommand to create the JDBC resource, and name it
so that the application can discover it using JNDI lookup, for example:

create-jdbc-resource --connectionpoolid poolbvcallbackbmt jdbc/bvcallbackbmt

4.2.4 Task 4: Create the persistence.xml File
Example 4–1 illustrates a sample persistence.xml file that specifies the default
persistence provider for EclipseLink,

Implementing the Solution

4-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

org.eclipse.persistence.jpa.PersistenceProvider. For more information about
this file, see "About the Persistence Unit" in EclipseLink Concepts.

If you are using the default persistence provider, then you can specify additional
database properties described in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Several of the values you enter in the file must match the values you chose when you
defined the cluster, connection, and connection pool properties in GlassFish Server, as
follows:

JDBC Data Source Properties:

■ Name: The name of the data source, which is typically the same as the JNDI name,
for example jdbc/bvcallbackbmt.

■ JNDI Name: The JNDI path to where this data source is bound. This must be the
same name as the value for the <jta-data-source> element in persistence.xml,
for example jdbc/bvcallbackbmt.

■ Database Type: Oracle

■ Database Driver: (default) Oracle's Driver (Thin XA) for Instance connections;
Versions: 9.0.1 and later

Connection Properties:

■ Database Name: The name of the database, for example, XE for Oracle Database
Express Edition samples.

■ Host Name: The IP address of the database server, for example 127.0.0.1 for a
locally hosted database.

■ Port: The port number on which your database server listens for connection
requests, for example, 1521, the default for Oracle Database Express Edition 11g.

■ Database User Name: The database account user name used to create database
connections, for example hr for Oracle Database Express Edition 11g samples.

■ Password: Your password.

Select Targets:

■ Servers / Clusters: Select the administration server, managed servers, or clusters to
which you want to deploy the data source. You can choose one or more.

The sample persistence.xml file in Example 4–1 highlights the properties defining
the persistence provider, the JTA data source, and logging details. In this example, the
logging level is set to FINE. At this level, SQL code generated by EclipseLink is logged
to the server.log file. For more information about these properties, see:

■ Section 4.2.4.1, "Specify the Persistence Provider."

■ Section 4.2.4.2, "Specify an Oracle Database."

■ Section 4.2.4.3, "Specify Logging."

Example 4–1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="2.0">
 <persistence-unit name="pu1" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/bvcallbackbmt</jta-data-source>
 <properties>
 <property name="eclipselink.logging.level" value="FINE"/>

Implementing the Solution

Using EclipseLink with GlassFish Server 4-7

 <property name="eclipselink.ddl-generation"
 value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

4.2.4.1 Specify the Persistence Provider
The persistence provider defines the implementation of JPA. It is defined in the
provider element of the persistence.xml file. Persistence providers are
vendor-specific. The persistence provider for EclipseLink is
org.eclipse.persistence.jpa.PersistenceProvider.

4.2.4.2 Specify an Oracle Database
You specify the database connection details in the persistence.xml file. GlassFish
Server uses the bundled Java DB (Derby) database by default, named jdbc/__default.
To use a nondefault database, such as the Oracle Database, either specify a value for
the jta-data-source element, or set the transaction-type element to RESOURCE_
LOCAL and specify a value for the non-jta-data-source element.

If you are using the default persistence provider,
org.eclipse.persistence.jpa.PersistenceProvider, then the provider attempts to
automatically detect the database type based on the connection metadata. This
database type is used to issue SQL statements specific to the detected database type.
You can specify the optional eclipselink.target-database property to guarantee
that the database type is correct.

For more information about specifying database properties in a persistence.xml file
for GlassFish Server, see "Specifying the Database for an Application" in the Oracle
GlassFish Server Application Development Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm#gbwmj

4.2.4.3 Specify Logging
EclipseLink provides a logging utility even though logging is not part of the JPA
specification. Hence, the information provided by the log is EclipseLink JPA-specific.
With EclipseLink, you can enable logging to view the following information:

■ Configuration details

■ Information to facilitate debugging

■ The SQL that is being sent to the database

You can specify logging in the persistence.xml file. EclipseLink logging properties let
you specify the level of logging and whether the log output goes to a file or standard
output. Because the logging utility is based on java.util.logging, you can specify a
logging level to use.

The logging utility provides nine levels of logging control over the amount and detail
of the log output. Use eclipselink.logging.level to set the logging level, for
example:

<property name="eclipselink.logging.level" value="FINE"/>

By default, the log output goes to System.out or to the console. To configure the
output to be logged to a file, set the property eclipselink.logging.file, for example:

<property name="eclipselink.logging.file" value="output.log"/>

Implementing the Solution

4-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

EclipseLink's logging utility is pluggable, and several different logging integrations are
supported, including java.util.logging. To enable java.util.logging, set the
property eclipselink.logging.logger, for example:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

While running inside GlassFish Server, EclipseLink is configured by GlassFish Server
to use JavaLogger by default. The log is always redirected to the GlassFish Server
server.log file. For more information, see "Setting Log Levels" in Oracle GlassFish
Server Administration Guide, at:

http://docs.oracle.com/cd/E26576_
01/doc.312/e24928/logging.htm#gklml

For more information about EclipseLink logging and the levels of logging available in
the logging utility, see "Persistence Property Extensions Reference" in Java Persistence
API (JPA) Extensions Reference for EclipseLink.

4.2.5 Task 5: Set Up GlassFish Server for JPA
GlassFish Server Application Development Guide describes server-specific considerations
on setting up GlassFish Server to run applications that employ JPA:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm

It provides more information about these topics:

■ "Specifying the Database for an Application," for information about database
connection properties

■ "Specifying the Persistence Provider for an Application," for setting the default or
non-default persistence provider for an application

■ "Primary Key Generation Defaults," for the default persistence provider's primary
key generation defaults

■ "Automatic Schema Generation," for information on annotations and options to
manage automatic schema generation

■ "Restrictions and Optimizations," for restrictions and performance optimizations
that affect using the Java Persistence API

4.2.6 Task 6: Create the Application
To create an application that uses EclipseLink as its JPA persistence provider, you may
want to use a Java EE IDE for convenience during development. For example,
JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans provide sophisticated
Java EE development tools, including support for EclipseLink. See "Key Tools" in
EclipseLink Concepts.

For guidance in writing your application, see these topics from the "Configuring the
Java Persistence Provider" chapter in Oracle GlassFish Server Application Development
Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm

4.2.7 Task 7: Deploy the Application to GlassFish Server
For information about deploying to GlassFish Server, see "Deploy Applications or
Modules," "To Deploy an Enterprise Application," and "To Deploy a Web Application"

Additional Resources

Using EclipseLink with GlassFish Server 4-9

in GlassFish Server Administration Console Online Help. See also Oracle GlassFish Server
Application Deployment Guide, at:

http://docs.oracle.com/cd/E26576_01/index.htm

4.2.8 Task 8: Run the Application
For instructions for starting a deployed application from the GlassFish Server
Administration Console, see "Application Client Launch" and "To Launch an
Application" in GlassFish Server Administration Console Online Help.

4.2.9 Task 9: Monitor the Application
GlassFish Server provides a monitoring service to track the health and performance of
an application. For information about monitoring an application from the console, see
the "Monitoring" and "Monitoring Data" topics in GlassFish Server Administration
Console Online Help. For information about monitoring the application from the
command line, see "Administering the Monitoring Service" in Oracle GlassFish Server
Administration Guide, at:

http://docs.oracle.com/cd/E26576_
01/doc.312/e24928/monitoring.htm

4.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Oracle GlassFish Server Administration Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/toc.htm

■ Oracle GlassFish Server Application Deployment Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24929/toc.htm

■ Oracle GlassFish Server Application Development Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/toc.htm

■ Oracle GlassFish Server 3.1.2 to 3.1.2.2 Documentation Library

http://docs.oracle.com/cd/E26576_01/index.htm

Additional Resources

4-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

5

Using EclipseLink with JBoss 7 Application Server 5-1

5Using EclipseLink with JBoss 7 Application
Server

This chapter introduces and describes how to use EclipseLink as the persistence
provider for applications deployed to JBoss Application Server 7.1.

This chapter includess the following sections:

■ Section 5.1, "Introduction to the Solution"

■ Section 5.2, "Implementing the Solution"

■ Section 5.3, "Additional Resources"

Use Case
EclipseLink can be used with a number of popular Java EE application servers,
including JBoss Application Server.

Solution
Configure JBoss to use EclipseLink runtime, and deploy applications developed using
EclipseLink APIs.

Components

5.1 Introduction to the Solution
JBoss Application Server implements the Java Platform, Enterprise Edition (Java EE).
JBoss 7 fully supports Java EE 6, while JBoss 6 officially supports only the Java EE 6
Web Profile.

By configuring JBoss to support EclipseLink, you can take advantage of EclipseLink’s
full support for Java Persistence API (JPA), Java Architecture for XML Binding (JAXB),
including EclipseLink’s extensions to those technologies, as well as EclipseLink
Database Web Services (DBWS) to access to relational database artifacts via a Web
service.

5.2 Implementing the Solution
To develop, deploy and run EclipseLink applications in JBoss Application Server 7,
you must create EclipseLink as a module of JBoss. You must also create other modules,
such as a JDBC driver, etc., in order to run applications.

This section contains the following tasks for using EclipseLink with JBoss 7.1:

■ Task 1: Prerequisites

Implementing the Solution

5-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Task 2: Configure EclipseLink as a Module in JBoss

■ Task 3: Add ojdbc6.jar as a Module in JBoss

■ Task 4: Create the Driver Definition and the Datasource

■ Task 5: Create Users

■ Task 6: Modify JBoss Properties

■ Task 7: Other Requirements

■ Task 8: Start JBoss

5.2.1 Task 1: Prerequisites
Ensure that you have installed the following components:

■ JBoss, version 7 or later. These instructions are based on JBoss release 7.1.1.

Download JBoss from http://www.jboss.org/jbossas/downloads/ . The
version of JBoss must be identified as "Certified Java EE6." Version 7.1.1 or later is
recommended.

■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

■ Any compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, the HSQL database embedded in JBoss
Application Server, and so on.

Note: Oracle XML DB (XDB) and JBoss Application Server both use
port 8080 by default. If you have both available at the same URI, for
example localhost, you must reconfigure one or the other to use a
different port, for example 8081.

For the Oracle Database, see
http://www.oracle.com/technetwork/database/enterprise-edition
/overview/index.html. For the Oracle Database, Express Edition, see
http://www.oracle.com/technetwork/database/express-edition/ov
erview/index.html. For MySQL, see
http://www.oracle.com/us/products/mysql/index.html. For
information about the embedded HSQL database, see the JBoss documentation.

■ While it is not required, you may want to use a Java development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE
development tools that support EclipseLink.

For JDeveloper, see
http://www.oracle.com/technetwork/developer-tools/jdev/downlo
ads/index.html. For Oracle Enterprise Pack for Eclipse, see
http://www.oracle.com/technetwork/developer-tools/eclipse/ove
rview/index.html. For NetBeans, see
http://www.oracle.com/us/products/tools/050845.html.

5.2.2 Task 2: Configure EclipseLink as a Module in JBoss
To configure EclipseLink as a module in JBoss:

Implementing the Solution

Using EclipseLink with JBoss 7 Application Server 5-3

1. Create a directory as follows:

JBOSS_ HOME\modules\org\eclipse\persistence\main

2. Copy eclipselink.jar to the directory created in step 1. (The eclipselink.jar
file is located in the eclipselink/jlib directory of the eclipselink-ver_no.zip
file.)

3. Create a module.xml file in the directory created in step 1, with the following
content:

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">
 <resources>
 <resource-root path="eclipselink.jar"/>
 <!-- Insert resources here -->
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.persistence.api"/>
 <module name="javax.transaction.api"/>
 <module name="javax.validation.api"/>
 <module name="javax.xml.bind.api"/>
 <module name="org.antlr"/>
 <module name="org.apache.commons.collections"/>
 <module name="org.dom4j"/>
 <module name="org.javassist"/>
 <module name="org.jboss.logging"/>
 <module name="com.oracle.ojdbc6"/>
 </dependencies>
</module>

5.2.3 Task 3: Add ojdbc6.jar as a Module in JBoss
Add the Oracle thin driver ojdbc6.jar as a module within JBoss, as follows:

1. Create the module directory:

JBOSS_ HOME\modules\com\oracle\ojdbc6\main

2. Copy ojdbc6.jar to the module directory created in step 1.

3. Create a module.xml file in the module directory created in step 1, with the
following contents:

<module xmlns="urn:jboss:module:1.1" name="com.oracle.ojdbc6">
 <resources>
 <resource-root path="ojdbc6.jar"/>
 <!-- Insert resources here -->
 </resources>
 <dependencies>
 <module name="javax.api"/>
 </dependencies>
</module>

5.2.4 Task 4: Create the Driver Definition and the Datasource
Create the driver definition and create the datasource.

The following instructions tell how to configure JBoss for running in standalome
mode, using the standalone.xml configuration file. For instructions on how to use

Implementing the Solution

5-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

domain.xml to configure JBoss for running in domain mode, see the JBoss
documentation.

1. In the standalone configuration file JBOSS_
HOME\standalone\configuration\standalone.xml, find the following:

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

2. In that section, configure the datasource. The following example shows a
configuration for the Oracle Database, using the Oracle JDBC Thin driver. For
instructions on configuring other datasources, see the JBoss documentation.

<subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:/EclipseLinkDS"
 pool-name="EclipseLinkDS"
 enabled="true"
 jta="true"
 use-java-context="true"
 use-ccm="true">
 <connection-url>jdbc:oracle:thin:node_name.example.com:1521:TOPLINK</connection-url>
 <driver>oracle</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <prefill>true</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <user-name>Smith</user-name>
 <password>password</password>
 </security>
 </datasource>
 <driver name="oracle" module="com.oracle.ojdbc6">
 <xa-datasource-class>oracle.jdbc.OracleDriver</xa-datasource-class>
 </driver>
 </datasources>
</subsystem>

5.2.5 Task 5: Create Users
Starting with JBoss Application Server 7.1, you must create an Application User to get
started, because remote access to the JNDI tree is secured by default, and you must
provide login credentials. Therefore, at a minimum, you just create an Application
User to be able to deploy an application to the server. If you want to use the JBoss
administration console for administration tasks, for example to view the JNDI tree,
you must also create an Administration User.

To create user credentials, use the JBoss add-user.bat utility, located in JBOSS_
HOME\bin\.

For more information about security in JBoss Application Server, refer to the JBoss
documentation.

5.2.6 Task 6: Modify JBoss Properties
Modify JBoss properties, as follows:

JBoss-7.x
server.factory=org.jboss.naming.remote.client.InitialContextFactory
java.naming.factory.url.pkgs=org.jboss.ejb.client.naming

Additional Resources

Using EclipseLink with JBoss 7 Application Server 5-5

server.depend=jboss-client.jar
jboss.server=${jboss.home}/standalone
server.lib=${jboss.home}/bin/client
server.url=remote://localhost:4447
server.user=usera
server.pwd=passworda
jboss.naming.client.ejb.context=true

5.2.7 Task 7: Other Requirements
1. Add junit.jar in the ear under the \lib directory.

2. Because of a classloading issue in JBoss, you must list all your entity classes in
persistence.xml. You can use either <class> elements or a global
<exclude-unlisted-classes>false</exclude-unlisted-classes> element.

3. Add both jndi.properties and jboss-ejb-client.properties in the client
classpath.

5.2.8 Task 8: Start JBoss
Start JBoss by running standalone.bat (for a single-server configuration) or
domain.bat file (in a clustered environment) in JBOSS_ HOME\bin\.

For information on different ways to configure and start JBoss, see the JBoss
documentation.

5.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ JBoss Community at http://www.jboss.org.

Additional Resources

5-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

6

Using EclipseLink with IBM WebSphere Application Server 6-1

6Using EclipseLink with IBM WebSphere
Application Server

This chapter describes how to use EclipseLink as the persistence provider for
applications deployed to IBM WebSphere Application Server.

This chapter includes the following sections:

■ Section 6.1, "Introduction to the Solution"

■ Section 6.2, "Implementing the Solution"

■ Section 6.3, "Additional Resources"

Use Case
EclipseLink can be used with a number of popular Java EE application servers,
including WebSphere Application Server.

Solution
Configure WebSphere to use EclipseLink runtime, and deploy applications developed
using EclipseLink APIs.

Components
■ EclipseLink 2.4 or later.

■ WebSphere Application Server 7 or later. These instructions are based on
WebSphere 8.5.

■ A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, MySQL, the Derby database included in WebSphere
Application Server, and so on.

6.1 Introduction to the Solution
WebSphere Application Server implements Java Platform, Enterprise Edition (Java
EE). WebSphere V8.5 fully supports Java EE 6 and can support Java Platform, Standard
Edition (Java SE) 7 via a plugin.

By configuring WebSphere support EclipseLink, you can create and deploy
applications that take advantage of EclipseLink’s full support for Java Persistence API
(JPA), as well as EclipseLink’s many extensions.

Implementing the Solution

6-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

6.2 Implementing the Solution
To develop, deploy, and run EclipseLink applications in IBM WebSphere, you must
add various modules including EclipseLink to WebSphere, and you must configure
various aspects of WebSphere to support EclipseLink.

This section contains the following tasks for using EclipseLink with IBM WebSphere,
Version 7 or later:

■ Task 1: Prerequisites

■ Task 2: Configure Persistence Units

■ Task 3: Configure the Server and the Application to Use EclipseLink

6.2.1 Task 1: Prerequisites
Ensure that you have installed the following components:

■ IBM WebSphere, Version 7 or later. These instructions are based on WebSphere,
Version 8.5.

Obtain IBM WebSphere from
http://www-01.ibm.com/software/webservers/appserv/was/.

■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

You will use the following files:

– eclipselink.jar

– javax.persistence_ver_no.jar

6.2.2 Task 2: Configure Persistence Units
Configure persistence units to use EclipseLink as the persistence provider and to use
WebSphere as the target server.

Example 6–1 shows a sample configuration for a container-managed persistence unit.

Example 6–1 Sample persistence.xml for a container-managed persistence unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="default" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/EclipseLinkDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-server" value="WebSphere_7"/>
 <property name="eclipselink.target-database"
 value="org.eclipse.persistence.platform.database.oracle.Oracle11Platform"/>
 <property name="eclipselink.validate-existence" value="true"/>
 <property name="eclipselink.weaving" value="true"/>
 <property name="eclipselink.logging.level" value="FINEST"/>
 </properties>
 </persistence-unit>
</persistence>

Implementing the Solution

Using EclipseLink with IBM WebSphere Application Server 6-3

Example 6–2 shows a sample configuration for an application-managed persistence
unit.

Example 6–2 Sample persistence.xml for an application-managed persistence unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd" version="1.0">
 <persistence-unit name="default" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <non-jta-data-source>jdbc/ELNonJTADS</non-jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-server" value="WebSphere_7"/>
 <property name="eclipselink.target-database"
 value="org.eclipse.persistence.platform.database.oracle.Oracle11Platform"/>
 <property name="eclipselink.validate-existence" value="true"/>
 <property name="eclipselink.weaving" value="true"/>
 <property name="eclipselink.logging.level" value="FINEST"/>
 </properties>
 </persistence-unit>
</persistence>

Note the following about the two examples above:

■ The eclipselink.target-server value WebSphere_7 is used for WebSphere
Application Server version 7 and later.

■ Specifying persistence_1_0.xsd" version="1.0" for the persistence schema
version works with both JPA 1 and JPA 2. For a JPA 2.n -only application, you can
change the version to persistence_2_0.xsd" version="2.n" (WebSphere’s
support for JPA 2 began in WebSphere Application Server 7.0.0.9.

6.2.3 Task 3: Configure the Server and the Application to Use EclipseLink
The following are typical scenarios for using EclipseLink with the application server:

■ Modify Server to Make EclipseLink Available Globally

■ Package EclipseLink in the Application EAR

■ Package EclipseLink in the WAR

6.2.3.1 Modify Server to Make EclipseLink Available Globally
You can make EclipseLink available globally for both container-managed and
application-managed persistence units in either of the following ways:

■ Option 1: Create a Global Shared Library (Recommended)

■ Option 2: Add EclipseLink as a Server Library Extension

Option 1: Create a Global Shared Library (Recommended)
1. Create a global shared library containing the following files:

■ eclipselink.jar

Find this file in the TOPLINK_INSTALLATION\oracle_
common\modules\oracle.toplink_ver_no directory created by the EclipseLink
quick installer.

■ xmlparserv2.jar

Implementing the Solution

6-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Find this file in the TOPLINK_INSTALLATION\toplink\modules directory
created by the s quick installer.

■ If you use Oracle Database features such as NCHAR, XMLTYPE, and MDSYS.SDO_
GEOMETRY with JPA, you must also include xdb.jar and sdoapi.jar in the
shared library. Those files are available in your Oracle Database distribution.

See the WebSphere documentation for instructions on how to use WebSphere to
facilitate the creation of shared libraries.

2. Associate the shared library with the application.

See the WebSphere documentation for instructions on how to use WebSphere to
associate the shared library with an application.

Option 2: Add EclipseLink as a Server Library Extension
To add EclipseLink as a server library extension, copy eclipselink.jar and the other
JAR file(s) listed in Option 1, above, to the WAS_HOME\lib\ext directory.

6.2.3.2 Package EclipseLink in the Application EAR
You can also implement container-managed persistence by adding eclipselink.jar
in the application EAR, without making any modifications to the server configuration.
In this case, the persistence unit is managed by @PersistenceContext entity manager
proxy injection on a stateless session bean. The following instructions show a example
of this approach.

1. Add eclipselink.jar to the application EAR in the following location:

EAR_archive/APP-INF/lib/

2. Add the path to the eclipselink.jar to the ejbModule/META-INF/MANIFEST.MF
file(s) in your EJB JAR(s), as shown below:

Manifest-Version: 1.0
Class-Path: APP-INF/lib/eclipselink.jar

This is the manifest at the root of the entities’ location, in this case as part of the
ejb.jar.

3. Configure the class loader to load the classes with the application class loader first.

4. Deploy and start the application. See the IBM WebSphere documentation for
instructions.

6.2.3.3 Package EclipseLink in the WAR
If you do not or cannot implement container-managed persistence, as described in the
previous two scenarios, you can create an application managed entity manager. In this
case, all library configuration and classloader scope changes must be done inside the
EAR itself.

1. Add eclipselink.jar and javax.persistence_ver_no.jar to the web
application archive (WAR) file in the following location:

WAR_archive/WEB-INF/lib/

2. Configure the class loader order for your application to load the classes with the
application class loader first. See the WebSphere documentation for instructions on
setting class loader order using the Administrative console.

3. Deploy and start the application. See the IBM WebSphere documentation for
instructions.

Additional Resources

Using EclipseLink with IBM WebSphere Application Server 6-5

6.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ WebSphere Application Server at
http://www-01.ibm.com/software/webservers/appserv/was/.

Additional Resources

6-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

7

Migrating from Native TopLink 7-1

7Migrating from Native TopLink

This chapter describes how to migrate applications using "native" TopLink
object-relational mapping (ORM) APIs to the current EclipseLink APIs.

This chapter includes the following sections:

■ Section 7.1, "Introduction to the Solution"

■ Section 7.2, "Implementing the Solution"

■ Section 7.3, "Additional Resources"

Use Case
A developer wants to upgrade an application that uses the older TopLink native ORM
to use a current EclipseLink ORM implementation.

Solution
Follow the instructions in this chapter to upgrade the application.

Components

■ EclipseLink 2.4 or later.

■ (Optional) EclipseLink Workbench.

7.1 Introduction to the Solution
"Native" TopLink ORM refers to the API, configuration files, and tools for
object-relational mapping that evolved in TopLink before the Java Persistence API
(JPA) standardized an object-relational mapping API. Full JPA support was introduced
in Oracle TopLink 10g (10.1.3.1.0), via TopLink Essentials. However, native TopLink
continued to be supported.

Prior to the TopLink 11g (11.1.1) release, Oracle contributed the TopLink source
code--including TopLink JPA and native TopLink--to the Eclipse Foundation, where it
was used to form the basis of the open-source EclipseLink persistence services project.
Then, in TopLink 11g Release 1 (11.1.1), Oracle started to include EclipseLink in
TopLink, providing TopLink’s core functionality.

EclipseLink developers using TopLink versions 11.1.1.0.0 though 11.1.1.6.0 have access
to native TopLink ORM in either the proprietary Oracle toplink.jar or in the
EclipseLink eclipselink.jar. In toplink.jar, the classes are in packages whose
names start with oracle.toplink.*. In eclipselink.jar, those package names begin
instead with org.eclipselink.persistence..

Note: The toplink.jar file was deprecated in TopLink 11g and is no
long shipped with TopLink 12c. It is recommended that you migrate
off oracle.toplink.* in TopLink 11g.

Implementing the Solution

7-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

You can migrate applications that use oracle.toplink.* packages from toplink.jar
to use org.eclipselink.persistence. packages from eclipselink.jar. The
application functionality remains the same, but migrating to eclipselink.jar
provides the most up-to-date code base. After migrating, you will have access to other
EclipseLink features and will be better prepared to convert your application to use JPA
or one of the other persistence services included in current versions of EclipseLink.

This chapter explains how to use the renaming tool that is packaged with stand-alone
EclipseLink to easily change the package names in your application and how to
perform other actions necessary to migrate to the current code base.

Note: Following the instructions in this chapter will update your
application to use the current EclipseLink code base. Doing so retains
the design and functionality of your application as originally
implemented. However, these instructions do not describe how to
convert a native TopLink-based application to use JPA or any of the
other persistence services in current versions of EclipseLink. See the
other EclipseLink documentation sources for that information.

7.2 Implementing the Solution
This section contains the following tasks:

■ Section 7.2.1, "Task 1: Prerequisites"

■ Section 7.2.2, "Task 2: Replace Deprecated and Removed Native APIs"

■ Section 7.2.3, "Task 3: Rename Packages"

■ Section 7.2.4, "Task 4: Convert XML Configuration Files"

■ Section 0.0.1, "Task 5: Convert Oracle TopLink Workbench Projects (Optional)"

7.2.1 Task 1: Prerequisites
■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

■ (Optional) EclipseLink Workbench. The EclipseLink Workbench is available in
EclipseLink downloads. See the EclipseLink download page at
http://www.eclipse.org/eclipselink/downloads/.

7.2.2 Task 2: Replace Deprecated and Removed Native APIs
APIs that were deprecated in releases before TopLink 11g Release 1 (11.1.1) were
removed in EclipseLink. If your application uses any of those deprecated APIs or any
APIs that were already replaced or removed from TopLink, you must update the
application to use current APIs.

The following sections lists the replaced and removed APIs, with suggested
substitutions:

Implementing the Solution

Migrating from Native TopLink 7-3

■ Section 7.2.2.1, "APIs Replaced,"

■ Section 7.2.2.2, "Deprecated APIs,"

■ Section 7.2.2.3, "Removed API,"

Note: When suggested replacements are in oracle.toplink.*
packages, you must also change the package names, as described in
Section 7.2.3, "Task 3: Rename Packages."

7.2.2.1 APIs Replaced
The following tables list the APIs removed as of TopLink 11g Release 1 (11.1.1.1.). Use
the replacement API listed in the tables.

■ Table 7–1, " changetracking (oracle.toplink.descriptors.*)"

■ Table 7–2, " databaseaccess (oracle.toplink.internal*)"

■ Table 7–3, " jdo (oracle.toplink.*)"

■ Table 7–4, " mappings (oracle.toplink.*)"

■ Table 7–5, " objectrelational (oracle.toplink.*)"

■ Table 7–6, " oraclespecific (oracle.toplink.*)"

■ Table 7–7, " publicinterface (oracle.toplink.*)"

■ Table 7–8, " sdk (oracle.toplink.*)"

■ Table 7–9, " entitymanager (oracle.toplink.sessions.*)"

■ Table 7–10, " sessionconfiguration (oracle.toplink.tools.*)"

■ Table 7–11, " xml (oracle.toplink.*)"

■ Table 7–12, " XMLCommandConverter (oracle.toplink.*)"

■ Table 7–13, " Remote Protocols (oracle.toplink.*)"

■ Table 7–14, " EJB Mapping for BEA WebLogic 6.1"

■ Table 7–15, " mappings (oracle.toplink.*)"

■ Table 7–16, " descriptors (oracle.toplink.*)"

Table 7–1 changetracking (oracle.toplink.descriptors.*)

Class Name Method Name Replacement APIs

ChangeTracker getTopLinkPropertyChangeList
ener

._persistence_getPropertyChangeListener

ChangeTracker setTopLinkPropertyChangeList
ener(PropertyChangeListener)

persistence
setPropertyChangeListener(PropertyChangeListener)

Table 7–2 databaseaccess (oracle.toplink.internal*)

Class Name Method Name Replacement APIs

.*Platform Whole class oracle.toplink.platform.database.*Platform

Table 7–3 jdo (oracle.toplink.*)

Class Name Method Name Replacement APIs

.jdo Whole package None

Table 7–4 mappings (oracle.toplink.*)

Class Name Method Name Replacement APIs

TypeConversionMapping Whole class .mappings.converters.TypeConversionConverter

ObjectTypeMapping Whole class .mappings.converters.ObjectTypeConverter

SerializedObjectMapping Whole class .mappings.converters.SerializedObjectConverter

Table 7–5 objectrelational (oracle.toplink.*)

Class Name Method Name Replacement APIs

Oracle8Platform Whole class oracle.toplink.platform.database.oracle.Oracle8Platform

Table 7–6 oraclespecific (oracle.toplink.*)

Class Name Method Name Replacement APIs

.oraclespecific.NCharacter Whole class .platform.database.oracle.NCharacter

.oraclespecific.NClob Whole class .platform.database.oracle.NClob

.oraclespecific.NClob Whole class .platform.database.oracle.NClob

.oraclespecific.Oracle8Platform Whole class .platform.database.oracle.Oracle8Platform

.oraclespecific.Oracle9Specific 1

1 oracle.toplink.oraclespecific.Oracle9Specific was moved to an internal package and renamed to
oracle.toplink.internal.platform.database.oracle.Oracle9Specific. The replacement public API for
oracle.toplink.oraclespecific.Oracle9Specific is oracle.toplink.platform.database.oracle.Oracle9Specific.

Whole class .platform.database.oracle.Oracle9Specific

.oraclespecific.TopLinkXMLType 2

2 oracle.toplink.oraclespecific.TopLinkXMLType was a miscellaneous class, which does not have a replacement API.

Whole class None

Table 7–7 publicinterface (oracle.toplink.*)

Class Name Method Name Replacement APIs

DatabaseRow Whole class .sessions.DatabaseRecord

DatabaseSession 1 Whole class .sessions.DatabaseSession

Descriptor Whole class .descriptors - ClassDescriptor, RelationalDescriptor

DescriptorEvent Whole class .descriptors.DescriptorEvent

DescriptorEventListener Whole class .descriptors - new interface will not extend old interface

DescriptorEventManager Whole class .descriptors

DescriptorQueryManager Whole class .descriptors

InheritancePolicy Whole class .descriptors

Session2 Whole class .sessions.Session

UnitOfWork3 Whole class .sessions.UnitOfWork

Implementing the Solution

7-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Table 7–8 sdk (oracle.toplink.*)

Class Name Method Name Replacement APIs

.sdk Whole package .eis

Table 7–9 entitymanager (oracle.toplink.sessions.*)

Class Name Method Name Replacement APIs

All classes All methods JPA: see Section 7.2.2.4.1, "JPA Persistence Provider Implementation,"

Table 7–10 sessionconfiguration (oracle.toplink.tools.*)

Class Name Method Name Replacement APIs

WASXMLLoader All methods None

Table 7–11 xml (oracle.toplink.*)

Class Name Method Name Replacement APIs

.xml Whole package .ox

.xmlstream Whole package .ox

.xml.tools Whole package .ox

.xml.xerces Whole package .ox

.xml.zip Whole package .ox

Table 7–12 XMLCommandConverter (oracle.toplink.*)

Class Name Method Name Replacement APIs

.remotecommand.XMLCommandConverter Whole class None

.transform.xml.XMLSource Whole class None

.transform.xml.XMLResult Whole class None

.internal.localization.i18n.ExceptionLocalizationResourc
e

"error_loading_resources" None

.internal.localization.i18n.ExceptionLocalizationResourc
e

"error_parsing_resources" None

.internal.localization.i18n.ExceptionLocalizationResourc
e

"unexpect_argument" None

Implementing the Solution

Migrating from Native TopLink 7-5

1 oracle.toplink.publicinterface.DatabaseSession was moved to an internal package and renamed to
oracle.toplink.internal.sessions.DatabaseSessionImpl. The replacement public API for
oracle.toplink.publicinterface.DatabaseSession is oracle.toplink.sessions.DatabaseSession.

2 oracle.toplink.publicinterface.Session was moved to an internal package and renamed to
oracle.toplink.internal.sessions.AbstractSessionImpl. The replacement public API for
oracle.toplink.publicinterface.Session is oracle.toplink.sessions.Session.

3 oracle.toplink.publicinterface.UnitOfWork was moved to an internal package and renamed to
oracle.toplink.internal.sessionl.UnitOfWorkImpl. The replacement public API for
oracle.toplink.publicinterface.UnitOfWork is oracle.toplink.sessions.UnitOfWork.

Table 7–13 Remote Protocols (oracle.toplink.*)

Class Name Method Name
Replacem
ent APIs

.remote.corba.orbix Whole package None

.remote.corba.visibroker Whole package None

.remote.ejb Whole package None

.tools.sessionconfiguration.TopLinkSessions
Factory

References for any of JNDIClusteringService in
orbix, visibroker and ejb packages.

None

.tools.sessionconfiguration.DTD2SessionConf
igLoader

References for any of JNDIClusteringService in
orbix, visibroker and ejb packages.

None

.tools.sessionconfiguration.model.clusterin
g.VisibrokerCORBAJNDIClusteringConfig

Whole class None

.tools.sessionconfiguration.model.clusterin
g.OrbixCORBAJNDIClusteringConfig

Whole class None

.tools.sessionconfiguration.model.clusterin
g.EJBJNDIClusteringConfig

Whole class None

.tools.sessionconfiguration.XMLSessionConfi
gProject

References for any of JNDIClusteringService in
orbix, visibroker and ejb packages.

None

Table 7–14 EJB Mapping for BEA WebLogic 6.1

Class Name
Method
Name Replacement APIs

toplink-cmp-bean_name.xml None A warning will be added at the beginning of:
internal.ejb.cmp.wls11.CMPDeployer.readTypeSpecificData()

Implementing the Solution

7-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

7.2.2.2 Deprecated APIs
The following tables list the APIs deprecated in the releases prior to TopLink 11g
Release 1 (11.1.1) and therefore removed in that release, due to the substitution of
EclipseLink libraries. Use the replacement API indicated.

Note: Because deprecated classes and moved classes have the same
name, you may get compile errors if you use import * to import
classes from both the old package and the new package. To avoid
these errors, use import with a fully qualified package name.

■ Table 7–15, " mappings (oracle.toplink.*)"

■ Table 7–16, " descriptors (oracle.toplink.*)"

Table 7–15 mappings (oracle.toplink.*)

Class Name Method Name Replacement APIs

OneToOneMapping useJoining ForeignReferenceMapping.setJoinFetch(int)

Table 7–16 descriptors (oracle.toplink.*)

Class Name Method Name Replacement APIs

ClassDescrip
tor

addMultipleTableForeignKeyField addForeignKeyFieldForMultipleTable

ClassDescrip
tor

addMultipleTablePrimaryKeyField addForeignKeyFieldForMultipleTable

ClassDescrip
tor

addMultipleTablePrimaryKeyFieldName addForeignKeyFieldNameForMultipleTable

ClassDescrip
tor

addMultipleTableForeignKeyFieldName addForeignKeyFieldNameForMultipleTable

Implementing the Solution

Migrating from Native TopLink 7-7

7.2.2.3 Removed API
The following classes were removed in the release prior to TopLink 11g Release 1
(11.1.1):

■ OTSTransactionController

■ OTSSynchronizationListener

■ OracleSequenceDefinition (use SequenceObjectDefinition instead)

■ TimeTenSequenceDefinition (use SequenceObjectDefinition instead)

7.2.2.4 Miscellaneous API Changes
Other API changes include the following:

■ Section 7.2.2.4.1, "JPA Persistence Provider Implementation."

■ Section 7.2.2.4.2, "Session Finalizers Disabled by Default."

■ Section 7.2.2.4.3, "Vector and Hashtable Return Types Changed to List or Map."

7.2.2.4.1 JPA Persistence Provider Implementation The persistence provider
implementation in all TopLink releases since 11g (11.1.1) is packaged in
eclipselink.jar. It replaces all previous implementations, for example:

■ toplink.jar

■ toplink-essentials.jar

7.2.2.4.2 Session Finalizers Disabled by Default In TopLink 11g (11.1.1) Technology
Preview 3, session finalizers were disabled by default to improve performance. To
enable session finalizers, use Session method setIsFinalizersEnabled(true).

7.2.2.4.3 Vector and Hashtable Return Types Changed to List or Map Any Session or
ClassDescriptor method that returns Vector or Hashtable will eventually be
changed to return List or Map, respectively. To prepare for this change, cast Vector and
Hashtable return types to List or Map, respectively. For example, although the Javadoc
for ClassDescriptor method getMappings is java.util.Vector, you should cast the
returned value to List:

List mappings = (List) descriptor.getMappings();

Other changes that now return Map include the following:

■ ClassDescriptor.getQueryKeys()

■ ClassDescriptor.getProperties()

Implementing the Solution

7-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ DescriptorQueryManager.getQueries()

■ EISInteraction.getProperties()

■ Session.getProperties()

■ Session.getQueries()

■ getAttributesToAlwaysInclude()

■ getSpecialOperations()

■ getValuesToExclude()s

7.2.3 Task 3: Rename Packages
EclipseLink continues to support native TopLink APIs; however, all oracle.toplink.*
packages are now renamed to org.eclipse.persistence.*.

To migrate your application to use the new code base, you must rename the packages
in your code. To facilitate this, a package renamer tool is included with the EclipseLink
installation. Use this tool on all of the following:

■ project source code

■ project.xml file

■ persistence.xml file

■ sessions.xml file

The package renamer is located in the toplink_install_
directory\toplink\utils\rename directory. Windows and UNIX/LINUX scripts are
included.

To run the package renamer using the scripts, do the following:

1. Find the packageRename.cmd (Windows) and packageRename.sh (UNIX/LINUX)
scripts in toplink_install_directory\toplink\utils\rename directory.

2. Run either packageRename.cmd or packageRename.sh with the following
arguments:

– sourceLocation - The directory containing the files to rename.

– targetLocation - The destination directory for the renamed files. The package
renamer removes any existing Java and XML files, so it is advisable to specify
an empty directory.

For example:

packageRename c:/mySourceLocation c:/myDestinationLocation

The package renamer performs a recursive directory search for Java and XML files
to rename. The renamed version of each file is saved in the corresponding
directory in the target location

7.2.4 Task 4: Convert XML Configuration Files
The package renamer can rename EclipseLink XML configuration files, but depending
on the type of file, you may need to make additional changes.

Additional Resources

Migrating from Native TopLink 7-9

7.2.4.1 Sessions XML
You can continue to use sessions.xml files as is. For a more forward-compatible
solution, run the renamer on your sessions.xml files.

7.2.4.2 Deployment XML
Deployment XML files from TopLink 10.1.3 and above can be read by TopLink 11.1.1
and later. You can continue to use those files or for a more forward compatible
solution, run the renamer on these files and replace the version string in the "XML
Header" with the following:

"Eclipse Persistence Services"

7.2.4.3 Persistence XML
To use EclipseLink as a persistence provider, you must run the renamer on your
persistence.xml files. The renamer updates the persistence provider to be
EclipseLink and also update any native TopLink specific properties to the EclipseLink
equivalent.

7.2.4.4 ORM XML
The Object-Relational (ORM) XML configuration file (orm.xml) is not
EclipseLink-dependant and does not need to be updated.

7.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■

Additional Resources

7-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

8

Migrating from Hibernate to EclipseLink 8-1

8Migrating from Hibernate to EclipseLink

This chapter describes how to migrate applications from using Hibernate JPA
annotations and its native and proprietary API to using EclipseLink’s JPA
implementation, provided by EclipseLink. The migration involves converting
Hibernate annotations to EclipseLink annotations, and converting native Hibernate
API to EclipseLink JPA in the application code. Standard JPA annotations and API are
left unchanged.

This chapter describes how to migrate applications from using Hibernate JPA
annotations and its native and proprietary API to using EclipseLink JPA. The
migration involves converting Hibernate annotations to EclipseLink annotations, and
converting native Hibernate API to EclipseLink JPA in the application code. Standard
JPA annotations and API are left unchanged.

This chapter includes the following sections:

■ Section 8.1, "Introduction to the Solution"

■ Section 8.2, "Main Tasks"

■ Section 8.3, "Additional Resources"

Use Case
A developer wants to migrate applications using Hibernate as the persistence provider
to use EclipseLink instead.

Solution
Follow the instructions in this chapter to upgrade the application.

Components
■ EclipseLink 2.4 or later.

8.1 Introduction to the Solution
Hibernate is an object-relational mapping (ORM) tool for Java environments. It
provides a framework for mapping Java objects to relational database artifacts, and
Java data types to SQL data types. It also provides the ability to query the database
and retrieve data.

For more information about Hibernate, see http://www.hibernate.org.

Reasons to Migrate
Reasons why you would want to migrate from Hibernate to EclipseLink include:

Main Tasks

8-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Performance and scalability: EclipseLink's caching architecture allows you to
minimize object creation and share instances. EclipseLink's caching supports
single-node and clustered deployments.

■ Support for leading relation databases: EclipseLink continues to support all
leading relational databases with extensions specific to each. EclipseLink is also
the best ORM solution for Oracle Database.

■ A comprehensive persistence solution: While EclipseLink offers industry leading
object-relational support, EclipseLink also uses its core mapping functionality to
deliver Object-XML (JAXB), Service Data Object (SDO), and Database Web
Services (DBWS). Depending on your requirements, you can use one or more of
the persistence services based on the same core persistence engine.

■ JPA Support: EclipseLink is the JPA reference implementation, and it will support
future versions of JPA.

8.2 Main Tasks
Complete these tasks to migrate an application that uses Hibernate as its persistence
provider to EclipseLink.

■ Task 1: Convert the Hibernate Entity Annotation

■ Task 2: Convert the Hibernate Custom Sequence Generator Annotation

■ Task 3: Convert Hibernate Mapping Annotations

■ Task 4: Modify the persistence.xml File

■ Task 5: Convert Hibernate API to EclipseLink API

8.2.1 Task 1: Prerequisites
EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

8.2.2 Task 1: Convert the Hibernate Entity Annotation
The Hibernate entity annotation, defined by the org.hibernate.annotations.Entity
class, adds additional metadata beyond what is defined by the JPA standard @Entity
annotation.

Example 8–1 illustrates a sample Hibernate entity annotation. The example uses the
selectBeforeUpdate, dynamicInsert, dynamicUpdate, optimisticLock, and
polymophism attributes. Note that the Hibernate entity annotation also defines mutable
and persister attributes, which are not used in this example.

Example 8–1 Sample Hibernate Entity Annotation

@org.hibernate.annotations.Entity(
 selectBeforeUpdate = true,
 dynamicInsert = true,
 dynamicUpdate = true,
 optimisticLock = OptimisticLockType.ALL,
 polymorphism = PolymorphismType.EXPLICIT)

The following sections describe how EclipseLink handles selects, locks,
polymorphism, and dynamic updates and inserts. For more information, see

Main Tasks

Migrating from Hibernate to EclipseLink 8-3

"EclipseLink/Examples/JPA/Migration/Hibernate/V3Annotations" in the Eclipselink
documentation, at:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hiber
nate/V3Annotations

8.2.2.1 Convert the SelectBeforeUpdate, dynamicInsert and dynamicUpdate
Attributes
In Hibernate, the selectBeforeUpdate attribute specifies that Hibernate should never
perform a SQL update unless it is certain that an object is actually modified. The
dynamicInsert attribute specifies that the INSERT SQL statement should be generated
at runtime and contain only the columns whose values are not null. The
dynamicUpdate attribute specifies that the UPDATE SQL statement should be generated
at runtime and can contain only those columns whose values have changed.

By default, EclipseLink will always insert all mapped columns and will update only
the columns that have changed. If alternative operations are required, then the queries
used for these operations can be customized by using Java code, SQL, or stored
procedures.

8.2.2.2 Convert the OptimisticLock Attribute
In Hibernate, the optimisticLock attribute determines the optimistic locking strategy.

EclipseLink's optimistic locking functionality supports all of the Hibernate locking
types and more. Table 8–1 translates locking types from Hibernate's
@Entity(optimisticLock) attributes into EclipseLink locking policies. These policies
can be configured either with the EclipseLink @OptimisticLocking annotation or in
the EclipseLink orm.xml file. For more information, see @OptimisticLocking.

Table 8–1 Translating Hibernate's OptimisticLock to EclipseLink's OptimisticLocking

Hibernate's
OptimisticLock Type Description EclipseLink OptimisticLocking

NONE No optimistic locking EclipseLink defaults to no optimistic locking.

VERSION Use a column version Use the JPA @Version annotation or the EclipseLink
annotation:

@OptimisticLocking(type =
OptimisticLockingType.VERSION_COLUMN)

DIRTY Changed columns are
compared

Use the JPA @Version annotation or the EclipseLink
annotation:

@OptimisticLocking(type =
OptimisticLockingType.CHANGED_COLUMNS)

ALL All columns are
compared

Use the EclipseLink annotation:

@OptimisticLocking(type =
OptimisticLockingType.ALL_COLUMNS)

Additionally, EclipseLink allows you to compare a specific set of selected columns
using the OptimisticLockingType.SELECTED_COLUMNS annotation. This allows you to
select the critical columns that should be compared if the CHANGED or ALL strategies do
not meet your needs.

Main Tasks

8-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

8.2.3 Task 2: Convert the Hibernate Custom Sequence Generator Annotation
In Hibernate, the @GeneratedValue annotation defines the identifier generation
strategy. The @GenericGenerator allows you to define a Hibernate-specific ID
generator. Example 8–2 illustrates a custom generator for sequence values.

Example 8–2 Custom Generator for Sequence Values

.

.

.
@Id
 @GeneratedValue(generator = "system-uuid")
 @GenericGenerator(name = "system-uuid", strategy = "mypackage.UUIDGenerator")
 public String getTransactionGuid()
.
.
.

In EclipseLink, a custom sequence generator can be implemented and registered by
using the @GeneratedValue annotation. For more information, see "How to use
Custom Sequencing" in the EclipseLink documentation, at:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/CustomSequencin
g

8.2.4 Task 3: Convert Hibernate Mapping Annotations
The following sections describe how to convert various Hibernate annotations to
EclipseLink annotations.

8.2.4.1 Convert the @ForeignKey Annotation
In Hibernate, the @ForeignKey annotation allows you to define the name of the foreign
key to be used during schema generation.

EclipseLink does generate reasonable names for foreign keys, but does not provide an
annotation or eclipselink-orm.xml support for specifying the name to use. When
migrating, the recommended solution is to have EclipseLink generate the schema
(DDL) commands to a script file instead of directly on the database. The script can
then be customized to use different names prior to being executed.

Note: The foreign key name is not used by EclipseLink at runtime,
but is required if EclipseLink attempts to drop the schema. In this
case, the drop script should be generated to a file and customized to
match the foreign key names used during creation.

8.2.4.2 Convert the @Cache Annotation
In Hibernate, the @Cache annotation configures the caching of entities and
relationships. Because EclipseLink uses an entity cache instead of a data cache, the
relationships are automatically cached. In these cases, the @Cache annotation should be
removed during migration.

When the @Cache annotation is used on an entity, its behavior is similar to the
EclipseLink @Cache annotation. For more information about the @Cache annotation and
equivalent eclipselink-orm.xml configuration values, see Java Persistence API (JPA)
Extensions Reference for EclipseLink.

Main Tasks

Migrating from Hibernate to EclipseLink 8-5

8.2.5 Task 4: Modify the persistence.xml File
The persistence.xml file is the deployment descriptor file for JPA persistence. It
specifies the persistence units, and declares the managed persistence classes, the
object-relational mapping, and the database connection details. Example 8–3 illustrates
a persistence.xml file for an application that uses Hibernate. Hibernate-specific
values appear in bold font.

Example 8–3 Persistence File for an Application that Uses Hibernate

<persistence>
 <persistence-unit name="helloworld">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

8.2.5.1 Modified persistence.xml File
Example 8–4 illustrates a persistence.xml file modified for an application that uses
EclipseLink. Key differences include the value for the persistence provider. For
EclipseLink, this value is org.eclipse.persistence.jpa.PersistenceProvider. The
names of EclipseLink-specific properties are typically be prefixed by eclipselink, for
example, eclipselink.target-database. EclipseLink-specific values appear in bold
font.

Example 8–4 Persistence File Modified for EclipseLink

<xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="helloworld">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <!-- For Java SE applications, entity classes must be specified for
EclipseLink weaving. For Java EE applications, the classes are found
automatically. -->
 <class>Todo</class>
 <properties>
 <property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
 <property name="eclipselink.ddl-generation.output-mode" value="database"/>
 <property name="eclipselink.logging.level" value="FINE"/>
 </properties>
 </persistence-unit>
</persistence>

8.2.5.2 Drop and Create the Database Tables
For production environments, you would usually have the schema set up on the
database. The following properties defined in the persistence unit are more suitable for
examples and demonstrations. These properties will instruct EclipseLink to

Main Tasks

8-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

automatically drop and create database tables. Any previously existing tables will be
removed.

To use the Drop and Create Database Tables feature, add the following properties to
the persistence.xml file.

<property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
 <property name="eclipselink.ddl-generation.output-mode" value="database"/>

For more information on this feature, see the drop-and-create-tables entry in
"ddl-generation" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

8.2.5.3 Create or Extend Database Tables
The Create or Extend Database Tables feature allows you match the database schema
to the object model by creating new database tables or by modifying existing tables.
You can modify existing tables by specifying field name changes and by add and
removing fields.

Note: In the current release, the Create or Extend Database Tables
feature will not rename or delete existing columns. It will only add
missing table columns.

 The Create or Extend Database Tables feature reduces the need to repopulate test data.
You avoid the need to use the Drop and Create Database Tables feature when the
schema changes, due to changes in the object model. The Create or Extend Database
Tables feature can also be used with extensibility to add table columns.

To use the Create or Extend Database Tables feature, add the following properties to
the persistence.xml file. When the context is loaded, EclipseLink will query the
database for each table required in the persistence unit and use the results to
determine if the table needs to be created or extended.

<property name="eclipselink.ddl-generation" value="create-or-extend-tables" />
 <property name="eclipselink.ddl-generation.output-mode" value="database" />

For more information on this feature, see the create-or-extend-tables entry in
"ddl-generation" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

8.2.6 Task 5: Convert Hibernate API to EclipseLink API
Table 8–2 describes the Hibernate classes that are commonly used in a JPA project and
their equivalent EclipseLink (JPA) interfaces. All of the Hibernate classes are in the
org.hibernate package. All of the JPA interfaces (and the Persistence class) are in
the javax.persistence package.

For information about the EclipseLink API, see Java API Reference for EclipseLink.

Table 8–2 Hibernate Classes and Equivalent JPA Interfaces

org.hibernate javax.persistence Description

cfg.Configuration Persistence Provides a bootstrap class that configures the session
factory (in Hibernate) or the entity manager factory (in
JPA). It is generally used to create a single session (or
entity manager) factory for the JVM.

SessionFactory EntityManagerFactory Provides APIs to open Hibernate sessions (or JPA entity
managers) to process a user request. Generally, a session
(or entity manager) is opened per thread processing client
requests.

Session EntityManager Provides APIs to store and load entities to and from the
database. It also provides APIs to get a transaction and
create a query.

Transaction EntityTransaction Provides APIs to manage transactions.

Query Query Provides APIs to execute queries.

Additional Resources

Migrating from Hibernate to EclipseLink 8-7

8.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Hibernate at http://www.hibernate.org.

■ "EclipseLink/Examples/JPA/Migration/Hibernate" in the EclipseLink
documentation, at
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hi
bernate.

Additional Resources

8-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

9

Using Multiple Databases with a Composite Persistence Unit 9-1

9Using Multiple Databases with a
Composite Persistence Unit

With EclipseLink, you can expose multiple persistence units (each with unique sets of
entity types) as a single persistence context by using a composite persistence unit.
Individual persistence units that are part of this composite persistence unit are called
composite member persistence units.

Note: EclipseLink also supports multiple databases through
partitioning. See Chapter 10, "Scaling Applications in Clusters" for
more information.

This chapter includes the following sections:

■ Section 9.1, "Introduction to the Solution"

■ Section 9.2, "Implementing the Solution"

■ Section 9.3, "Additional Resources"

Use Case
Users need to map expose multiple persistence units as a single persistence context
within an application.

Solution
EclipseLink supports a "composite" persistence unit which can include multiple
member persistence units.

Components
■ EclipseLink 2.4.2 or later.

■ Multiple databases.

Sample
See the following EclipseLink examples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/Composite

9.1 Introduction to the Solution
With a composite persistence unit, you can:

■ Map relationships among any of the entities in multiple persistence units

Introduction to the Solution

9-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Access entities stored in multiple databases and different data sources

■ Easily perform queries and transactions across the complete set of entities

Example 9–1 shows how you can persist data from a single persistence context into
two different databases:

Example 9–1 Using Multiple Databases

em.persist(new A(..));
em.persist(new B(..));
// You can insert A into database1 and insert B into database2.
// The two databases can be from different vendors.

em.flush();

Figure 9–1 illustrates a simple composite persistence unit. EclipseLink processes the
persistence.xml file and detects the composite persistence unit, which contains two
composite member persistence units:

■ Class A is mapped by a persistence unit named memberPu1 located in the
member1.jar file.

■ Class B is mapped by a persistence unit named memberPu2 located in the
member2.jar file.

Figure 9–1 A Simple Composite Persistence Unit

9.1.1 Composite Persistence Unit Requirements
When using composite persistence units, note the following requirements:

■ The name of each composite member persistence unit must be unique within the
composite.

Implementing the Solution

Using Multiple Databases with a Composite Persistence Unit 9-3

■ The transaction-type and other properties that correspond to the entire
persistence unit (such as target server, logging, transactions, and so on) should be
defined in the composite persistence unit. If not, the transaction types, target
server information, and logging properties defined with composite members will
be ignored.

9.2 Implementing the Solution
This section includes the following tasks:

■ Task 1: Configure the Composite Persistence Unit

■ Task 2: Use Composite Persistence Units

■ Task 3: Deploy Composite Persistence Units

9.2.1 Task 1: Configure the Composite Persistence Unit
Because the composite persistence unit is a regular persistence element, it requires a
persistence.xml file. Example 9–2 illustrates a sample persistence.xml file. Notice
that there are no datasource or jdbc properties.

Example 9–2 The persistence.xml File for a Composite Persistence Unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">
 <persistence-unit name="compositePu" transaction-type="JTA">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>

 <jar-file>member1.jar</jar-file>
 <jar-file>member2.jar</jar-file>
 <properties>
 <property name="eclipselink.composite-unit" value="true"/>
 <property name="eclipselink.target-server" value="WebLogic_10"/>
 </properties>
 </persistence-unit>
</persistence>

You can optionally use the <property name="eclipselink.composite-unit"
value="true"/> property to identify a persistence unit as a composite persistence unit.

Use the <jar-file> element to specify the JAR files containing the composite member
persistence units. The composite persistence unit will contain all the composite
member persistence units found in the JAR files specified.

9.2.2 Task 2: Use Composite Persistence Units
You can use a composite persistence unit as you would any other persistence unit; the
EntityManager could be injected, as follows:

@PersistenceContext(unitName="compositePu")
EntityManagerFactory entityManagerFactory;

@PersistenceContext(unitName="compositePu")
EntityManager entityManager;

Additional Resources

9-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Or create it manually:

EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("compositePu", properties);

9.2.3 Task 3: Deploy Composite Persistence Units
To deploy multiple persistence units, deploy all of the JAR files (the composite
persistence unit and its members) on the same class loader.

■ When deploying to Oracle WebLogic Server, package the JAR files in an EAR file
or the WEB-INF/lib folder of a WAR file.

■ When running as a standalone application, add the JAR files to the class path.

For important requirements, see Section 9.1.1, "Composite Persistence Unit
Requirements."

9.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

For the following additional information about composite persistence units, see
"@CompositeMember," "composite.unit," and "composite-unit.member" in Java
Persistence API (JPA) Extensions Reference for EclipseLink:

■ Limitations of composite persistence units.

■ Configuring composite member persistence units that contain dependencies.

■ All persistence unit properties used by composite persistence units and composite
member persistence units

■ How to pass persistence unit properties to composite member persistence units
with the Persistence.createEntityManagerFactory method, while creating a
composite persistence unit EntityManagerFactory

■ All entity manager properties used by composite persistence unit and composite
member persistence units

■ How to pass entity manager properties to composite member persistence units
with the emf.createEntityManager method for the composite persistence unit
EntityManagerFactory

9.3.1 Related Javadoc
For more information, see the following APIs in Java API Reference for EclipseLink:

■ PersistenceUnitProperties class

■ Persistence.createEntityManger class

■ EntityManagerFactory interface

10

Scaling Applications in Clusters 10-1

10Scaling Applications in Clusters

This chapter provides instructions for configuring EclipseLink applications to ensure
scalability in an application server cluster. The instructions are generic and can be
applied to any application server cluster; however, additional content is provided for
Oracle WebLogic Server and Oracle GlassFish Server. Consult your vendor's
documentation as required.

This chapter includes the following sections:

■ Section 10.1, "Introduction to the Solution"

■ Section 10.2, "Implementing the Solution"

■ Section 10.3, "Additional Resources"

Use Case
Applications must scale to meet client demand.

Solution
The implementation is achieved by using a cache, configuring cache coordination, and
using data partitioning.

Components
■ EclipseLink 2.4 or later.

■ Application Server that supports clustering.

■ Any compliant JDBC database.

Sample
See Section 10.3, "Additional Resources," for links to samples.

10.1 Introduction to the Solution
EclipseLink applications that are deployed to an application server cluster benefit from
cluster scalability, load balancing, and failover. These capabilities ensure that
EclipseLink applications are highly available and scale as application demand
increases. EclipseLink applications are deployed the same way in application server
clusters as they are in standalone server environments. However, additional planning
and configuration is required to ensure cache consistency in an application server
cluster.

EclipseLink uses a shared (L2) object cache that avoids database access for objects and
their relationships. The cache is enabled by default and enhances application

Implementing the Solution

10-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

performance. In an application server cluster, caching can result in consistency issues
(such as stale data) because changes made on one server are not reflected on objects
cached in other servers. Cache consistency is problematic only for objects that are
frequently updated. Read-only objects are not affected by cache consistency. For more
details about caching, see:

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_
Development/Caching/Caching_Overview

Various options are available for addressing cache consistency:

■ Use cache coordination. Cache coordination is a feature that broadcasts changes
between the servers in the cluster to update or invalidate changed objects.

■ Use distributed caching. EclipseLink Grid is an integration between EclipseLink
and Oracle Coherence that addresses many cache consistency issues that result
from operating in a distributed environment. For details on EclipseLink Grid, see
Chapter 19, "Scaling JPA Applications Using TopLink Grid with Oracle
Coherence."

■ Use optimistic locking. Optimistic locking is a feature that prevents updates to
stale objects, and triggers the objects to be invalidated in the cache.

■ Refresh the cache. Refreshing a cache loads that latest data in the cache.

■ Disable the shared cache for highly volatile entities or limit the cache to read-only
objects.

10.2 Implementing the Solution
These tasks provide general instructions for ensuring that a EclipseLink application
scales in an application server cluster. Complete the tasks prior to deploying an
application.

This section contains the following tasks:

■ Task 1: Configure Cache Consistency

■ Task 2: Ensure EclipseLink Is Enabled

■ Task 3: Ensure All Application Servers Are Part of the Cluster

■ Using Data Partitioning to Scale Data

10.2.1 Task 1: Configure Cache Consistency
This task includes different configuration options that mitigate the possibility that an
application might use stale data when deployed to an application server cluster. The
cache coordination option is specifically designed for applications that are clustered;
however, evaluate all the options and use them together (if applicable) to create a
solution that results in the best application performance. Properly configuring a cache
can, in some cases, eliminate the need to use cache coordination. For additional details
on these options, see:

http://wiki.eclipse.org/Introduction_to_Cache_
%28ELUG%29#Handling_Stale_Data

The following are the configuration options:

■ Disabling Entity Caching

■ Refreshing the Cache

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview
http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data
http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data

Implementing the Solution

Scaling Applications in Clusters 10-3

■ Setting Entity Caching Expiration

■ Setting Optimistic Locking

■ Using Cache Coordination

Note: Oracle provides a EclipseLink and Coherence integration that
allows EclipseLink to use Coherence as the L2 cache. For details on
EclipseLink Grid, see Chapter 19, "Scaling JPA Applications Using
TopLink Grid with Oracle Coherence."

10.2.1.1 Disabling Entity Caching
Disable the shared cache for highly volatile entities or for all entities as required. To
disable the shared cache for all objects, use the <shared-cache-mode> element in the
persistence.xml file. For example:

<shared-cache-mode>NONE</shared-cache-mode>

The default configuration is DISABLE_SELECTIVE and allows caching to be disabled per
entity. To selectively enable or disable the shared cache, use the shared attribute of the
@Cache annotation when defining an entity. For example:

@Entity
@Cache(shared=false)
public class Employee {
}

10.2.1.2 Refreshing the Cache
Refreshing a cache reloads the cache from the database to ensure that an application is
using current data. There are different ways to refresh a cache.

The @Cache annotation provides the alwaysRefresh and refreshOnlyIfNewer
attributes which force all queries that go to the database to refresh the cache. The cache
is only actually refreshed if the optimistic lock value in the database is newer than in
the cache.

@Entity
@Cache(
 alwaysRefresh=true,
 refreshOnlyIfNewer=true)
public class Employee {
}

The javax.persistence.Cache interface includes methods that remove stale objects if
the cache is out of date:

■ The evictAll method invalidates all of the objects in the cache.

em.getEntityManagerFactory().getCache().evictAll();

■ The evict method invalidates specific classes.

em.getEntityManagerFactory().getCache().evict(MyClass);

The preceding methods are passive and refresh objects only the next time the cache is
accessed. To actively refresh an object, use the EntityManager.refresh method. The
method refreshes a single object at a time.

Implementing the Solution

10-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Another possibility is to use the setHint method to set a query hint that triggers the
query to refresh the cache. For example:

Query query = em.createQuery("Select e from Employee e");
query.setHint("javax.persistence.cache.storeMode", "REFRESH");

Lastly, native API methods are also available. For details, see the ClassDescriptor
documentation in Java API Reference for EclipseLink.

10.2.1.3 Setting Entity Caching Expiration
Cache expiration makes a cached object instance invalid after a specified amount of
time. Any attempt to use the object causes the most up-to-date version of the object to
be reloaded from the data source. Expiration can help ensure that an application is
always using the most recent data. There are different ways to set expiration.

The @Cache annotation provides the expiry and expiryTimeOfDay attributes, which
remove cache instances after a specific amount of time. The expiry attribute is entered
in milliseconds. The default value if no value is specified is -1, which indicates that
expiry is disabled. The expiryTimeOfDay attribute is an instance of the
org.eclipse.persistence.annotations.TimeOfDay interface. The following example
sets the object to expire after 5 minutes:

@Entity
@Cache(expiry=300000)
public class Employee {
}

10.2.1.4 Setting Optimistic Locking
Optimistic locking prevents one user from writing over another user's work. Locking
is important when multiple servers or multiple applications access the same data and
is relevant in both single-server and multiple-server environments. In a
multiple-server environment, locking is still required if an application uses cache
refreshing or cache coordination. There are different ways to set optimistic locking.

The standard JPA @Version annotation is used for single valued value and timestamp
based locking. However, for advanced locking features use the @OptimisticLocking
annotation. The @OptimisticLocking annotation specifies the type of optimistic
locking to use when updating or deleting entities. Optimistic locking is supported on
an @Entity or @MappedSuperclass annotation. The following policies are available and
are set within the type attribute:

■ ALL_COLUMNS: This policy compares every field in the table in the WHERE clause
when performing an update or delete operation.

■ CHANGED_COLUMNS: This policy compares only the changed fields in the WHERE
clause when performing an update operation. A delete operation compares only
the primary key.

■ SELECTED_COLUMNS: This policy compares selected fields in the WHERE clause when
performing an update or delete operation. The fields that are specified must be
mapped and not be primary keys.

■ VERSION_COLUMN: (Default) This policy allows a single version number to be used
for optimistic locking. The version field must be mapped and not be the primary
key. To automatically force a version field update on a parent object when its
privately owned child object's version field changes, use the cascaded method set
to true. The method is set to false by default.

Implementing the Solution

Scaling Applications in Clusters 10-5

10.2.1.5 Using Cache Coordination
Cache coordination synchronizes changes among distributed sessions. Cache
coordination is most useful in application server clusters where maintaining consistent
data for all applications is challenging. Moreover, cache consistency becomes
increasingly more difficult as the number of servers within an environment increases.

Cache coordination works by broadcasting notifications of transactional object changes
among sessions (EntityManagerFactory or persistence unit) in the cluster. Cache
coordination is most useful for applications that are primarily read-based and when
changes are performed by the same application operating with multiple, distributed
sessions.

Cache coordination significantly minimizes stale data, but does not completely
eliminate the possibility that stale data might occur because of latency. In addition,
cache coordination reduces the number of optimistic lock exceptions encountered in
distributed architectures, and reduces the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To ensure the most current data, use cache coordination with
optimistic or pessimistic locking; optimistic locking is preferred.

Cache coordination is supported over the Remote Method Invocation (RMI) and Java
Message Service (JMS) protocols and is configured either declaratively by using
persistence properties in a persistence.xml file or by using the cache coordination
API. System properties that match the persistence properties are available as well.

For additional details on cache coordination see:

Java Persistence API (JPA) Extensions Reference for EclipseLink

10.2.1.5.1 Setting Cache Synchronization Cache synchronization determines how
notifications of object changes are broadcast among session members. The following
synchronization options are available:

■ SEND_OBJECT_CHANGES: (Default) This option broadcasts a list of changed objects
including data about the changes. This data is merged into the receiving cache.

■ INVALIDATE_CHANGED_OBJECTS: This option broadcasts a list of the identities of the
objects that have changed. The receiving cache invalidates the objects rather than
changing any of the data. This option is the lightest in terms of data sent and
processing done in other cluster members.

■ SEND_NEW_OBJECTS_WITH_CHANGES: This option is the same as the SEND_OBJECT_
CHANGES option except it also includes any newly created objects from the
transaction.

■ NONE: This option does no cache coordination.

The @Cache annotation coordinationType attribute is used to specify synchronization.
For example:

@Entity
@Cache(CacheCoordinationType.SEND_NEW_OBJECTS_CHANGES)
public class Employee {
}

The ClassDescriptor.setCacheSynchronizationType native API method can also be
used to specify synchronization. For details, see the ClassDescriptor documentation
in Java API Reference for EclipseLink.

10.2.1.5.2 Configuring JMS Cache Coordination Using Persistence Properties The following
example demonstrates how to configure cache coordination in the persistence.xml

Implementing the Solution

10-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

file and uses JMS for broadcast notification. For JMS, provide a JMS topic JNDI name
and topic connection factory JNDI name. The JMS topic should not be JTA-enabled
and should not have persistent messages.

<property name="eclipselink.cache.coordination.protocol" value="jms" />
<property name="eclipselink.cache.coordination.jms.topic"
 value="jms/EmployeeTopic" />
<property name="eclipselink.cache.coordination.jms.factory"
 value="jms/EmployeeTopicConnectionFactory" />

Applications that run in a cluster generally do not require a URL because the topic
provides enough to locate and use the resource. For applications that run outside the
cluster, a URL is required. The following example is a URL for a WebLogic Server
cluster:

<property name="eclipselink.cache.coordination.jms.host"
 value="t3://myserver:7001/" />

A user name and password for accessing the servers can also be set if required. For
example:

<property name="eclipselink.cache.coordination.jndi.user" value="user" />
<property name="eclipselink.cache.coordination.jndi.password" value="password" />

10.2.1.5.3 Configuring RMI Cache Coordination Using Persistence Properties The following
example demonstrates how to configure cache coordination in the persistence.xml
file and uses RMI for broadcast notification:

<property name="eclipselink.cache.coordination.protocol" value="rmi" />

Applications that run in a cluster generally do not require a URL because JNDI is
replicated and servers can look up each other. If an application runs outside of a
cluster, or if JNDI is not replicated, then each server must provide its URL. This could
be done through the persistence.xml file; however, different persistence.xml files
(thus JAR or EAR) for each server is required, which is usually not desirable. A second
option is to set the URL programmatically using the cache coordination API. For more
details, see "Configuring Cache Coordination Using the Cache Coordination API" on
page 10-7. The final option is to set the URL as a system property on each application
server. The following example sets the URL for a WebLogic Server cluster using a
system property:

-Declipselink.cache.coordination.jms.host=t3://myserver:7001/

A user name and password for accessing the servers can also be set if required; for
example:

<property name="eclipselink.cache.coordination.jndi.user" value="user" />
<property name="eclipselink.cache.coordination.jndi.password" value="password" />

RMI cache coordination can use either asynchronous or synchronous broadcasting
notification; asynchronous is the default. Synchronous broadcasting ensures that all of
the servers are updated before a request returns. The following example configures
synchronous broadcasting.

<property name="eclipselink.cache.coordination.propagate-asynchronously"
 value="false" />

If multiple applications on the same server or network use cache coordination, then a
separate channel can be used for each application. For example:

Implementing the Solution

Scaling Applications in Clusters 10-7

<property name="eclipselink.cache.coordination.channel" value="EmployeeChannel" />

Last, if required, change the default RMI multicast socket address that allows servers
to find each other. The following example explicitly configures the multicast settings:

<property name="eclipselink.cache.coordination.rmi.announcement-delay"
 value="1000" />
<property name="eclipselink.cache.coordination.rmi.multicast-group"
 value="239.192.0.0" />
<property name="eclipselink.cache.coordination.rmi.multicast-group.port"
 value="3121" />
<property name="eclipselink.cache.coordination.packet-time-to-live" value="2" />

10.2.1.5.4 Cache Coordination and Oracle WebLogic Both RMI and JMS cache coordination
work with Oracle WebLogic Server. When a WebLogic cluster is used JNDI is
replicated among the cluster servers, so a cache.coordination.rmi.url or a
cache.coordination.jms.host option is not required. For JMS cache coordination, the
JMS topic should only be deployed to only one of the servers (as of Oracle WebLogic
10.3.6). It may be desirable to have a dedicated JMS server if the JMS messaging traffic
is heavy.

Use of other JMS services in WebLogic may have other requirements.

10.2.1.5.5 Cache Coordination and Glassfish JMS cache coordination works with
Glassfish Server. When a Glassfish cluster is used, JNDI is replicated among the cluster
servers, so a cache.coordination.jms.host option is not required.

Use of other JMS services in Glassfish may have other requirements.

RMI cache coordination does not work when the JNDI naming service option is used
in a Glassfish cluster. RMI will work if the
eclipselink.cache.coordination.naming-service option is set to rmi. Each server
must provide its own eclipselink.cache.coordination.rmi.url option, either by
having a different persistence.xml file for each server, or by setting the URL as a
System property in the server, or through a customizer.

10.2.1.5.6 Cache Coordination and IBM WebSphere JMS cache coordination may have
issues on IBM WebSphere. Use of a Message Driven Bean (MDB) may be required to
allow access to JMS. To use an MDB with cache coordination, set the
eclipselink.cache.coordination.protocol option to the value jms-publishing. The
application will also have to deploy an MDB that processes cache coordination
messages in its EAR file.

10.2.1.5.7 Configuring Cache Coordination Using the Cache Coordination API The
CommandManager interface allows you to programmatically configure cache
coordination for a session. The interface is accessed using the getCommandManager
method from the DatabaseSession interface.

10.2.2 Task 2: Ensure EclipseLink Is Enabled
Ensure that the EclipseLink JAR files are included on the classpath of each application
server in the cluster to which the EclipseLink application is deployed and configure
EclipseLink as the persistence provider. For detailed instructions about setting up
EclipseLink with WebLogic Server and GlassFish Server, see Chapter 3, "Using
EclipseLink with WebLogic Server," and Chapter 4, "Using EclipseLink with GlassFish
Server," respectively.

Implementing the Solution

10-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

10.2.3 Task 3: Ensure All Application Servers Are Part of the Cluster
Configure an application server cluster that includes each application server that hosts
the EclipseLink application:

Note: TopLink relies on JMS and RMI and does not use the
application server’s cluster communication.

■ For WebLogic Server clustering see Oracle Fusion Middleware Using Clusters for
Oracle WebLogic Server.

■ For GlassFish Server clustering, see:

http://download.oracle.com/docs/cd/E18930_
01/html/821-2426/index.html

10.2.4 Using Data Partitioning to Scale Data
Data partitioning allows an application to scale its data across more than one database
machine. Data partitioning is supported at the entity level to allow a different set of
entity instances for the same class to be stored in a different physical database or
different node within a database cluster. Both regular databases and clustered
databases are supported. Data can be partitioned both horizontally and vertically.

Partitioning can be enabled on an entity, a relationship, a query, or a persistence unit.
To configure data partitioning, use the @Partitioned annotation and one or more
partitioning policy annotations. Table 10–1 describes the partitioning policies

Table 10–1 Partitioning Policies

Annotation Description

@HashPartitioning Partitions access to a database cluster by the hash of a
field value from the object, such as the object's ID,
location, or tenant. The hash indexes into the list of
connection pools/nodes. All write or read request for
objects with that hash value are sent to the same server.
If a query does not include the hash field as a parameter,
it can be sent to all servers and unioned, or it can be left
to the session's default behavior.

@PinnedPartitioning Pins requests to a single connection pool/node. This
allows for vertical partitioning.

@RangePartitioning Partitions access to a database cluster by a field value
from the object, such as the object's ID, location, or
tenant. Each server is assigned a range of values. All
write or read requests for objects with that value are sent
to the same server. If a query does not include the field
as a parameter, then it can either be sent to all servers
and unioned, or left to the session's default behavior.

@ReplicationPartitioning Sends requests to a set of connection pools/nodes. This
policy is for replicating data across a cluster of database
machines. Only modification queries are replicated.

@RoundRobinPartitioning Sends requests in a round-robin fashion to the set of
connection pools/nodes. This policy is used for load
balancing read queries across a cluster of database
machines. It requires that the full database be replicated
on each machine, so it does not support partitioning. The
data should either be read-only, or writes should be
replicated.

Implementing the Solution

Scaling Applications in Clusters 10-9

Partitioning policies are globally-named objects in a persistence unit and are reusable
across multiple descriptors or queries. This improves the usability of the configuration,
specifically with JPA annotations and XML.

The persistence unit properties support adding named connection pools in addition to
the existing configuration for read/write/sequence. Connection pools are defined in
the persistence.xml file for each participating database. Partition policies select the
appropriate connection based on their particular algorithm.

If a transaction modifies data from multiple partitions, JTA should be used to ensure
2-phase commit of the data. An exclusive connection can also be configured in an
EntityManager implementation to ensure only a single node is used for a single
transaction.

The following example partitions the Employee data by location. The two primary
sites, Ottawa and Toronto, are each stored on a separate database. All other locations
are stored on the default database. Project is range partitioned by its ID. Each range of
ID values are stored on a different database.

@Entity
@IdClass(EmployeePK.class)
@UnionPartitioning(
 name="UnionPartitioningAllNodes",
 replicateWrites=true)
@ValuePartitioning(
 name="ValuePartitioningByLOCATION",
 partitionColumn=@Column(name="LOCATION"),
 unionUnpartitionableQueries=true,
 defaultConnectionPool="default",
 partitions={
 @ValuePartition(connectionPool="node2", value="Ottawa"),
 @ValuePartition(connectionPool="node3", value="Toronto")
 })
@Partitioned("ValuePartitioningByLOCATION")
public class Employee {
 @Id
 @Column(name = "EMP_ID")
 private Integer id;

 @Id
 private String location;
 ...

@UnionPartitioning Sends queries to all connection pools and unions the
results. This is for queries or relationships that span
partitions when partitioning is used, such as on a
ManyToMany cross partition relationship.

@ValuePartitioning Partitions access to a database cluster by a field value
from the object, such as the object's location or tenant.
Each value is assigned a specific server. All write or read
requests for objects with that value are sent to the same
server. If a query does not include the field as a
parameter, then it can be sent to all servers and unioned,
or it can be left to the session's default behavior.

@Partitioning Partitions access to a database cluster by a custom
partitioning policy. A class that extends the
PartitioningPolicy class must be provided.

Table 10–1 (Cont.) Partitioning Policies

Annotation Description

Implementing the Solution

10-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

 @ManyToMany(cascade = { PERSIST, MERGE })
 @Partitioned("UnionPartitioningAllNodes")
 private Collection<Project> projects;
 ...
}

The employee/project relationship is an example of a cross partition relationship. To
allow the employees and projects to be stored on different databases a union policy is
used and the join table is replicated to each database.

@Entity
@RangePartitioning(
 name="RangePartitioningByPROJ_ID",
 partitionColumn=@Column(name="PROJ_ID"),
 partitionValueType=Integer.class,
 unionUnpartitionableQueries=true,
 partitions={
 @RangePartition(connectionPool="default", startValue="0",
 endValue="1000"),
 @RangePartition(connectionPool="node2", startValue="1000",
 endValue="2000"),
 @RangePartition(connectionPool="node3", startValue="2000")
 })
@Partitioned("RangePartitioningByPROJ_ID")
public class Project {
 @Id
 @Column(name="PROJ_ID")
 private Integer id;
 ...
}

10.2.4.1 Clustered Databases and Oracle RAC
Some databases support clustering the database across multiple servers. Oracle Real
Application Clusters (RAC) allows for a single database to span multiple different
server nodes. Oracle RAC also supports table and node partitioning of data. A
database cluster allows for any of the data to be accessed from any node in the cluster.
However, it is generally more efficient to partition the data access to specific nodes, to
reduce cross node communication. Partitioning can be used in conjunction with a
clustered database to reduce cross node communication, and improve scalability. For
details on using EclipseLink with Oracle RAC, see Section 22.2.5, "Using EclipseLink
with Oracle RAC."

Adhere to the following requirements when using data partitioning with a database
cluster:

■ Partition policy should not enable replication, as database cluster makes data
available to all nodes.

■ Partition policy should not use unions, as database cluster returns the complete
query result from any node.

■ A DataSource and connection pool should be defined for each node in the cluster.

■ The application's data access and data partitioning should be designed to have
each transaction only require access to a single node.

■ Usage of an exclusive connection for an EntityManager is recommended to avoid
having multiple nodes in a single transaction and avoid 2-phase commit.

Additional Resources

Scaling Applications in Clusters 10-11

10.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

The following code sample and JavaDoc resources are available:

■ Code Samples

– http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordi
nation

– http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching

■ See the following APIs in Java API Reference for EclipseLink.

– org.eclipse.persistence.annotations.OptimisticLocking

– org.eclipse.persistence.annotations.Cache

– org.eclipse.persistence.annotations.Partitioned

– org.eclipse.persistence.descriptors.ClassDescriptor

– org.eclipse.persistence.sessions.coordination

Additional Resources

10-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

11

Providing Software as a Service 11-1

11Providing Software as a Service

This chapter introduces EclipseLink features available for developing shared
applications that run in Software-as-a-Service (SaaS) environments.

Use Case
Users want to establish an SaaS environment, where applications and data are shared
by multiple clients.

Solution
Use EclipseLink SaaS features, such as extensibility, client isolation, and external
metadata sources.

Components
■ EclipseLink 2.4 or later.

11.1 Introduction to the Solution
With EclipseLink, you can manage persistence in cloud-enabled applications and
services. EclipseLink provides flexible SaaS solutions that address multi-tenancy and
extensibility while still maintaining high performance and scalability, making the
persistence layer of these applications a critical component.

These features are discussed in the following chapters:

■ Chapter 12, "Making JPA Entities and JAXB Beans Extensible"

■ Chapter 13, "Using an External MetaData Source"

■ Chapter 14, "Tenant Isolation Using EclipseLink"

Introduction to the Solution

11-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

12

Making JPA Entities and JAXB Beans Extensible 12-1

12Making JPA Entities and JAXB Beans
Extensible

This chapter provides instructions for making JPA entities and JAXB beans extensible.
Mappings can be added or modified externally, without modifying the entity or bean
source file and without redeploying the persistence unit. This feature is useful in a
Software-as-a-Service environment where multiple clients can share applications and
datasources. It is also useful for customizing an application during installation rather
than during development.

This chapter includes the following sections:

■ Section 12.1, "Making JPA Entities Extensible"

■ Section 12.2, "Making JAXB Beans Extensible"

■ Section 12.3, "Additional Resources"

Use Case
Users want to establish a SaaS environment, where applications and datasources are
shared by multiple clients.

Solution
Use the EclipseLink extensibility feature to extend JPA entities and JAXB beans by
using external mappings.

Components
■ EclipseLink 2.4 or later.

12.1 Making JPA Entities Extensible
Use the @VirtualAccessMethods annotation to specify that an entity is extensible. By
using virtual properties in an extensible entity, you can specify mappings external to
the entity. This allows you to modify the mappings without modifying the entity
source file and without redeploying the entity's persistence unit.

Extensible entities are useful in a multi-tenant (or SaaS) architecture where a shared,
generic application can be used by multiple clients (tenants). Tenants have private
access to their own data, and to data shared with other tenants.

Using extensible entities, you can:

■ Build an application where some mappings are common to all users and some
mappings are user-specific.

Making JPA Entities Extensible

12-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Add mappings to an application after it is made available to a customer (even
post-deployment).

■ Use the same EntityManagerFactory interface to work with data after mappings
have changed.

■ Provide an additional source of metadata to be used by an application.

12.1.1 Main Tasks for Creating and Supporting an Extensible JPA Entity
To create and support an extensible JPA entity:

■ Task 1: Configure the Entity

■ Task 2: Design the Schema

■ Task 3: Provide Additional Mappings

■ Task 4: Externalizing Extensions Using a MetaDataSource

12.1.1.1 Task 1: Configure the Entity
Configure the entity by annotating the entity class with @VirtualAccessMethods (or
using the XML <access-methods>), adding get and set methods for the property
values, and adding a data structure to store the extended attributes and values, as
described in the following sections:

■ Section 12.1.1.1.1, "Annotate the Entity Class with @VirtualAccessMethods"

■ Section 12.1.1.1.2, "Add get and set Methods to the Entity"

■ Section 12.1.1.1.3, "Define Virtual Attribute Storage"

■ Section 12.1.1.1.4, "Use XML"

12.1.1.1.1 Annotate the Entity Class with @VirtualAccessMethods Annotate the entity with
@VirtualAccessMethods to specify that it is extensible and to define virtual properties.

Table 12–1 describes the attributes available to the @VirtualAccessMethods annotation.

Table 12–1 Attributes for the @VirtualAccessMethods Annotation

Attribute Description

get The name of the getter method to use for the virtual property. This method
must take a single java.lang.String parameter and return a
java.lang.Object parameter.

Default: get

Required? No

set The name of the setter method to use for the virtual property. This method
must take a java.lang.String and a java.lang.Object parameter and return
a java.lang.Object parameter.

Default: set

Required? No

12.1.1.1.2 Add get and set Methods to the Entity Add get(String) and set(String,
Object) methods to the entity. The get() method returns a value by property name
and the set() method stores a value by property name. The default names for these
methods are get and set, and they can be overridden with the
@VirtualAccessMethods annotation.

Making JPA Entities Extensible

Making JPA Entities and JAXB Beans Extensible 12-3

EclipseLink weaves these methods if weaving is enabled, which provides support for
lazy loading, change tracking, fetch groups, and internal optimizations.

Note: Weaving is not supported when using virtual access methods
with OneToOne mappings. If attempted, an exception will be thrown.

12.1.1.1.3 Define Virtual Attribute Storage Add a data structure to store the extended
attributes and values, that is, the virtual mappings. These can then be mapped to the
database. See Section 12.1.1.3, "Task 3: Provide Additional Mappings."

A common way to store the virtual mappings is in a Map object (as shown in
Example 12–1), but you can also use other strategies.

When using field-based access, annotate the data structure with @Transient so the
structure cannot be used for another mapping. When using property-based access,
@Transient is unnecessary.

Example 12–1 illustrates an entity class that uses property access.

Example 12–1 Entity Class that Uses Property Access

@Entity
@VirtualAccessMethods
public class Customer{

 @Id
 private int id;
 ...

 @Transient
 private Map<String, Object> extensions;

 public <T> T get(String name) {
 return (T) extentions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }

12.1.1.1.4 Use XML As an alternative to, or in addition to, using the
@VirtualAccessMethods annotation, you can use an access="VIRTUAL" attribute on a
mapping element (such as <basic>), for example:

<basic name="idNumber" access="VIRTUAL" attribute-type="String">
 <column name="FLEX_COL1"/>
</basic>

To set virtual access methods as the defaults for the persistence unit, use the <access>
and <access-methods> elements, for example:

<persistence-unit-metadata>
 <xml-mapping-metadata-complete/>
 <exclude-default-mappings/>
 <persistence-unit-defaults>
 <access>VIRTUAL</access>
 <access-methods set-method="get" get-method="set"/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

Making JPA Entities Extensible

12-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

12.1.1.2 Task 2: Design the Schema
Provide database tables with extra columns to store virtual attribute values. For
example, the following Customer table includes two predefined columns, ID and NAME,
and three columns for storing the attribute values, EXT_1, EXT_2, EXT_3:

 CUSTOMER table

■ INTEGER ID

■ VARCHAR NAME

■ VARCHAR EXT_1

■ VARCHAR EXT_2

■ VARCHAR EXT_3

You can then specify which of the FLEX columns should be used to persist an extended
attribute, as described in "Task 3: Provide Additional Mappings".

12.1.1.3 Task 3: Provide Additional Mappings
To provide additional mappings, add the mappings with the column and
access-methods attributes to the eclipselink-orm.xml file, for example:

<basic name="idNumber" access="VIRTUAL" attribute-type="String">
 <column name="FLEX_COL1"/>
</basic>

12.1.1.4 Task 4: Externalizing Extensions Using a MetaDataSource
Configure persistence unit properties to indicate that the application should retrieve
the flexible mappings from the eclipselink-orm.xml file. You can set persistence unit
properties using the persistence.xml file or by setting properties on the
EntityManagerFactory interface, as described in the following sections.

For more information about external mappings, see Chapter 13, "Using an External
MetaData Source."

12.1.1.4.1 Configure the persistence.xml File In the persistence.xml file, use the
eclipselink.metadata-source property to use the default eclipselink-orm.xml file.
Use the eclipselink.metadata-source.xml.url property to use a different file at the
specified location, for example:

<property name="eclipselink.metadata-source" value="XML"/>
<property name="eclipselink.metadata-source.xml.url" value="foo://bar"/>

12.1.1.4.2 Configure EntityManagerFactory and the Metadata Repository Extensions are
added at bootstrap time through access to a metadata repository. The metadata
repository is accessed through a class that provides methods to retrieve the metadata it
holds. EclipseLink includes a metadata repository implementation that supports XML
repositories.

Specify the class to use and any configuration information for the metadata repository
through persistence unit properties. The EntityManagerFactory interface integrates
additional mapping information from the metadata repository into the metadata it
uses to bootstrap.

Making JPA Entities Extensible

Making JPA Entities and JAXB Beans Extensible 12-5

You can provide your own implementation of the class to access the metadata
repository. Each metadata repository access class must specify an individual set of
properties to use to connect to the repository.

You can subclass either of the following classes:

■ org.eclipse.persistence.internal.jpa.extensions.MetadataRepository

■ org.eclipse.persistence.internal.jpa.extensions.XMLMetadataRepository

In the following example, the properties that begin with com.foo are subclasses
defined by the developer.

<property name="eclipselink.metadata-source" value="com.foo.MetadataRepository"/>
<property name="com.foo.MetadataRepository.location" value="foo://bar"/>
<property name="com.foo.MetadataRepository.extra-data" value="foo-bar"/>

12.1.1.4.3 Refresh the Metadata Repository If you change the metadata and you want an
EntityManager instance based on the new metadata, you must call the
refreshMetadata() method on the EntityManagerFactory interface to refresh the
data. The next EntityManager instance will be based on the new metadata.

The refreshMetadata() method takes a map of properties that can be used to override
the properties previously defined for the metadata-source element.

12.1.2 Code Examples
Example 12–2 illustrates the following:

■ Field access is used for non-extension fields.

■ Virtual access is used for extension fields, using defaults (get(String) and
set(String, Object)).

■ The get(String) and set(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @VirtualAccessMethods.

These items are illustrated in bold font.

Example 12–2 Virtual Access Using Default get and set Method Names

@Entity
@VirtualAccessMethods
public class Address {

 @Id
 private int id;

 @Transient
 private Map<String, Object> extensions;

 public int getId(){
 return id;
 }

 public <T> T get(String name) {
 return (T) extentions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }
.

Making JPA Entities Extensible

12-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

.

.

Example 12–3 illustrates the following:

■ Field access is used for non-extension fields.

■ The @VirtualAccessMethods annotation overrides methods to be used for getting
and setting.

■ The get(String) and set(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @VirtualAccessMethods.

■ The XML for extended mapping indicates which get() and set() method to use.

These items are illustrated in bold font.

Example 12–3 Overriding get and set Methods

@Entity
@VirtualAccessMethods(get="getExtension", set="setExtension")
public class Address {

 @Id
 private int id;

 @Transient
 private Map<String, Object> extensions;

 public int getId(){
 return id;
 }

 public <T> T getExtension(String name) {
 return (T) extensions.get(name);
 }

 public Object setExtension(String name, Object value) {
 return extensions.put(name, value);
 }

 ...

 <basic name="name" access="VIRTUAL" attribute-type="String">
 <column name="FLEX_1"/>
 </basic>

Example 12–4 illustrates the following:

■ Property access is used for non-extension fields.

■ Virtual access is used for extension fields, using defaults (get(String) and
set(String, Object)).

■ The extensions are mapped in a portable way. @Transient is not required, because
property access is used.

■ The get(String) and set(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @VirtualAccessMethods.

These items are illustrated in bold font.

Making JAXB Beans Extensible

Making JPA Entities and JAXB Beans Extensible 12-7

Example 12–4 Using Property Access

@Entity
@VirtualAccessMethods
public class Address {

 private int id;

 private Map<String, Object> extensions;

 @Id
 public int getId(){
 return id;
 }

 public <T> T get(String name) {
 return (T) extensions.get(name);
 }

 public Object set(String name, Object value) {
 return extensions.put(name, value);
 }

...

12.2 Making JAXB Beans Extensible
Use the @XmlVirtualAccessMethods annotation to specify that a JAXB bean is
extensible. By using virtual properties in an extensible bean, you can specify mappings
external to the bean. This allows you to modify the mappings without modifying the
bean source file and without redeploying the bean's persistence unit.

In a multi-tenant (or SaaS) architecture, a single application runs on a server, serving
multiple client organizations (tenants). Good multi-tenant applications allow
per-tenant customizations. When these customizations are made to data, it can be
difficult for the binding layer to handle them. JAXB is designed to work with domain
models that have real fields and properties. EclipseLink extensions to JAXB introduce
the concept of virtual properties which can easily handle this use case. Virtual
properties are defined by the Object-XML metadata file, and provide a way to extend a
class without modifying the source.

This section has the following subsections:

■ Section 12.2.1, "Main Steps"

■ Section 12.2.2, "Code Examples"

12.2.1 Main Steps
To create and support an extensible JAXB bean:

■ Task 1: Configure the Bean

■ Task 2: Provide Additional Mappings

12.2.1.1 Task 1: Configure the Bean
Configure the bean by annotating the bean class with the @XmlVirtualAccessMethods,
adding get and set methods for the property values, and adding a data structure to
store the extended attributes and values. Alternatively, you can use the
<xml-virtual-access-methods> element in eclipselink-orm.xml.

Making JAXB Beans Extensible

12-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

12.2.1.1.1 Annotate the Bean Class with @Xml VirtualAccessMethods Annotate the bean
with @XmlVirtualAccessMethods to specify that it is extensible and to define virtual
properties.

Table 12–2 describes the attributes available to the @XmlVirtualAccessMethods
annotation.

Table 12–2 Attributes for the @XmlVirtualAccessMethods Annotation

Attribute Description

get The name of the getter method to use for the virtual property.
This method must take a single java.lang.String parameter
and return a java.lang.Object.

Default: get

Required? No

set The name of the setter method to use for the virtual property.
This method must take a java.lang.String and a
java.lang.Object parameter and return a java.lang.Object
parameter.

Default: set

Required? No

12.2.1.1.2 Add get and set Methods to the Bean Add get(String) and set(String,
Object) methods to the bean. The get() method returns a value by property name
and the set() method stores a value by property name. The default names for these
methods are get and set, and they can be overridden with the
@XmlVirtualAccessMethods annotation.

12.2.1.1.3 Define Virtual Attribute Storage Add a data structure to store the extended
attributes and values, that is, the virtual mappings. These can then be mapped to the
database. See "Task 2: Provide Additional Mappings".

A common way to store the virtual mappings is in a Map, but you can use other ways,
as well. For example you could store the virtual mappings in a directory system.

When using field-based access, annotate the data structure with @XmlTransient so it
cannot use it for another mapping. When using property-based access, @XmlTransient
is unnecessary.

12.2.1.1.4 Use XML As an alternative to, or in addition to, using
@XmlVirtualAccessMethods, you can use the XML equivalents, for example:

■ XML to enable virtual access methods using get and set:

<xml-virtual-access-methods/>

■ XML to enable virtual access methods using put instead of set (default):

<xml-virtual-access-methods set-method="put"/>

■ XML to enable virtual access methods using retrieve instead of get (default):

<xml-virtual-access-methods get-method="retrieve"/>

■ XML to enable virtual access methods using retrieve and put instead of get and
set (default):

<xml-virtual-access-methods get-method="retrieve" set-method="put"/>

Making JAXB Beans Extensible

Making JPA Entities and JAXB Beans Extensible 12-9

12.2.1.2 Task 2: Provide Additional Mappings
To provide additional mappings, add the mappings to the eclipselink-oxm.xml file,
for example:

<xml-element java-attribute="idNumber"/>

12.2.2 Code Examples
The examples in this section illustrate how to use extensible JAXB beans. The example
begins with the creation of a base class that other classes can extend. In this case the
extensible classes are for Customers and PhoneNumbers. Mapping files are created for
two separate tenants. Even though both tenants share several real properties, they will
define virtual properties that are unique to their requirements.

12.2.2.1 Basic Setup
Example 12–5 illustrates a base class, ExtensibleBase, which other extensible classes
can extend. In the example, the use of the @XmlTransient annotation prevents
ExtensibleBase from being mapped as an inheritance relationship. The real properties
represent the parts of the model that will be common to all tenants. The per-tenant
extensions will be represented as virtual properties.

Example 12–5 A Base Class for Extensible Classes

package examples.virtual;

import java.util.HashMap;
import java.util.Map;

import javax.xml.bind.annotation.XmlTransient;

import org.eclipse.persistence.oxm.annotations.XmlVirtualAccessMethods;

@XmlTransient
@XmlVirtualAccessMethods(setMethod="put")
public class ExtensibleBase {

 private Map<String, Object> extensions = new HashMap<String, Object>();

 public <T> T get(String property) {
 return (T) extensions.get(property);
 }

 public void put(String property, Object value) {
 extensions.put(property, value);
 }
}

Example 12–6 illustrates the definition of a Customer class. The Customer class is
extensible because it inherits from a domain class that has been annotated with
@XmlVirtualAccessMethods.

Example 12–6 An Extensible Customer Class

package examples.virtual;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement

Making JAXB Beans Extensible

12-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

public class Customer extends ExtensibleBase {

 private String firstName;
 private String lastName;
 private Address billingAddress;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Address getBillingAddress() {
 return billingAddress;
 }

 public void setBillingAddress(Address billingAddress) {
 this.billingAddress = billingAddress;
 }

}

Example 12–7 illustrates an Address class. It is not necessary for every class in your
model to be extensible. In this example, the Address class does not have any virtual
properties.

Example 12–7 A Nonextensible Address Class

package examples.virtual;

public class Address {

 private String street;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

}

Example 12–8 illustrates a PhoneNumber class. Like Customer, PhoneNumber will be an
extensible class.

Example 12–8 An Extensible PhoneNumber Class

package examples.virtual;

Making JAXB Beans Extensible

Making JPA Entities and JAXB Beans Extensible 12-11

import javax.xml.bind.annotation.XmlValue;

public class PhoneNumber extends ExtensibleBase {

 private String number;

 @XmlValue
 public String getNumber() {
 return number;
 }

 public void setNumber(String number) {
 this.number = number;
 }

}

12.2.2.2 Define the Tenants
The examples in this section define two separate tenants. Even though both tenants
share several real properties, the corresponding XML representation can be quite
different due to virtual properties.

Tenant 1
The first tenant is an online sporting goods store that requires the following extensions
to its model:

■ Customer ID

■ Customer's middle name

■ Shipping address

■ A collection of contact phone numbers

■ Type of phone number (that is, home, work, or cell)

The metadata for the virtual properties is captured in the eclipselink-oxm.xml
mapping file or in files using the eclipselink-orm.xml schema.. Virtual properties are
mapped in the same way as real properties. Some additional information is required,
including type (since this cannot be determined through reflection), and for collection
properties, a container type. The virtual properties defined below for Customer are
middleName, shippingAddress, and phoneNumbers. For PhoneNumber, the virtual
property is the type property.

Example 12–9 illustrates the binding-tenant1.xml mapping file.

Example 12–9 Defining Virtual Properties for Tenant 1

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 package-name="examples.virtual">
 <java-types>
 <java-type name="Customer">
 <xml-type prop-order="firstName middleName lastName billingAddress
shippingAddress phoneNumbers"/>
 <java-attributes>
 <xml-attribute
 java-attribute="id"
 type="java.lang.Integer"/>

Making JAXB Beans Extensible

12-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

 <xml-element
 java-attribute="middleName"
 type="java.lang.String"/>
 <xml-element
 java-attribute="shippingAddress"
 type="examples.virtual.Address"/>
 <xml-element
 java-attribute="phoneNumbers"
 name="phoneNumber"
 type="examples.virtual.PhoneNumber"
 container-type="java.util.List"/>
 </java-attributes>
 </java-type>
 <java-type name="PhoneNumber">
 <java-attributes>
 <xml-attribute
 java-attribute="type"
 type="java.lang.String"/>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

The get and set methods are used on the domain model to interact with the real
properties and the accessors defined on the @XmlVirtualAccessMethods annotation are
used to interact with the virtual properties. The normal JAXB mechanisms are used for
marshal and unmarshal operations. Example 12–10 illustrates the Customer class code
for tenant 1 to obtain the data associated with virtual properties.

Example 12–10 Tenant 1 Code to Provide the Data Associated with Virtual Properties

...
Customer customer = new Customer();

//Set Customer's real properties
customer.setFirstName("Jane");
customer.setLastName("Doe");

Address billingAddress = new Address();
billingAddress.setStreet("1 Billing Street");
customer.setBillingAddress(billingAddress);

//Set Customer's virtual 'middleName' property
customer.put("middleName", "Anne");

//Set Customer's virtual 'shippingAddress' property
Address shippingAddress = new Address();
shippingAddress.setStreet("2 Shipping Road");
customer.put("shippingAddress", shippingAddress);

List<PhoneNumber> phoneNumbers = new ArrayList<PhoneNumber>();
customer.put("phoneNumbers", phoneNumbers);

PhoneNumber workPhoneNumber = new PhoneNumber();
workPhoneNumber.setNumber("555-WORK");
//Set the PhoneNumber's virtual 'type' property
workPhoneNumber.put("type", "WORK");
phoneNumbers.add(workPhoneNumber);

PhoneNumber homePhoneNumber = new PhoneNumber();

Making JAXB Beans Extensible

Making JPA Entities and JAXB Beans Extensible 12-13

homePhoneNumber.setNumber("555-HOME");
//Set the PhoneNumber's virtual 'type' property
homePhoneNumber.put("type", "HOME");
phoneNumbers.add(homePhoneNumber);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY,
"examples/virtual/binding-tenant1.xml");
JAXBContext jc = JAXBContext.newInstance(new Class[] {Customer.class,
Address.class}, properties);

Marshaller marshaller = jc.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);
...

Example 12–11 illustrates the XML output from the Customer class for tenant 1.

Example 12–11 XML Output from the Customer Class for Tenant 1

<?xml version="1.0" encoding="UTF-8"?>
<customer>
 <firstName>Jane</firstName>
 <middleName>Anne</middleName>
 <lastName>Doe</lastName>
 <billingAddress>
 <street>1 Billing Street</street>
 </billingAddress>
 <shippingAddress>
 <street>2 Shipping Road</street>
 </shippingAddress>
 <phoneNumber type="WORK">555-WORK</phoneNumber>
 <phoneNumber type="HOME">555-HOME</phoneNumber>
</customer>

Tenant 2
The second tenant is a streaming media provider that offers on-demand movies and
music to its subscribers. It requires a different set of extensions to the core model:

■ A single contact phone number

For this tenant, the mapping file is also used to customize the mapping of the real
properties.

Example 12–12 illustrates the binding-tenant2.xml mapping file.

Example 12–12 Defining Virtual Properties for Tenant 2

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 package-name="examples.virtual">
 <xml-schema namespace="urn:tenant1" element-form-default="QUALIFIED"/>
 <java-types>
 <java-type name="Customer">
 <xml-type prop-order="firstName lastName billingAddress phoneNumber"/>
 <java-attributes>
 <xml-attribute java-attribute="firstName"/>
 <xml-attribute java-attribute="lastName"/>
 <xml-element java-attribute="billingAddress" name="address"/>
 <xml-element

Additional Resources

12-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

 java-attribute="phoneNumber"
 type="examples.virtual.PhoneNumber"/>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

Example 12–13 illustrates the tenant 2 Customer class code to obtain the data
associated with virtual properties.

Example 12–13 Tenant 2 Code to Provide the Data Associated with Virtual Properties

...
Customer customer = new Customer();
customer.setFirstName("Jane");
customer.setLastName("Doe");

Address billingAddress = new Address();
billingAddress.setStreet("1 Billing Street");
customer.setBillingAddress(billingAddress);

PhoneNumber phoneNumber = new PhoneNumber();
phoneNumber.setNumber("555-WORK");
customer.put("phoneNumber", phoneNumber);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY,
"examples/virtual/binding-tenant2.xml");
JAXBContext jc = JAXBContext.newInstance(new Class[] {Customer.class,
Address.class}, properties);

Marshaller marshaller = jc.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);
...

Example 12–14 illustrates the XML output from the Customer class for tenant 2.

Example 12–14 XML Output from the Customer Class for Tenant 2

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="urn:tenant1" firstName="Jane" lastName="Doe">
 <address>
 <street>1 Billing Street</street>
 </address>
 <phoneNumber>555-WORK</phoneNumber>
</customer>

12.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Code Sample

– http://wiki.eclipse.org/EclipseLink/Examples/MySports

■ "@VirtualAccessMethods" in Java Persistence API (JPA) Extensions Reference for
EclipseLink.)

Additional Resources

Making JPA Entities and JAXB Beans Extensible 12-15

■ "Configuring Virtual Access Methods" in Developing JAXB Applications Using
EclipseLink MOXy

Additional Resources

12-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

13

Using an External MetaData Source 13-1

13Using an External MetaData Source

This chapter provides instructions for storing mapping information in a metadata
source that is external to the running application, so you can dynamically override or
extend mappings in a deployed application.

This chapter includes the following sections:

■ Section 13.1, "Introduction to the Solution"

■ Section 13.2, "Using the eclipselink-orm.xml File Externally"

■ Section 13.3, "Main Tasks"

■ Section 13.4, "Additional Resources"

Use Case
Users want to establish a SaaS environment, where applications are shared by multiple
clients.

Solution
Employ EclipseLink SaaS features, such as extensibility, multi-tenancy, and external
metadata sources.

Components
■ EclipseLink 2.4 or later.

13.1 Introduction to the Solution
You can store your mapping information in a metadata source that is external to the
running application. Because the mapping information is retrieved when the
application creates the persistence unit, you can dynamically override or extend
mappings in a deployed application.

13.2 Using the eclipselink-orm.xml File Externally
With EclipseLink, you can use the eclipselink-orm.xml file to support advanced
mapping types and options. This file can override the standard JPA orm.xml mapping
configuration file.

13.3 Main Tasks
To use an external metadata source for your mapping information, perform the
following tasks:

Additional Resources

13-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Task 1: Configure the Persistence Unit

■ Task 2: Configure the Server

13.3.1 Task 1: Configure the Persistence Unit
In your persistence unit, specify the external metadata source by defining an
eclipselink.metadata.source property and assign as its value a class that
implements org.eclipse.persistence.jpa.metadata.MetadataSource. For example:

<property name="eclipselink.metadata-source" value="mypackage.MyMetadataSource"/>

You are free to provide the metadata location in your class as you choose, for example:

public class AdminMetadataSource extends XMLMetadataSource {

 @Override
 public XMLEntityMappings getEntityMappings(Map<String, Object> properties,
ClassLoader classLoader, SessionLog log) {
 String leagueId = (String) properties.get(LEAGUE_CONTEXT);
 properties.put(PersistenceUnitProperties.METADATA_SOURCE_XML_URL,
"http://myserverlocation/rest/" + leagueId + "/orm");
 return super.getEntityMappings(properties, classLoader, log);
 }
}

13.3.2 Task 2: Configure the Server
To access the metadata file, the server must provide URL access to the mapping file by
using any of the following:

■ Static file serving

■ A server-based solution with its own mapping file or a mapping file built
on-demand from stored mapping information

■ Some other web technology.

13.4 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter.

■ For additional information about JPA deployment, see the following sections of
the JPA Specification (http://jcp.org/en/jsr/detail?id=317):

■ Section 7.2, "Bootstrapping in Java SE Environments"

■ Chapter 7, "Container and Provider Contracts for Deployment and
Bootstrapping"

■ For more information about persistence unit properties, see
PersistenceUnitProperties class in Oracle Fusion Middleware Java API Reference
for EclipseLink.

■ For more information about the APIs, see the following in Java Persistence API
(JPA) Extensions Reference for EclipseLink:

■ "metadata-source"

■ "metadata-source.properties.file"

Additional Resources

Using an External MetaData Source 13-3

■ "metadata-source.send-refresh-command"

■ "metadata-source.xml.file"

■ "metadata-source.xml.url"

Additional Resources

13-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

14

Tenant Isolation Using EclipseLink 14-1

14Tenant Isolation Using EclipseLink

With EclipseLink, you can develop a single application and then deploy it for different
clients, or "tenants," with varying degrees of application and data isolation and of
tenant-specific functionality. For example, a large company may develop a single
payroll application to be used by multiple divisions. Each division has access to its
own data and to shared data, but they cannot see any other division’s data.

This chapter includes the following sections:

■ Section 14.1, "Introduction to the Solution"

■ Section 14.2, "Using Single-Table Multi-Tenancy"

■ Section 14.3, "Using Table-Per-Tenant Multi-Tenancy"

■ Section 14.4, "Using VPD Multi-Tenancy"

■ Section 14.5, "Additional Resources"

Use Case
Multiple application clients must share data sources, with private access to their data,
for example in a Software as a Service (SaaS) environment.

Solution
Decide on a strategy for tenant isolation; then use EclipseLink’s tenant isolation
features to implement the strategy.

Components
■ EclipseLink 2.4 or later.

■ A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, or MySQL.

14.1 Introduction to the Solution
EclipseLink offers considerable flexibility in how you can design and implement
features for isolating tenants. Possibilities include the following:

Application Isolation options

■ Separate container/server

■ Separate application within the same container/server

■ Separate entity manager factory and shared cache within the same application

■ Shared entity manager factory with tenant isolation per entity manager

Using Single-Table Multi-Tenancy

14-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

Data isolation options

■ Separate database

■ Separate schema/tablespace

■ Separate tables

■ Shared table with row isolation

■ Query filtering

■ Oracle Virtual Private Database (VPD)

EclipseLink includes the following options for providing multi-tenancy in the data
source:

■ Single-table multi-tenancy allows tenants to share tables. Each tenant has its own
rows, identified by discriminator columns, and those rows are invisible to other
tenants. See Using Single-Table Multi-Tenancy.

■ With table-per-tenant multi-tenancy, each tenant has its own table or tables,
identified by table tenant discriminators, and those tables are invisible to other
users. See Using Table-Per-Tenant Multi-Tenancy.

■ With (VDP) multi-tenancy, tenants use a VDP database, which provides the
functionality to support multiple tenants sharing the same table. See Using VPD
Multi-Tenancy.

EclipseLink further provides tenant-specific extensions through extensible entities
using extensible entities and MetadataSource. For information about those features,
see Chapter 12, "Making JPA Entities and JAXB Beans Extensible," and Chapter 13,
"Using an External MetaData Source."

14.2 Using Single-Table Multi-Tenancy
With single-table multi-tenancy, any table (Table or SecondaryTable) to which an
entity or mapped superclass maps can include rows for multiple tenants. Access to
tenant-specific rows is restricted to the specified tenant.

Tenant-specific rows are associated with the tenant by using one or more tenant
discriminator columns. Discriminator columns are used with application context
values to limit what a persistence context can access.

The results of queries on the mapped tables are limited to the tenant discriminator
value(s) provided as property values. This applies to all insert, update, and delete
operations on the table. When multi-tenant metadata is applied at the mapped
superclass level, it is applied to all subentities unless they specify their own
multi-tenant metadata.

Note: In the context of single-table multi-tenancy, “single-table”
means multiple tenants can share a single table, and each tenant’s data
is distinguished from other tenants’ data via the discriminator
column(s). It is possible to use multiple tables with single-table
multi-tenancy; but in that case, an entity’s persisted data is stored in
multiple tables, and multiple tenants can share all the tables.

14.2.1 Main Tasks for Using Single-Table Multi-Tenancy
The following tasks provide instructions for using single-table multi-tenancy:

Using Single-Table Multi-Tenancy

Tenant Isolation Using EclipseLink 14-3

■ Task 1: Prerequisites

■ Task 2: Enable Single-Table Multi-Tenancy

■ Task 3: Specify Tenant Discriminator Columns

■ Task 4: Perform Operations and Queries

■ Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

14.2.1.1 Task 1: Prerequisites
To implement and use single-table multi-tenancy, you need:

■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

■ Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see

14.2.1.2 Task 2: Enable Single-Table Multi-Tenancy
Single-table multi-tenancy can be enabled declaratively using the @Multitenant
annotation, in an Object Relational Mapping (ORM) XML file using the <multitenant>
element, or by using annotations and XML together.

14.2.1.2.1 Using the @Multitenant Annotation To use the @Multitenant annotation,
include it with an @Entity or @MappedSuperclass annotation. For example:

@Entity
@Table(name=“EMP”)
@Multitenant(SINGLE_TABLE)
public class Employee {
}

Note: Single-table is the default multi-tenancy type, so SINGLE_TABLE
does not have to be included in @Multitenant.

Note: The @Table annotation is not required, because the
discriminator column is assumed to be on the primary table. However,
if the discriminator column is defined on a secondary table, you must
identify that table using @SecondaryTable.

14.2.1.2.2 Using the <multitenant> Element To use the <multitenant> element, include
the element within an <entity> element. For example:

<entity class="model.Employee">
 <multitenant type="SINGLE_TABLE">
 ...
 </multitenant>
 ...
</entity>

Using Single-Table Multi-Tenancy

14-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

14.2.1.3 Task 3: Specify Tenant Discriminator Columns
Discriminator columns are used together with an associated application context to
indicate which rows in a table an application tenant can access.

Tenant discriminator columns can be specified declaratively using the
@TenantDiscriminatorColumn annotation or in an object-relational (ORM) XML file
using the <tenant-discriminator-column> element.

The following characteristics apply to discriminator columns:

■ Tenant discriminator column(s) must always be used with @Multitenant (or
<multitenant> in the ORM XML file). You cannot specify the tenant discriminator
column(s) only.

■ The tenant discriminator column is assumed to be on the primary table unless
another table is explicitly specified.

■ On persist, the values of tenant discriminator columns are populated from their
associated context properties.

■ When a multi-tenant entity is specified, the tenant discriminator column can
default. Its default values are:

– Name = TENANT_ID (the database column name)

– Context property = eclipselink.tenant.id (the context property used to
populate the database column)

■ Tenant discriminator columns are application definable. That is, the discriminator
column is not tied to a specific column for each shared entity table. You can use
TENANT_ID, T_ID, etc.

■ There is no limit on the number of tenant discriminator columns an application
can define.

■ Any name can be used for a discriminator column.

■ Generated schemas include specified tenant discriminator columns.

■ Tenant discriminator columns can be mapped or unmapped:

– When a tenant discriminator column is mapped, its associated mapping
attribute must be marked as read only.

– Both mapped and unmapped properties are used to form the additional
criteria when issuing a SELECT query.

14.2.1.3.1 Use the @TenantDiscriminatorColumn Annotation To use the
@TenantDiscriminatorColumn annotation, include it with @Multitenant annotation on
an entity or mapped superclass, and optionally include the name and contextProperty
attributes. If you do not specify these attributes, the defaults name = "TENANT-ID" and
contextProperty = "eclipselink.tenant-id" are used.

For example:

@Entity
@Multitenant(SINGLE_TABLE)
@TenantDiscriminatorColumn(name = "TENANT", contextProperty = "multitenant.id")
public class Employee {
}

To specify multiple tenant discriminator columns, include multiple
@TenantDiscriminatorColumn annotations within the @TenantDiscriminatorColumns

Using Single-Table Multi-Tenancy

Tenant Isolation Using EclipseLink 14-5

annotation, and include the table where the column is located if it is not located on the
primary table. For example:

@Entity
@Table(name = "EMPLOYEE")
@SecondaryTable(name = "RESPONSIBILITIES")
@Multitenant(SINGLE_TABLE)
@TenantDiscriminatorColumns({
 @TenantDiscriminatorColumn(name = "TENANT_ID",
 contextProperty = "employee-tenant.id", length = 20)
 @TenantDiscriminatorColumn(name = "TENANT_CODE",
 contextProperty = "employee-tenant.code", discriminatorType = STRING,
 table = "RESPONSIBILITIES")
 }
)
public Employee() {
 ...
}

14.2.1.3.2 Use the <tenant-discriminator-column> Element To use the
<tenant-discriminator-column> element, include the element within a
<multitenant> element and optionally include the name and context-property
attributes. If you do not specify these attributes, the defaults name = "TENANT-ID" and
contextProperty = "eclipselink.tenant-id" are used.

For example:

<entity class="model.Employee">
 <multitenant>
 <tenant-discriminator-column name="TENANT"
 context-property="multitenant.id"/>
 </multitenant>
 ...
</entity>

To specify multiple columns, include additional <tenant-discriminator-column>
elements, and include the table where the column is located if it is not located on the
primary table. For example:

<entity class="model.Employee">
 <multitenant type="SINGLE_TABLE">
 <tenant-discriminator-column name="TENANT_ID"
 context-property="employee-tenant.id" length="20"/>
 <tenant-discriminator-column name="TENANT_CODE"
 context-property="employee-tenant.id" discriminator-type="STRING"
 table="RESPONSIBILITIES"/>
 </multitenant>
 <table name="EMPLOYEE"/>
 <secondary-table name="RESPONSIBILITIES"/>
 ...
</entity>

14.2.1.3.3 Map Tenant Discriminator Columns Tenant discriminator columns can be
mapped to a primary key or to another column. The following example maps the
tenant discriminator column to the primary key on the table during DDL generation:

@Entity
@Table(name = "ADDRESS")
@Multitenant

Using Single-Table Multi-Tenancy

14-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

@TenantDiscriminatorColumn(name = "TENANT", contextProperty = "tenant.id",
 primaryKey = true)
public Address() {
 ...
}

The following example uses the ORM XML file to map the tenant discriminator
column to a primary key:

<entity class="model.Address">
 <multitenant>
 <tenant-discriminator-column name="TENANT"
 context-property="multitenant.id" primary-key="true"/>
 </multitenant>
 <table name="ADDRESS"/>
 ...
</entity>

The following example maps the tenant discriminator column to another column
named AGE:

@Entity
@Table(name = "Player")
@Multitenant
@TenantDiscriminatorColumn(name = "AGE", contextProperty = "tenant.age")
public Player() {
 ...

 @Basic
 @Column(name="AGE", insertable="false", updatable="false")
 public int age;
}

The following example uses the ORM XML file to map the tenant discriminator
column to another column named AGE:

<entity class="model.Player">
 <multitenant>
 <tenant-discriminator-column name="AGE" context-property="tenant.age"/>
 </multitenant>
 <table name="PLAYER"/>
 ...
 <attributes>
 <basic name="age" insertable="false" updatable="false">
 <column name="AGE"/>
 </basic>
 ...
 </attributes>
 ...
</entity>

14.2.1.3.4 Define Persistence Unit and Entity Mappings Defaults In addition to configuring
discriminator columns at the entity and mapped superclass levels, you can also
configure them at the persistence-unit-defaults and entity-mappings levels to
provide defaults. Defining the metadata at the these levels follows similar JPA
metadata defaulting and overriding rules.

Specify default tenant discriminator column metadata at the
persistence-unit-defaults level in the ORM XML file. When defined at this level,
the defaults apply to all entities of the persistence unit that have specified a

Using Single-Table Multi-Tenancy

Tenant Isolation Using EclipseLink 14-7

multi-tenant type of SINGLE_TABLE minus those that specify their own tenant
discriminator metadata. For example:

<persistence-unit-metadata>
 <persistence-unit-defaults>
 <tenant-discriminator-column name="TENANT_ID" context-property="tenant.id"/>
 </persistence-unit-defaults>
</persistence-unit-metadata>

You can also specify tenant discriminator column metadata at the entity-mappings
level in the ORM XML file. A setting at this level overrides a persistence unit default
and applies to all entities with a multi-tenant type of SINGLE_TABLE of the mapping
file, minus those that specify their own tenant discriminator metadata. For example:

<entity-mappings>
 ...
 ...
 <tenant-discriminator-column name="TENANT_ID" context-property="tenant.id"/>
 ...
</entity-mappings>

14.2.1.4 Configure Context Properties and Caching Scope
Runtime context properties are used in conjunction with the multi-tenancy
configuration on an entity (or mapped superclass) to implement the multi-tenancy
strategy. For example, the tenant ID assigned to a tenant discriminator column for an
entity is used at runtime (via an entity manager) to restrict access to data, based on
that tenant’s ownership of (or access to) the rows and tables of the database.

At runtime, multi-tenancy properties can be specified in a persistence unit definition
or passed to a create entity manager factory call.

The order of precedence for tenant discriminator column properties is as follows:

1. EntityManager

2. EntityManagerFactory

3. Application context (when in a Java EE container)

For example, to set the configuration on a persistence unit in persistence.xml:

<persistence-unit name="multitenant">
 ...
 <properties>
 <property name="tenant.id" value="707"/>
 ...
 </properties>
</persistence-unit>

Alternatively, to set the properties programmatically:

HashMap properties = new HashMap();
properties.put("tenant.id", "707");
...
EntityManager em = Persistence.createEntityManagerFactory("multi-tenant",
 properties).createEntityManager();

Note: Swapping tenant IDs during a live EntityManager is not
allowed.

Using Single-Table Multi-Tenancy

14-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

14.2.1.4.1 Configure a Shared Entity Manager By default, tenants share the entity manager
factory. A single application instance with a shared EntityManagerFactory for a
persistence unit can be responsible for handling requests from multiple tenants.

The following example shows a shared entity manager factory configuration:

EntityManager em = createEntityManager(MULTI_TENANT_PU);
em.getTransaction().begin();
em.setProperty(EntityManagerProperties.MULTITENANT_PROPERTY_DEFAULT, "my_id");

When using a shared entity manager factory, the L2 cache is by default not shared, and
therefore multi-tenant entities have an ISOLATED cache setting.

To share the cache, set the eclipselink.multitenant.tenants-share-cache property
to true. This results in multi-tenant entities having a PROTECTED cache setting.

Caution: Queries that use the cache may return data from other
tenants when using the PROTECTED setting.

14.2.1.4.2 Configure a Non-Shared Entity Manager To create an entity manager factory that
is not shared, set the eclipselink.multitenant.tenants-share-emf property to
false.

When the entity manager factory is not shared, you must use the
eclipselink.session-name property to provide a unique session name, as shown in
the following example. This ensures that a unique server session and cache are
provided for each tenant. This provides full caching capabilities. For example,

HashMap properties = new HashMap();
properties.put("tenant.id", "707");
properties.put("eclipselink.session-name", "multi-tenant-707");
...
EntityManager em = Persistence.createEntityManagerFactory("multitenant",
 properties).createEntityManager();

Another example:

HashMap properties = new HashMap();
properties.put(PersistenceUnitProperties.MULTITENANT_SHARED_EMF, "false");
properties.put(PersistenceUnitProperties.SESSION_NAME,
"non-shared-emf-for-this-emp");
properties.put(PersistenceUnitProperties.MULTITENANT_PROPERTY_DEFAULT, "this-emp");

...
EntityManager em = Persistence.createEntityManagerFactory("multi-tenant-pu",
properties).createEntityManager();

An example in the persistence unit definition:

<persistence-unit name="multi-tenant-pu">
 ...
 <properties>
 <property name="eclipselink.multitenant.tenants-share-emf" value="false"/>
 <property name="eclipselink.session-name"
 value="non-shared-emf-for-this-emp"/>
 <property name="eclipselink.tenant-id" value="this-emp"/>
 ...
 </properties>
</persistence-unit>

Using Single-Table Multi-Tenancy

Tenant Isolation Using EclipseLink 14-9

14.2.1.4.3 Configure an Entity Manager When configuring properties at the level of the
entity manager, you must specify the caching strategies, because the same server
session can be used for each tenant. For example, you can set up an isolation level (L1
cache) to ensure no shared tenant information exists in the L2 cache. These settings are
set when creating the entity manager factory.

HashMap tenantProperties = new HashMap();
properties.put("tenant.id", "707");

HashMap cacheProperties = new HashMap();
properties.put("eclipselink.cache.shared.Employee", "false");
properties.put("eclipselink.cache.size.Address", "10");
properties.put("eclipselink.cache.type.Contract", "NONE");
...
EntityManager em = Persistence.createEntityManagerFactory("multitenant",
 cacheProperties).createEntityManager(tenantProperties);
...

14.2.1.5 Task 4: Perform Operations and Queries
The tenant discriminator column is used at runtime through entity manager
operations and querying. The tenant discriminator column and value are supported
through the following entity manager operations:

■ persist()

■ find()

■ refresh()

The tenant discriminator column and value are supported through the following
queries:

■ Named queries

■ Update all

■ Delete all

Note: Multi-tenancy is not supported through named native queries.
To use named native queries in a multi-tenant environment, manually
handle any multi-tenancy issues directly in the query. In general, it is
best to avoid named native queries in a multi-tenant environment.

14.2.1.6 Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy
Inheritance strategies are configured by specifying the inheritance type
(@javax.persistence.Inheritance). Single-table multi-tenancy can be used in an
inheritance hierarchy, as follows:

■ Multi-tenant metadata can be applied only at the root level of the inheritance
hierarchy when using a SINGLE_TABLE or JOINED inheritance strategy.

■ You can also specify multi-tenant metadata within a TABLE_PER_CLASS inheritance
hierarchy. In this case, every entity has its own table, with all its mapping data
(which is not the case with SINGLE_TABLE or JOINED strategies). Consequently, in
the TABLE_PER_CLASS strategy, some entities of the hierarchy may be multi-tenant,
while others may not be. The other inheritance strategies can only specify
multi-tenancy at the root level, because you cannot isolate an entity to a single
table to build only its type.

Using Table-Per-Tenant Multi-Tenancy

14-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

14.3 Using Table-Per-Tenant Multi-Tenancy
Table-per-tenant multi-tenancy allows multiple tenants of an application to isolate
their data in one or more tenant-specific tables. Multiple tenants’ tables can be in a
shared schema, identified using a prefix or suffix naming pattern; or they can be in
separate, tenant-specific schemas. Table-per-tenant entities can be mixed with other
multi-tenant type entities within the same persistence unit.

The table-per-tenant multi-tenant type is used in conjunction with:

■ A tenant table discriminator that specifies the type of discriminator (schema or
name with prefix or suffix)

■ A tenant ID to identify the user (configured per entity manager or at the entity
manager factory, if isolating the table-per-tenant per persistence unit.)

A single application instance with a shared EntityManagerFactory for a persistence
unit can be responsible for handling requests from multiple tenants.

Alternatively, separate EntityManagerFactory instances can be used for each tenant.
(This is required when using extensions per tenant.) In this case, tenant-specific
schema and table names are defined in an eclipselink-orm.xml configuration file. A
MetadataSource must be registered with a persistence unit. The MetadataSource is
used to support additional persistence unit metadata provided from outside the
application.

For information about MetadataSource, see Chapter 13, "Using an External MetaData
Source." See also metadata-source in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

The table-per-tenant multi-tenant type enables individual tenant table(s) to be used at
the entity level. A tenant context property must be provided on each entity manager
after a transaction has started.

■ The table(s) (Table and SecondaryTable) for the entity are individual tenant tables
based on the tenant context. Relationships within an entity that uses a join or a
collection table are also assumed to exist within the table-per-tenant context.

■ Multi-tenant metadata can only be applied at the root level of the inheritance
hierarchy when using a SINGLE_TABLE or JOINED inheritance strategy. Multi-tenant
metadata can be specified in a TABLE_PER_CLASS inheritance hierarchy

14.3.1 Main Tasks for Using Table-Per-Tenant Multi-Tenancy
The following tasks provide instructions for using table-per-tenant multi-tenancy:

■ Task 1: Prerequisites

■ Task 2: Enable Table-Per-Tenant Multi-Tenancy

■ Task 3: Specify Tenant Table Discriminator

■ Task 4: Specify a Context Property at Runtime

14.3.1.1 Task 1: Prerequisites
To implement and use table-per-tenant multi-tenancy, you need:

■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

Using Table-Per-Tenant Multi-Tenancy

Tenant Isolation Using EclipseLink 14-11

■ Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see

14.3.1.2 Task 2: Enable Table-Per-Tenant Multi-Tenancy
Table-per-tenant multi-tenancy can be enabled declaratively using the @Multitenant
annotation; or in an Object Relational Mapping (ORM) XML file using the
<multitenant> element, or using annotations and XML together.

14.3.1.2.1 Using the @Multitenant and @TenantTableDiscriminator Annotations To use the
@Multitenant annotation, include the annotation with an @Entity or
@MappedSuperclass annotation and include the TABLE_PER_TENANT attribute.

For example:

@Entity
@Multitenant(TABLE_PER_TENANT
...)
public class Employee {
}

The TABLE_PER_TENANT attribute states that clients have a dedicated table or tables
(Table and SecondaryTable) associated with the entity.

14.3.1.2.2 Using the <multitenant> Element To use the <multitenant> element, include
the element within an <entity> element. For example:

<entity class="model.Employee">
 <multitenant type="TABLE_PER_TENANT">
 ...
 </multitenant>
 ...
</entity>

14.3.1.3 Task 3: Specify Tenant Table Discriminator
The tenant table discriminator describes the type of table discriminator to use in a
table-per-tenant multi-tenancy strategy. The tenant table discriminator is identified by
a property. You can define your own identifier or use the default property:
org.eclipse.persistence.config.PersistenceUnitProperties.MULTITENANT_
PROPERTY_DEFAULT = "eclipselink.tenant-id"

The tenant table discriminator can be specified at the entity or mapped superclass
level, and it must always be accompanied with a Multitenant(TABLE_PER_TENANT)
specification. It is not sufficient to specify only a tenant table discriminator.

The tenant table discriminator is used together with an associated application context
to indicate which table or tables an application tenant can access.

14.3.1.3.1 Using the @TenantTableDiscriminator Annotation Use the
@TenantTableDiscriminator annotation to specify which tables are associated with
which tenants. The tenant table discriminator must include a type and a context
property:

■ Use the type attribute to identify what type of discriminator to use:

Using Table-Per-Tenant Multi-Tenancy

14-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

– Use PREFIX to apply the tenant table discriminator as a prefix to all
multi-tenant tables.

– Use SUFFIX to apply the tenant table discriminator as a suffix to all
multi-tenant tables.

– Use SCHEMA to apply the tenant table discriminator as a schema to all
multi-tenant tables. This strategy requires appropriate database provisioning.

■ Use the contextProperty attributes to identify the user. The value of the context
property is a tenant ID that identifies the user. This can be configured for an entity
manager or, if you want to isolate the table-per-tenant per persistence unit, an
entity manager factory.

For example:

@Entity
@Table(name=“EMP”)
@Multitenant(TABLE_PER_TENANT)
@TenantTableDiscriminator(type=SCHEMA, contextProperty="eclipselink-tenant.id")
public class Employee {
 ...
}

14.3.1.3.2 Using the <tenant-table-discriminator> Element To use the
<tenant-table-discriminator> element, include the element within a <multitenant>
element and include the name and context-property attributes. For example:

<entity class="Employee">
 <multitenant type="TABLE_PER_TENANT">
 <tenant-table-discriminator type="SCHEMA"
 context-property="eclipselink-tenant.id"/>
 </multitenant>
 <table name="EMP">
 ...
</entity>

14.3.1.4 Task 4: Specify a Context Property at Runtime
At runtime, specify the context property using a persistence unit definition passed to
an entity manager factory or set on an individual entity manager. For example:

<persistence-unit name="multitenant">
 ...
 <properties>
 <property name="tenant.id" value="707"/>
 ...
 </properties>
</persistence-unit>

To specify a context property at runtime programmatically:

HashMap properties = new HashMap();
properties.put(PersistenceUnitProperties.MULTITENANT_PROPERTY_DEFAULT, "707");
EntityManager em = Persistence.createEntityManagerFactory("multitenant-pu",
 properties).createEntityManager();

An entity manager property definition follows:

EntityManager em =
 Persistence.createEntityManagerFactory("multitenant-pu").createEntityManager();
em.beginTransaction();

Using VPD Multi-Tenancy

Tenant Isolation Using EclipseLink 14-13

em.setProperty("other.tenant.id.property", "707");
em.setProperty(EntityManagerProperties.MULTITENANT_PROPERTY_DEFAULT, "707");
...

14.3.1.5 Task 5: Perform Operations and Queries
The tenant discriminator column is used at runtime through entity manager
operations and querying. The tenant discriminator column and value are supported
through the following entity manager operations:

■ persist()

■ find()

■ refresh()

The tenant discriminator column and value are supported through the following
queries:

■ Named queries

■ Update all

■ Delete all

Note: Multi-tenancy is not supported through named native queries.
To use named native queries in a multi-tenant environment, manually
handle any multi-tenancy issues directly in the query. In general, it is
best to avoid named native queries in a multi-tenant environment.

14.4 Using VPD Multi-Tenancy
A Virtual Private Database (VPD) uses security controls to restrict access to database
objects based on various parameters.

For example, the Oracle Virtual Private Database supports security policies that
control database access at the row and column level. Oracle VPD adds a dynamic
WHERE clause to SQL statements issued against the table, view, or synonym to which
the security policy was applied.

Oracle Virtual Private Database enforces security directly on the database tables,
views, or synonyms. Because security policies are attached directly to these database
objects, and the policies are automatically applied whenever a user accesses data, there
is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected
with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies
the SQL statement of the user. This modification creates a WHERE condition (called a
predicate) returned by a function implementing the security policy. Oracle Virtual
Private Database modifies the statement dynamically, transparently to the user, using
any condition that can be expressed in or returned by a function. Oracle Virtual Private
Database policies can be applied to SELECT, INSERT, UPDATE, INDEX, and DELETE
statements.

When using EclipseLink VPD Multitenancy, the database handles the tenant filtering
on all SELECT, INSERT, UPDATE, INDEX and DELETE queries.

To use EclipseLink VPD multi-tenancy, you must first configure VPD in the database
and then specify multi-tenancy on the entity or mapped superclass, as shown in the
following example, using @Multitenant and @TenantDiscriminatorColumn:

Using VPD Multi-Tenancy

14-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

14.4.1 Main Tasks for Using VPD Multi-Tenancy
The following tasks provide instructions for using VPD multi-tenancy with Oracle
Virtual Private Database:

■ Task 1: Prerequisites

■ Task 2: Configure the Virtual Private Database

■ Task 3: Configure the Entity or Mapped Superclass

■ Task 4: Disable Criteria Generation

■ Task 5: Configure persistence.xml

14.4.1.1 Task 1: Prerequisites
To implement and use VPD multi-tenancy, you need:

■ EclipseLink 2.4 or later.

Download EclipseLink from
http://www.eclipse.org/eclipselink/downloads/.

■ Any compliant Java Database Connectivity (JDBC) database that supports VDP,
for example, Oracle Virtual Private Database.

For the certification matrix, see

14.4.1.2 Task 2: Configure the Virtual Private Database
In this example, an Oracle Virtual Private Database is configured with a policy and a
stored procedure. The policy is a call to the database that tells the database to use a
stored function to limit the results of a query. In this example, the function is called
ident_func, and it is run whenever a SELECT, UPDATE or DELETE is performed on the
SCOTT.TASK table. The policy is created as follows:

CALL DBMS_RLS.ADD_POLICY ('SCOTT', 'TASK', 'todo_list_policy', 'SCOTT', 'ident_
func', 'select, update, delete'));

The function defined below is used by VPD to limit the data based on the identifier
that is passed in to the connection. The function uses the USER_ID column in the table
to limit the rows. The rows are limited, based on what is set in the client_identifier
variable in the userenv context.

CREATE OR REPLACE FUNCTION ident_func (p_schema IN VARCHAR2 DEFAULT NULL, p_object
IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2
 AS
 BEGIN
 RETURN 'USER_ID = sys_context(''userenv'', ''client_identifier'')';
 END;

14.4.1.3 Task 3: Configure the Entity or Mapped Superclass
As described above, VPD is configured to use the USER_ID column to limit access to
rows. Therefore, you must tell EclipseLink to auto-populate the USER_ID column on
inserts. The following code uses EclipseLink multi-tenancy and specifies that the client
identifier is passed in to the entity managers using a property called tenant.id.
Because the filtering is done by VPD on the database, you must turn off caching on
this entity to avoid leakage across users.

@Entity
@Multitenant(VPD)

Additional Resources

Tenant Isolation Using EclipseLink 14-15

@TenantDiscriminatorColumn(name = "USER_ID", contextProperty = "tenant.id")
@Cacheable(false)

public class Task implements Serializable {
...
...

14.4.1.4 Task 4: Disable Criteria Generation
When single-table and table-per-tenant multi-tenancy are enabled, a client identifier is
auto appended to any generated SQL. However, when VPD is used to limit the access
to data, the auto-appending of the identifier should be turned off.

Beginning with EclipseLink 2.4, disable criteria generation as follows:

@Multitenant(includeCriteria=false)
@TenantDiscriminatorColumn(name = "USER_ID", contextProperty = "tenant.id")

In EclipseLink 2.3.1, you must run the following codefrom a SessionCustomizer:

session.getDescriptor(Task.class).getQueryManager().setIncludeTenantCriteria(false
);

14.4.1.5 Task 5: Configure persistence.xml
Add the following properties to persistence.xml.

Include the following to set and clear the VPD identifier:

<property name="eclipselink.session-event-listener" value="example.VPDSessionEventAdapter" />

Include the following to provide one connection per entity manager:

<property name="eclipselink.jdbc.exclusive-connection.mode" value="Always" />

Include the following to allow native queries to be runnable from EclipseLink. This is
required for creating VPD artifacts:

<property name="eclipselink.jdbc.allow-native-sql-queries" value="true" />
</properties>

For example:

 <properties>
 <property name="eclipselink.session-event-listener" value="example.VPDSessionEventAdapter" />
 <property name="eclipselink.jdbc.exclusive-connection.mode" value="Always" />
 <property name="eclipselink.jdbc.allow-native-sql-queries" value="true" />
 ...
</properties>

14.5 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Code Sample

– http://wiki.eclipse.org/EclipseLink/Examples/MySports

■ See the following in Java Persistence API (JPA) Extensions Reference for EclipseLink.)

– "@Multitenant"

Additional Resources

14-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

– "@TenantDiscriminatorColumn"

– "@TenantDiscriminatorColumns"

– "@TenantTableDiscriminator"

15

Mapping JPA to XML 15-1

15Mapping JPA to XML

This chapter describes how to use JPA with the Java Architecture for XML Binding
(JAXB)—the Java EE standard for mapping POJOs (Plain Old Java Objects) to
XML—and its Mapping Objects to XML (MOXy) extensions to map JPA entities to
XML. Mapping JPA entities to XML is useful when you want to create a data access
service with Java API for Restful Web Services (JAX-RS), Java API for XML Web
Services (JAX-WS), or Spring.

This chapter includes the following topics:

■ Section 15.1, "Introduction to the Solution"

■ Section 15.2, "Binding JPA Entities to XML"

■ Section 15.3, "Mapping Simple Java Values to XML Text Nodes"

■ Section 15.4, "Using XML Metadata Representation to Override JAXB
Annotations"

■ Section 15.5, "Using XPath Predicates for Mapping"

■ Section 15.6, "Using Dynamic JAXB/MOXy"

Use Case
Users need to map JPA entities to XML.

Solution
EclipseLink provides support for the JAXB standard through EclipseLink MOXy
extensions.

Components
■ EclipseLink 2.4 or later.

■ XML document

Sample
See the following EclipseLink and JAXB examples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/MOXy

■ http://java.sun.com/developer/technicalArticles/WebServices/jax
b/index.html

Introduction to the Solution

15-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

15.1 Introduction to the Solution
This chapter demonstrates some typical techniques for mapping JPA entities to XML.
Working with the examples that follow requires some understanding of such
high-level JPA-to-XML mapping concepts, such as JAXB, MOXy, XML binding, and
how to override JAXB annotations. The following sections will give you a basic
understanding of these concepts:

■ Section 15.1.1, "Understanding XML Binding"

■ Section 15.1.2, "Understanding JAXB"

■ Section 15.1.3, "Understanding MOXy"

■ Section 15.1.4, "Understanding an XML Data Representation"

15.1.1 Understanding XML Binding
XML binding is how you represent information in an XML document as an object in
computer memory. This allows applications to access the data in the XML from the
object rather than using the Domain Object Model (DOM), the Simple API for XML
(SAX) or the Streaming API for XML (StAX) to retrieve the data from a direct
representation of the XML itself. When binding, JAXB applies a tree structure to the
graph of JPA entities. Multiple tree representations of a graph are possible and will
depend on the root object chosen and the direction the relationships are traversed.

You can find examples of XML binding with JAXB in Section 15.2, "Binding JPA
Entities to XML".

15.1.2 Understanding JAXB
JAXB is a Java API that allows a Java program to access an XML document by
presenting that document to the program in a Java format. This process, called
binding, represents information in an XML document as an object in computer
memory. In this way, applications can access the data in the XML from the object
rather than using the Domain Object Model (DOM) or the Streaming API for XML
(SAX) to retrieve the data from a direct representation of the XML itself. Usually, an
XML binding is used with JPA entities to create a data access service by leveraging a
JAX-WS or JAX-RS implementation. Both of these Web Service standards use JAXB as
the default binding layer. This service provides a means to access data exposed by JPA
across computers, where the client computer might or might not be using Java.

JAXB uses an extended set of annotations to define the binding rules for Java-to-XML
mapping. These annotations are subclasses of the javax.xml.bind.* packages in the
EclipseLink API. For more information about these annotations, see Java API Reference
for EclipseLink.

For more information about JAXB, see "Java Architecture for XML Binding (JAXB)" at:

http://www.eclipse.org/eclipselink/moxy.php

15.1.3 Understanding MOXy
MOXy is EclipseLink's JAXB implementation. It allows you to map a POJO model to
an XML schema, greatly enhancing your ability to create JPA-to-XML mappings.
MOXy supports all the standard JAXB annotations in the javax.xml.bind.annotation
package plus has its own extensions in the
org.eclipse.persistence.oxm.annotations package. You can use these latter
annotations in conjunction with the standard annotations to extend the utility of
JAXB. Because MOXy represents the optimal JAXB implementation, you still

Binding JPA Entities to XML

Mapping JPA to XML 15-3

implement it whether or not you explicitly use any of its extensions. MOXy offers
these benefits:

■ It allows you to map your own classes to your own XML schema, a process called
"Meet in the Middle Mapping". This avoids static coupling of your mapped classes
with a single XML schema,

■ It offers specific features, such as Xpath-based mapping, JSON binding, and
compound key mapping and mapping relationships with back-pointers to address
critical JPA-to-XML mapping issues.

■ It allows you to map your existing JPA models to industry standard schema.

■ It allows you to combine MOXy mappings and EclipseLink's persistence
framework to interact with your data through JCA.

■ It offers superior performance in several scenarios.

For more information about MOXy, see the MOXy FAQ at:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

15.1.4 Understanding an XML Data Representation
Annotations are not always the most effective way to map JPA to XML. For example,
you would not use JAXB if:

■ You want to specify metadata for a third-party class but do not have access to the
source.

■ You want to map an object model to multiple XML schemas, because JAXB rules
preclude applying more than one mapping by using annotations.

■ Your object model already contains too many annotations—for example, from
such services as JPA, Spring, JSR-303, and so on—and you want to specify the
metadata elsewhere.

Under these and similar circumstances, you can use an XML data representation by
exposing the eclipselink_oxm.xml file.

XML metadata works in two modes:

■ It adds to the metadata supplied by annotations. This is useful when:

– Annotations define version one of the XML representation, and you use XML
metadata to tweak the metadata for future versions.

– You use the standard JAXB annotations, and use the XML metadata for the
MOXy extensions. In this way you don't introduce new compile time
dependencies in the object model.

■ It completely replaces the annotation metadata, which is useful when you want to
map to different XML representations.

To see how to use XML data representation, see Section 15.4, "Using XML Metadata
Representation to Override JAXB Annotations"

15.2 Binding JPA Entities to XML
The following examples demonstrate how to bind JPA entities to XML by using JAXB
annotations. For more information about binding, see Section 15.1.1, "Understanding
XML Binding" for more information about JAXB, see Section 15.1.2, "Understanding
JAXB"

Binding JPA Entities to XML

15-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Section 15.2.1, "Binding JPA Relationships to XML"

■ Section 15.2.2, "Binding Compound Primary Keys to XML"

■ Section 15.2.3, "Binding Embedded ID Classes to XML"

15.2.1 Binding JPA Relationships to XML
The following exercise demonstrate show to use JAXB to derive an XML
representation from a set of JPA entities, a process called "binding" (read about XML
binding in Section 15.2, "Binding JPA Entities to XML"). These examples will show
how to bind two common JPA relationships:

■ Privately-owned relationships

■ Shared reference relationships

to map an Employee entity to that employee's phone number, address, and
department.

15.2.1.1 Task 1: Define the Accessor Type and Import Classes
Since all of the following examples use the same accessor type, FIELD, define it at the
package level by using the JAXB annotation @XmlAccessorType. At this point, you
would also import the necessary classes:

@XmlAccessorType(XmlAccessType.FIELD)
package com.example.model;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;

15.2.1.2 Task 2: Map Privately-Owned Relationships
A "privately-owned" relationship occurs when the target object is only referenced by a
single source object. This type of relationship can be either one-to-one and embedded
or one-to-many.

 This Task shows how to create bi-directional mappings for both of these types of
relationships between the Employee entity and the Address and PhoneNumber entities.

15.2.1.2.1 Mapping a One-to-One and Embedded Relationship

The JPA @OneToOne and @Embedded annotations indicate that only one instance of the
source entity is able to refer to the same target entity instance. This example shows
how to map the Employee entity to the Address entity and back. This is considered a
one-to-one mapping because the employee can be associated with only one address.
Since this relationship is bi-directional—that is, Employee points to Address, which
must point back to Employee—it uses the EclipseLink extension
@XmlInverseReference to represent the back-pointer.

To create the one-to-one and embedded mapping:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import
Classes".

2. Map one direction of the relationship, in this case, the employee property on
Address, by inserting the @OneToOne annotation in the Employee entity:

 @OneToOne(mappedBy="resident")
 private Address residence;

Binding JPA Entities to XML

Mapping JPA to XML 15-5

The mappedBy argument indicates that the relationship is owned by the resident
field.

3. Map the return direction—that is, the address property on Employee—by inserting
the @OneToOne and @XmlInverseMapping annotations into the Address entity:

 @OneToOne
 @JoinColumn(name="E_ID")
 @XmlInverseReference(mappedBy="residence")
 private Employee resident;

The mappedBy field indicates that this relationship is owned by the residence field.
@JoinColumn identifies the column that will contain the foreign key.

The entities should look like those shown in Example 15–1 and Example 15–2.

15.2.1.2.2 Mapping a One-to-Many Relationship The JPA @OneToMany annotation indicates
that a single instance of the source entity can refer to multiple instances of the same
target entity. For example, one employee can have multiple phone numbers, such as a
land line, a mobile number, a desired contact number, and an alternative workplace
number. Each different number would be an instance of the PhoneNumber entity and a
single Employee entity could point to each instance.

This Task maps the employee to one of that employee's phone numbers and back.
Since the relationship between Employee and PhoneNumber is bi-directional, the
example again uses the EclipseLink extension @XmlInverseReference to map the
back-pointer.

To create a one-to-many mapping:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import
Classes".

2. Map one direction of the relationship, in this case, the employee property on
PhoneNumber, by inserting the @OneToMany annotation in the Employee entity:

 @OneToMany(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The mappedBy field indicates that this relationship is owned by the contact field.

3. Map the return direction—that is, the phone number property on Employee—by
inserting the @ManyToOne and @XmlInverseMapping annotations into the
PhoneNumber entity:

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 @XmlInverseReference(mappedBy="contactNumber")
 private Employee contact;

The mappedBy field indicates that this relationship is owned by the contactNumber
field. The @JoinColumn annotation identifies the column that will contain the
foreign key (name="E_ID") and the column referenced by the foreign key
(referencedColumnName = "E_ID").

The entities should look like those shown in Example 15–1 and Example 15–3.

15.2.1.3 Task 3: Map the Shared Reference Relationship
A shared reference relationship occurs when target objects are referenced by multiple
source objects. For example, a business might be segregated into multiple

Binding JPA Entities to XML

15-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

departments, such as IT, human resources, finance, and so on. Each of these
departments has multiple employees of differing job descriptions, pay grades,
locations, and so on. Managing departments and employees requires shared reference
relationships.

Since a shared reference relationship cannot be safely represented as nesting in XML,
we use key relationships. In order to leverage the ID fields on JPA entities, you need to
use the EclipseLink JAXB @XmlID annotation on non-String fields and properties and
@XmlIDREF on string fields and properties.

This section contains examples that show how to map a many-to-one shared reference
relationship and a many-to-many shared reference relationship.

15.2.1.3.1 Mapping a Many-to-One Shared Reference Relationship In a many-to-one
mapping, one or more instances of the source entity are able to refer to the same target
entity instance. This example demonstrates how to map an employee to one of that
employee's multiple phone numbers.

To map a many-to-one shared reference relationship:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import
Classes".

2. Map one direction of the relationship, in this case the phone number property on
Employee, by inserting the @ManyToOne annotation in the PhoneNumber entity:

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 @XmlIDREF
 private Employee contact;

The @JoinColumn annotation identifies the column that will contain the foreign key
(name="E_ID") and the column referenced by the foreign key
(referencedColumnName = "E_ID"). The @XmlIDREF annotation indicates that this
will be the primary key for the corresponding table.

3. Map the return direction—that is, the employee property on PhoneNumber —by
inserting the @OneToMany and @XmlInverseMapping annotations into the Address
entity:

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The mappedBy field for both annotations indicates that this relationship is owned
by the contact field.

The entities should look like those shown in Example 15–1 and Example 15–3.

15.2.1.3.2 Mapping a Many-to-Many Shared Reference Relationship The @ManyToMany
annotation indicates that one or more instances of the source entity are able to refer to
one or more target entity instances. Since the relationship between Department and
Employee is bi-directional, this example again uses the EclipseLink's
@XmlInverseReference annotation to represent the back-pointer.

To map a many-to-many shared reference relationship, do the following:

1. Ensure that the accessor type FIELD has been defined at the package level, as
described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import
Classes".

Binding JPA Entities to XML

Mapping JPA to XML 15-7

2. Create a Department entity by inserting the following code:

@Entity
public class Department {

3. Under this entity define the many-to-many relationship and the entity's join table
by inserting the following code:

 @ManyToMany
 @JoinTable(name="DEPT_EMP", joinColumns =
 @JoinColumn(name="D_ID", referencedColumnName = "D_ID"),
 inverseJoinColumns = @JoinColumn(name="E_ID",
 referencedColumnName = "E_ID"))

This code creates a join table called DEPT_EMP and identifies the column that will
contain the foreign key (name="E_ID") and the column referenced by the foreign
key (referencedColumnName = "E_ID"). Additionally, it identifies the primary
table on the inverse side of the association.

4. Complete the initial mapping—in this case, the Department property
employee—and make it a foreign key for this entity by inserting the following
code:

 @XmlIDREF
 private List<Employee> member;

5. In the Employee entity created in Section 15.2.1.2.1, "Mapping a One-to-One and
Embedded Relationship", specifying that eId is the primary key for JPA (@Id
annotation), and for JAXB (@XmlID annotation) by inserting the following code:

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

6. Still within the Employee entity, complete the return mapping by inserting the
following code:

 @ManyToMany(mappedBy="member")
 @XmlInverseReference(mappedBy="member")
 private List<Department> team;

The entities should look like those shown in Example 15–1 and Example 15–4.

15.2.1.4 JPA Entities
Once the mappings are created, the entities should look like those in the following
examples:

■ Example 15–1, "Employee Entity"

■ Example 15–2, "Address Entity"

■ Example 15–3, "PhoneNumber Entity"

■ Example 15–4, "Department Entity"

Note: In order to save space, package names, import statements, and
the get/set methods have been omitted from the code examples. All
examples use standard JPA annotations.

Binding JPA Entities to XML

15-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

Example 15–1 Employee Entity

@Entity
public class Employee {

 @Id
 @Column(name="E_ID")
 private BigDecimal eId;

 private String name;

 @OneToOne(mappedBy="resident")
 private Address residence;

 @OneToMany(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

 @ManyToMany(mappedBy="member")
 private List<Department> team;

}

Example 15–2 Address Entity

@Entity
public class Address {

 @Id
 @Column(name="E_ID", insertable=false, updatable=false)
 private BigDecimal eId;

 private String city;

 private String street;

 @OneToOne
 @JoinColumn(name="E_ID")
 private Employee resident;

}

Example 15–3 PhoneNumber Entity

@Entity
@Table(name="PHONE_NUMBER")
public class PhoneNumber {

 @Id
 @Column(name="P_ID")
 private BigDecimal pId;

 @ManyToOne
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID")
 private Employee contact;

 private String num;

}

Binding JPA Entities to XML

Mapping JPA to XML 15-9

Example 15–4 Department Entity

@Entity
public class Department {

 @Id
 @Column(name="D_ID")
 private BigDecimal dId;

 private String name;

 @ManyToMany
 @JoinTable(name="DEPT_EMP", joinColumns =
 @JoinColumn(name="D_ID", referencedColumnName = "D_ID"),
 inverseJoinColumns = @JoinColumn(name="E_ID",
 referencedColumnName = "E_ID"))
 private List<Employee> member;

}

15.2.2 Binding Compound Primary Keys to XML
When a JPA entity has compound primary keys, you can bind it by using JAXB
annotations and certain EclipseLink extensions, as shown in the following example.

15.2.2.1 Task1: Define the XML Accessor Type
Define the accessor type as FIELD, as described in Section 15.2.1.1, "Task 1: Define the
Accessor Type and Import Classes"

15.2.2.2 Task 2: Create the Target Object
To create the target object, do the following:

1. Create an Employee entity with a composite primary key class called EmployeeID
to map to multiple fields or properties of the entity:

@Entity
@IdClass(EmployeeId.class)
public class Employee {

2. Specify the first primary key, eId, of the entity and map it to a column:

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

3. Specify the second primary key, country. In this instance, you need to use @XmlKey
to identify the primary key because only one property— eId—can be annotated
with the @XmlID.

 @Id
 @XmlKey
 private String country;

The @XmlKey annotation marks a property as a key that will be referenced by using
a key-based mapping via the @XmlJoinNode annotation in the source object. This is
similar to the @XmlKey annotation except it doesn't require the property be bound
to the schema type ID. This is a typical application of the @XmlKey annotation.

Binding JPA Entities to XML

15-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

4. Create a many-to-one mapping of the Employee property on PhoneNumber by
inserting the following code:

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The Employee entity should look like Example 15–5

Example 15–5 Employee Entity with Compound Primary Keys

@Entity
@IdClass(EmployeeId.class)
public class Employee {

 @Id
 @Column(name="E_ID")
 @XmlID
 private BigDecimal eId;

 @Id
 @XmlKey
 private String country;

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

}

public class EmployeeId {
 public BigDecimal eId;
 public String country;

 public EmployeeId(BigDecimal eId, String country) {
 this.id = id;
 this.country = country;;
 }

 public boolean equals(Object other) {
 if (other instanceof EmployeeId) {
 final EmployeeId otherEmployeeId = (EmployeeId) other;
 return (otherEmployeeId.eId.equals(eId) &&
otherEmployeeId.country.equals(country));
 }

 return false;
 }
}

15.2.2.3 Task 3: Create the Source Object
This Task creates the source object, the PhoneNumber entity. Because the target object
has a compound key, we need to use the EclipseLink's @XmlJoinNodes annotation to
set up the mapping.

To create the source object:

1. Create the PhoneNumber entity:

@Entity

Binding JPA Entities to XML

Mapping JPA to XML 15-11

public class PhoneNumber {

2. Create a many-to-one relationship and define the join columns:

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })

3. Set up the mapping by using the EclipseLink's @XmlJoinNodes annotation

@XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()",
referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()",
referencedXmlPath="country/text()")
 })

4. Define the contact property:

private Employee contact;

}

The target object should look like Example 15–6.

Example 15–6 PhoneNumber Entity

@Entity
public class PhoneNumber {

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })
 @XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()", referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()", referencedXmlPath="country/text()")
 })
 private Employee contact;

}

15.2.3 Binding Embedded ID Classes to XML
An embedded ID defines a separate Embeddable Java class to contain the entity's
primary key. It is defined through the @EmbeddedId annotation.The embedded ID's
Embeddable class must define each id attribute for the entity using basic mappings. All
attributes in the embedded Id's Embeddable are assumed to be part of the primary key.
This exercise shows how to derive an XML representation from a set of JPA entities
using JAXB when a JPA entity has an embedded ID class.

15.2.3.1 Task1: Define the XML Accessor Type
Define the XML accessor type as FIELD, as described in Section 15.2.1.1, "Task 1: Define
the Accessor Type and Import Classes"

Binding JPA Entities to XML

15-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

15.2.3.2 Task 2: Create the Target Object
The target object is an entity called Employee and contains the mapping for an
employee's contact phone number. Creating this target object requires implementing a
DescriptorCustomizer interface, so you must include EclipseLink's @XmlCustomizer
annotation Also, since the relationship is bidirectional, you must also implement the
@XmlInverseReference. annotation.

To create the target object:

1. Create the Employee entity. Use the @IdClass annotation to specify that the
EmployeeID class will be mapped to multiple properties of the entity.

@Entity
@IdClass(EmployeeId.class)
public class Employee {
}

2. Define the id property and make it embeddable.

 @EmbeddedId
 @XmlPath(".");
 private EmployeeId id;

3. Define a one-to-many mapping—in this case, the employee property on
PhoneNumber. Because the relationship is bi-directional, use @XmlInverseReference
to define the return mapping. Both of these relationships will be owned by the
contact field, as indicated by the mappedBy argument.

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

The completed target object should look like Example 15–7.

Example 15–7 Employee Entity as Target Object

@Entity
@IdClass(EmployeeId.class)
@XmlCustomizer(EmployeeCustomizer.class)
public class Employee {

 @EmbeddedId
 private EmployeeId id;

 @OneToMany(mappedBy="contact")
 @XmlInverseReference(mappedBy="contact")
 private List<PhoneNumber> contactNumber;

}

15.2.3.3 Task 3: Create the Source Object
The source object in this example has a compound key, so you must mark the field
@XmlTransient to prevent a key from being mapped by itself. Use EclipseLink's
@XmlCustomizer annotation to set up the mapping.

To create the source object, do the following:

1. Create the PhoneNumber entity.

@Entity
public class PhoneNumber {

Binding JPA Entities to XML

Mapping JPA to XML 15-13

}

2. Create a many-to-one mapping and define the join columns.

@ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })

3. Define the XML nodes for the mapping, using the EclipseLink @XmlJoinNodes
annotation extension. If the target object had a single ID, you would use the
@XmlIDREF annotation.

 @XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()", referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()",
referencedXmlPath="country/text()")
 })
 private Employee contact;

The completed PhoneNumber class should look like Example 15–8.

Example 15–8 PhoneNumber Class as Source Object

@Entity
public class PhoneNumber {

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="E_ID", referencedColumnName = "E_ID"),
 @JoinColumn(name="E_COUNTRY", referencedColumnName = "COUNTRY")
 })
 @XmlJoinNodes({
 @XmlJoinNode(xmlPath="contact/id/text()", referencedXmlPath="id/text()"),
 @XmlJoinNode(xmlPath="contact/country/text()",
referencedXmlPath="country/text()")
 })
 private Employee contact;

}

15.2.3.4 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer
Class
Code added in Task 4 indicated the need to create the XMLObjectReferenceMappings
to the new values. This requires to implementing the DescriptorCustomizer as the
PhoneNumberCustomizer and adding the multiple key mappings. To do this:

1. Implement DescriptorCustomizer as PhoneNumberCustomizer. Be sure to import
org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping:

import org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping;

public class PhoneNumberCustomizer implements DescriptorCustomizer {

2. In the customize method, update the following mappings:

■ contactMapping.setAttributeName to "contact".

■ contactMapping.addSourceToTargetKeyFieldAssociation to
"contact/@eID", "eId/text()".

Mapping Simple Java Values to XML Text Nodes

15-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ contactMapping.addSourceToTargetKeyFieldAssociation to
"contact/@country", "country/text()".

PhoneNumberCustomizer should look like Example 15–9.

Example 15–9 PhoneNumber Customizer with Updated Key Mappings

import org.eclipse.persistence.config.DescriptorCustomizer;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping;

public class PhoneNumberCustomizer implements DescriptorCustomizer {

 public void customize(ClassDescriptor descriptor) throws Exception {
 XMLObjectReferenceMapping contactMapping = new XMLObjectReferenceMapping();
 contactMapping.setAttributeName("contact");
 contactMapping.setReferenceClass(Employee.class);
 contactMapping.addSourceToTargetKeyFieldAssociation("contact/@eID", "eId/text()");
 contactMapping.addSourceToTargetKeyFieldAssociation("contact/@country", "country/text()");
 descriptor.addMapping(contactMapping);
 }

}

15.2.4 Using the EclipseLink XML Binding Document
As demonstrated in the preceding examples, EclipseLink implements the standard
JAXB annotations to map JPA entities to an XML representation. You can also express
metadata by using the EclipseLink XML Bindings document. Not only can you use
XML bindings to separate your mapping information from your actual Java class but
you can also use it for more advanced metadata tasks such as:

■ Augmenting or overriding existing annotations with additional mapping
information.

■ Specifying all mapping information externally, without using any Java
annotations.

■ Defining your mappings across multiple Bindings documents.

■ Specifying "virtual" mappings that do not correspond to concrete Java fields

For more information about using the XML Bindings document, see XML Bindings in
the JAXB/MOXy documentation at
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/XML_
Bindings.

15.3 Mapping Simple Java Values to XML Text Nodes
This section demonstrates several ways to map simple Java values directly to XML text
nodes. It includes the following examples:

■ Mapping a Value to an Attribute

■ Mapping a Value to a Text Node

15.3.1 Mapping a Value to an Attribute
This example maps the id property in the Java object Customer to its XML
representation as an attribute of the <customer> element. The XML will be based on
the schema in Example 15–10.

Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 15-15

Example 15–10 Example XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="customer" type="customer-type"/>

 <xsd:complexType name="customer-type">
 <xsd:attribute name="id" type="xsd:integer"/>
 </xsd:complexType>

</xsd:schema>

The following procedures demonstrate how to map the id property from the Java
object and, alternately, how to represent the value in EclipseLink's Object-to-XML
Mapping (OXM) metadata format.

15.3.1.1 Mapping from the Java Object
The key to creating this mapping from a Java object is the @XmlAttribute JAXB
annotation, which maps the field to the XML attribute. To create this mapping:

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make it the
root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Map the id property in the Customer class as an attribute:

 @XmlAttribute
 private Integer id;

The object should look like Example 15–11.

Example 15–11 Customer Object with Mapped id Property

package example;

import javax.xml.bind.annotation.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlAttribute
 private Integer id;

 ...
}

15.3.1.2 Defining the Mapping in OXM Metadata Format
If you want to represent the mapping in EclipseLink's OXM metadata format, you
need to use the XML tags defined in the eclipselink-oxm.xml file and populate them
with the appropriate values, as shown in Example 15–12.

Mapping Simple Java Values to XML Text Nodes

15-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

Example 15–12 Mapping id as an Attribute in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-attribute java-attribute="id"/>
 </java-attributes>
</java-type>
...

For more information about the OXM metadata format, see Section 15.4, "Using XML
Metadata Representation to Override JAXB Annotations".

15.3.2 Mapping a Value to a Text Node
EclipseLink makes it easy for you to map values from a Java object to various kinds of
XML text nodes; for example, to simple text nodes, text nodes in a simple sequence, in
a subset, or by position. These mappings are demonstrated in the following examples:

■ Mapping a Value to a Simple Text Node

■ Mapping Values to a Text Node in a Simple Sequence

■ Mapping a Value to a Text Node in a Sub-element

■ Mapping Values to a Text Node by Position

15.3.2.1 Mapping a Value to a Simple Text Node
You can map a value from a Java object either by using JAXB annotations in the Java
object or, alternately, by representing the mapping in EclipseLink's OXM metadata
format.

15.3.2.1.1 Mapping by Using JAXB Annotations Assuming the associated schema defines
an element called <phone-number> which accepts a string value, you can use the
@XmlValue annotation to map a string to the <phone-number> node. Do the following:

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the PhoneNumber class and use the @XmlRootElement annotation to make it
the root element with the name phone-number. Set the XML accessor type to
FIELD:

@XmlRootElement(name="phone-number")
@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {

3. Insert the @XmlValue annotation on the line before the number property in the
Customer class to map this value as an attribute:

 @XmlValue
 private String number;

The object should look like Example 15–13.

Example 15–13 PhoneNumber Object with Mapped number Property

package example;

Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 15-17

import javax.xml.bind.annotation.*;

@XmlRootElement(name="phone-number")
@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {
 @XmlValue
 private String number;

 ...
}

15.3.2.1.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in EclipseLink's OXM metadata format, you need to use the XML tags
defined in the eclipselink-oxm.xml file and populate them with the appropriate
values, as shown in Example 15–14.

Example 15–14 Mapping number as an Attribute in OXM Metadata Format

...
<java-type name="PhoneNumber">
 <xml-root-element name="phone-number"/>
 <java-attributes>
 <xml-value java-attribute="number"/>
 </java-attributes>
</java-type>
...

15.3.2.2 Mapping Values to a Text Node in a Simple Sequence
You can map a sequence of values, for example a customer's first and last name, as
separate elements either by using JAXB annotations or by representing the mapping in
EclipseLink's OXM metadata format. The following procedures illustrate how to map
values for a customers' first names and last names

15.3.2.2.1 Mapping by Using JAXB Annotations Assuming the associated schema defines
the following elements:

■ <customer> of the type customer-type, which itself is defined as a complexType.

■ Sequential elements called <first-name> and <last-name>, both of the type
string.

you can use the @XmlElement annotation to map values for a customer's first and last
name to the appropriate XML nodes. To do so:

1. Create the object and import javax.xml.bind.annotation.*:

package example;

import javax.xml.bind.annotation.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make it the
root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the firstname and lastname properties and annotate them with the
@XmlElement annotation. Use the name= argument to customize the XML element

Mapping Simple Java Values to XML Text Nodes

15-18 Java Persistence API (JPA) Extensions Reference for EclipseLink

name (if you do not explicitly set the name with name=, the XML element will
match the Java attribute name; for example, here the <first-name> element
combination would be specified <firstName> </firstName> in XML).

 @XmlElement(name="first-name")
 private String firstName;

 @XmlElement(name="last-name")
 private String lastName;

The object should look like Example 15–15.

Example 15–15 Customer Object Mapping Values to a Simple Sequence

package example;

import javax.xml.bind.annotation.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlElement(name="first-name")
 private String firstName;

 @XmlElement(name="last-name")
 private String lastName;

 ...
}

15.3.2.2.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in EclipseLink's OXM metadata format, you need to use the XML tags
defined in the eclipselink-oxm.xml file and populate them with the appropriate
values, as shown in Example 15–16.

Example 15–16 Mapping Sequential Attributes in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-element java-attribute="firstName" name="first-name"/>
 <xml-element java-attribute="lastName" name="last-name"/>
 </java-attributes>
</java-type>
...

15.3.2.3 Mapping a Value to a Text Node in a Sub-element
You can map values from a Java object to text nodes that are nested as a subelement in
the XML document by using JAXB annotations or by representing the mapping in
EclipseLink's OXM metadata format. For example, if you want to populate
<first-name> and <last-name> elements, which are sub-elements of a
<personal-info> element under a <customer> root, you could use the following
procedures to achieve these mappings.

15.3.2.3.1 Mapping by Using JAXB Annotations Assuming the associated schema defines
the following elements:

■ <customer> of the type customer-type, which itself is defined as a complexTpe.

Mapping Simple Java Values to XML Text Nodes

Mapping JPA to XML 15-19

■ <personal-info>

■ Sub-elements of <personal-info> called <first-name> and <last-name>, both of
the type string

you can use JAXB annotations to map values for a customer's first and last name to the
appropriate XML sub-element nodes. Because this example goes beyond a simple
element name customization and actually introduces new XML structure, it uses
EclipseLink's @XmlPath annotation. To achieve this mapping:

1. Create the object and import javax.xml.bind.annotation.* and
org.eclipse.persistence.oxm.annotations.*.

package example;

import javax.xml.bind.annotation.*;
import org.eclipse.persistence.oxm.annotations.*;

2. Declare the Customer class and use the @XmlRootElement annotation to make it the
root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the firstName and lastName properties.

4. Map the firstName and lastName properties to the sub-elements defined by the
XML schema by inserting the @XmlPath annotation on the line immediately
preceding the property declaration. For each annotation, define the mapping by
specifying the appropriate XPath predicate:

 @XmlPath("personal-info/first-name/text()")
 private String firstName;

 @XmlPath("personal-info/last-name/text()")
 private String lastName;

The object should look like Example 15–17.

Example 15–17 Customer Object Mapping Properties to Sub-elements

package example;

import javax.xml.bind.annotation.*;
import org.eclipse.persistence.oxm.annotations.*;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlPath("personal-info/first-name/text()")
 private String firstName;

 @XmlPath("personal-info/last-name/text()")
 private String lastName;

 ...
}

15.3.2.3.2 Defining the Mapping in OXM Metadata Format If you want to represent the
mapping in EclipseLink's OXM metadata format, you need to use the XML tags

Mapping Simple Java Values to XML Text Nodes

15-20 Java Persistence API (JPA) Extensions Reference for EclipseLink

defined in the eclipselink-oxm.xml file and populate them with the appropriate
values, as shown in Example 15–18.

Example 15–18 Mapping Attributes as Sub-elements in OXM Metadata Format

...
<java-type name="Customer">
 <xml-root-element name="customer"/>
 <java-attributes>
 <xml-element java-attribute="firstName" xml-path="personal-info/first-name/text()"/>
 <xml-element java-attribute="lastName" xml-path="personal-info/last-name/text()"/>
 </java-attributes>
</java-type>
...

15.3.2.4 Mapping Values to a Text Node by Position
When multiple nodes have the same name, map their values from the Java object by
specifying their position in the XML document. Do this by using mapping the values
to the position of the attribute rather than the attribute's name. You can do this either by
using JAXB annotations or by or by representing the mapping in EclipseLink's OXM
metadata format. In the following example, XML contains two <name> elements; the
first occurrence of name should represent the Customer's first name, the second name
their last name.

15.3.2.4.1 Mapping by Using JAXB Annotations Assuming an XML schema that defines
the following attributes:

■ <customer> of the type customer-type, which itself is specified as a complexType

■ <name> of the type String

this example again uses the JAXB @XmlPath annotation to map a customer's first and
last names to the appropriate <name> element. It also uses the @XmlType(propOrder)
annotation to ensure that the elements are always in the proper positions. To achieve
this mapping:

1. Create the object and import javax.xml.bind.annotation.* and
org.eclipse.persistence.oxm.annotations.XmlPath.

package example;

import javax.xml.bind.annotation.*;
import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the Customer class and insert the @XmlType(propOrder) annotation with
the arguments "firstName" followed by "lastName". Insert the @XmlRootElement
annotation to make Customer the root element and set the XML accessor type to
FIELD:

@XmlRootElement
@XmlType(propOrder={"firstName", "lastName"})
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Define the properties firstName and lastName with the type String.

4. Map the properties firstName and lastName to the appropriate position in the
XML document by inserting the @XmlPath annotation with the appropriate XPath
predicates.

 @XmlPath("name[1]/text()")

Using XML Metadata Representation to Override JAXB Annotations

Mapping JPA to XML 15-21

 private String firstName;

 @XmlPath("name[2]/text()")
 private String lastName;

The predicates, "name[1]/text()" and "name[2]/text()" indicate the <name>
element to which that specific property will be mapped; for example,
"name[1]/text" will map the firstName property to the first <name> element.

The object should look like Example 15–19.

Example 15–19 Customer Object Mapping Values by Position

package example;

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlRootElement
@XmlType(propOrder={"firstName", "lastName"})
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 @XmlPath("name[1]/text()")
 private String firstName;

 @XmlPath("name[2]/text()")
 private String lastName;

 ...
}

For more information about using XPath predicates, see Section 15.5, "Using XPath
Predicates for Mapping".

15.4 Using XML Metadata Representation to Override JAXB Annotations
In addition to using Java annotations, EclipseLink provides an XML mapping
configuration file called eclipselink-oxm.xml that you can use in place of or to
override JAXB annotations in the source with an XML representation of the metadata.
In addition to allowing all of the standard JAXB mapping capabilities it also includes
advanced mapping types and options.

An XML metadata representation is useful when:

■ You cannot modify the domain model because, for example, it come from a third
party).

■ You do not want to introduce compile dependencies on JAXB APIs (if you are
using a version of Java that predates Java SE 6).

■ You want to apply multiple JAXB mappings to a domain model (you are limited to
one representation with annotations).

■ Your object model already contains so many annotations from other technologies
that adding more would make the class unreadable.

This section demonstrates how to use eclipselink-oxm.xml to override JAXB
annotations

Note: While using this mapping file enables many advanced
features, it might prevent you from porting it to other JAXB
implementations

Using XPath Predicates for Mapping

15-22 Java Persistence API (JPA) Extensions Reference for EclipseLink

15.4.1 Task 1: Define Advanced Mappings in the XML
First, update the XML mapping file to expose the eclipselink_oxm_2_3.xsd. schema.
Example 15–20 shows how to modify the <xml-bindings> element in the mapping file
to point to the correct namespace and leverage the schema. Each Java package can
have one mapping file.

Example 15–20 Updating XML Binding Information in the Mapping File

<?xml version="1.0"?>
<xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/oxm
http://www.eclipse.org/eclipselink/xsds/eclipselink_oxm_2_4.xsd"
 version="2.4">
</xml-bindings>

15.4.2 Task 2: Configure Usage in JAXBContext
Next, pass the mapping file to JAXBContext in your object:

1. Specify the externalized metadata by inserting this code:

Map<String, Object> properties = new HashMap<String, Object>(1);
properties.put(JAXBContextProperties.OXM_METADATA_SOURCE,
"org/example/oxm.xml);
JAXBContext.newInstance("org.example', aClassLoader, properties);

2. Create the properties object to pass to the JAXBContext. For this example:

Map<String,Object> properties = new HashMap<String,Object>();
properties.put(JAXBContextFactory.ECLIPSELINK_OXM_XML_KEY, metadata);

3. Create the JAXBContext. For this example:

JAXBContext.newInstance("example.order:example.customer", aClassLoader,
properties);

15.4.3 Task 3: Specify the MOXy as the JAXB Implementation
You must use MOXy as your JAXB implementation. To do so, do the following:

1. Open a jaxb.properties file and add the following line:

javax.xml.bind.context.factory=org.eclipse.persistence.jaxb.JAXBContextFactory

2. Copy the jaxb.properties file to the package that contains your domain classes.

15.5 Using XPath Predicates for Mapping
This section demonstrates how the EclipseLink MOXy API uses XPath predicates to
define an expression that specifiers the XML element's name. An XPath predicate is an
expression that defines a specific object-to-XML mapping. As shown in previous
examples, by default, JAXB will use the Java field name as the XML element name.

Using XPath Predicates for Mapping

Mapping JPA to XML 15-23

This section contains the following subsections:

■ Section 15.5.1, "Understanding XPath Predicates"

■ Section 15.5.2, "Mapping Based on Position"

■ Section 15.5.3, "Mapping Based on an Attribute Value"

■ Section 15.5.4, ""Self" Mappings"

15.5.1 Understanding XPath Predicates
As described above, an XPath predicate is an expression that defines a specific
object-to-XML mapping when standard annotations

re not sufficient. For example, the following snippet of XML shows a <data> element
with two <node> sub-elements. If you wanted to create this mapping in a Java object,
you would need to specify an XPath predicate for each <node> sub-element; for
example, Node[2] in the following Java:

 <java-attributes>
 <xml-element java-attribute="node" xml-path="node[1]/ABC"/>
 <xml-element java-attribute="node" xml-path="node[2]/DEF"/>
 </java-attributes>

would match the second occurrence of the node element ("DEF") in the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<data>
 <node>ABC</node>
 <node>DEF</node>
</data>

Thus, by using the XPath predicate, you can use the same attribute name for a
different attribute value.

15.5.2 Mapping Based on Position
This mapping technique is described in Section 15.3.2.4, "Mapping Values to a Text
Node by Position".

15.5.3 Mapping Based on an Attribute Value
Beginning with EclipseLink MOXy 2.3, you can also map to an XML element based on
an Attribute value. In this exercise, you will annotate the JPA entity to render the XML
document shown in Example 15–21. Note that all of the XML elements are named
node but are differentiated by the value of their name attribute.

Example 15–21

<?xml version="1.0" encoding="UTF-8"?>
<node>
 <node name="first-name">Bob</node>
 <node name="last-name">Smith</node>
 <node name="address">
 <node name="street">123 A Street</node>
 </node>
 <node name="phone-number" type="work">555-1111</node>
 <node name="phone-number" type="cell">555-2222</node>
</node>

Using XPath Predicates for Mapping

15-24 Java Persistence API (JPA) Extensions Reference for EclipseLink

To attain this mapping, you need to declare three classes, Name, Address, and
PhoneNumber and then use an XPath in the form of
element-name[@attribute-name='value'] to map each Java field.

15.5.3.1 Task 1: Create the Customer Entity
To create the Customer class entity:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the Customer class and use the @XmlRootElement annotation to make it the
root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

3. Declare local to the Customer class these properties:

■ firstName (String type)

■ lastName (String)

■ Address (Address)

For each property, set the Xpath predicate by preceding the property declaration
with the annotation @XmlPath(element-name[@attribute-name='value']); for
example, for firstName, you would set the XPath predicate with this statement:

@XmlPath("node[@name='first-name']/text()")

4. Also local to the Customer class, declare the phoneNumber property as a
List<PhoneNumber> type and assign it the value new ArrayList<PhoneNumber>().

The Customer class should look like the snippet in Example 15–22.

Example 15–22 Customer Object Mapping to an Attribute Value

package example;

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlRootElement(name="node")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

 @XmlPath("node[@name='first-name']/text()")
 private String firstName;

 @XmlPath("node[@name='last-name']/text()")
 private String lastName;

 @XmlPath("node[@name='address']")
 private Address address;

 @XmlPath("node[@name='phone-number']")
 private List<PhoneNumber> phoneNumbers = new ArrayList<PhoneNumber>();

Using XPath Predicates for Mapping

Mapping JPA to XML 15-25

 ...
}

15.5.3.2 Task 2: Create the Address Entity
To create the Address class, do the following:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the Address class and set the XML accessor type to FIELD:

@XmlAccessorType(XmlAccessType.FIELD)
public class Address {

This instance does not require the @XmlRootElement annotation as in the previous
Tasks because the Address class is root not a root element in the XML document.

3. Declare local to the Address class the String property street. Set the XPath
predicate by preceding the property declaration with the annotation
@XmlPath("node[@name='street']/text()").

The Address class should look like Example 15–23.

Example 15–23 Address Object Mapping to an Attribute Value

package example;

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

@XmlAccessorType(XmlAccessType.FIELD)
public class Address {

 @XmlPath("node[@name='street']/text()")
 private String street;

 ...
}

15.5.3.3 Task 3: Create the PhoneNumber Entity
To create the PhoneNumber entity:

1. Import the necessary JPA packages by adding the following code:

import javax.xml.bind.annotation.*;

import org.eclipse.persistence.oxm.annotations.XmlPath;

2. Declare the PhoneNumber class and use the @XmlRootElement annotation to make it
the root element. Set the XML accessor type to FIELD:

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {

Using XPath Predicates for Mapping

15-26 Java Persistence API (JPA) Extensions Reference for EclipseLink

3. Create the type and string properties and define their mapping as attributes under
the PhoneNumber root element by using the @XmlAttribute. annotation.

 @XmlAttribute
 private String type;

 @XmlValue
 private String number;

The PhoneNumber object should look like Example 15–24.

Example 15–24 PhoneNumber Object Mapping to an Attribute Value

package example;

import javax.xml.bind.annotation.*;

@XmlAccessorType(XmlAccessType.FIELD)
public class PhoneNumber {

 @XmlAttribute
 private String type;

 @XmlValue
 private String number;

 ...
}

15.5.4 "Self" Mappings
A "self" mapping occurs on one-to-one mappings when you set the target object's
XPath to "." (dot) so the data from the target object appears inside the source object's
XML element. This exercise uses the example in Section 15.5.3, "Mapping Based on an
Attribute Value" to map the Address information to appear directly under the
customer element and not wrapped in its own element.

To create the self mapping:

1. Repeat Tasks 1 and 2 in Section 15.5.3.1, "Task 1: Create the Customer Entity".

2. Declare local to the Customer class these properties:

■ firstName (String type)

■ lastName (String)

■ Address (Address)

3. For the firstName and lastName properties, set the XmlPath annotation by
preceding the property declaration with the annotation
@XmlPath(element-name[@attribute-name='value']); for example, for
firstName, you would set the XPath predicate with this statement:

@XmlPath("node[@name='first-name']/text()")

4. For the address property, set @XmlPath to "." (dot):

 @XmlPath(".")
 private Address address;

Using Dynamic JAXB/MOXy

Mapping JPA to XML 15-27

5. Also local to the Customer class, declare the phoneNumber property as a
List<PhoneNumber> type and assign it the value new ArrayList<PhoneNumber>().

The rendered XML for the Customer entity would look like Example 15–25.

Example 15–25 XML Node with Self-Mapped Address Element

<?xml version="1.0" encoding="UTF-8"?>
<node>
 <node name="first-name">Bob</node>
 <node name="last-name">Smith</node>
 <node name="street">123 A Street</node>
 <node name="phone-number" type="work">555-1111</node>
 <node name="phone-number" type="cell">555-2222</node>
</node>

15.6 Using Dynamic JAXB/MOXy
Dynamic JAXB/MOXy allows you to bootstrap a JAXBContext from a variety of
metadata sources and use familiar JAXB APIs to marshal and unmarshal data, without
requiring compiled domain classes. This is an enhancement over static JAXB, because
now you can update the metadata without having to update and recompile the
previously-generated Java source code.

The benefits of using dynamic JAXB/MOXy entities are:

■ Instead of using actual Java classes (for example, Customer.class, Address.class,
and so on), the domain objects are subclasses of the DynamicEntity.

■ Dynamic entities offer a simple get(propertyName)/set(propertyName
propertyValue) API to manipulate their data.

■ Dynamic entities have an associated DynamicType, which is generated in-memory,
when the metadata is parsed.

The following Tasks demonstrate how to use dynamic JAXB:

■ Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema

■ Task 2: Create Dynamic Entities and Marshal Them to XML

■ Task 3: Unmarshal the Dynamic Entities from XML

15.6.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
This example demonstrates how to bootstrap a dynamic JAXBContext from an XML
Schema.

15.6.1.1 Bootstrapping from an XML Schema
Use the DynamicJAXBContextFactory to create a dynamic JAXBContext. Example 15–26
to bootstrap a DynamicJAXBContext from the customer.xsd schema (Example 15–27)
by using createContextFromXSD().

Example 15–26 Specifying the Input Stream and Creating the DynamicJAXBContext

import java.io.FileInputStream;

import org.eclipse.persistence.jaxb.dynamic.DynamicJAXBContext;
import org.eclipse.persistence.jaxb.dynamic.DynamicJAXBContextFactory;

public class Demo {

Using Dynamic JAXB/MOXy

15-28 Java Persistence API (JPA) Extensions Reference for EclipseLink

 public static void main(String[] args) throws Exception {
 FileInputStream xsdInputStream = new FileInputStream("src/example/customer.xsd");
 DynamicJAXBContext jaxbContext =
 DynamicJAXBContextFactory.createContextFromXSD(xsdInputStream, null, null, null);

The first parameter represents the XML schema itself and must be in one of the
following forms: java.io.InputStream, org.w3c.dom.Node, or
javax.xml.transform.Source.

15.6.1.2 The XML Schema
Example 15–27 shows the customer.xsd schema that represents the metadata for the
dynamic JAXBContext you are bootstrapping.

Example 15–27 Sample XML Schema Document

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">

 <xsd:complexType name="address">
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string" minOccurs="0"/>
 <xsd:element name="city" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="address" type="address" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

15.6.1.3 Handling Schema Import/Includes
To bootstrap DynamicJAXBContext from an XML schema that contains imports of other
schemas, you need to configure an org.xml.sax.EntityResolver to resolve the
locations of the imported schemas and pass the EntityResolver to
DynamicJAXBContextFactory.

The following example shows two schema documents, customer.xsd (Example 15–28)
and address.xsd Example 15–29). You can see that customer.xsd imports
address.xsd by using the statement:

<xsd:import namespace="http://www.example.org/address" schemaLocation="address.xsd"/>

Example 15–28 customer.xsd

<?xml version="1.0" encoding="UTF-8"?>
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:add="http://www.example.org/address"
 xmlns="http://www.example.org/customer"
 targetNamespace="http://www.example.org/customer"

Using Dynamic JAXB/MOXy

Mapping JPA to XML 15-29

 elementFormDefault="qualified">

 <xsd:import namespace="http://www.example.org/address" schemaLocation="address.xsd"/>

 <xsd:element name="customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" minOccurs="0"/>
 <xsd:element name="address" type="add:address" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Example 15–29 address.xsd

<?xml version="1.0" encoding="UTF-8"?>
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org/address"
 targetNamespace="http://www.example.org/address"
 elementFormDefault="qualified">

 <xsd:complexType name="address">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
 </xsd:complexType>

</xsd:schema>

15.6.1.4 Implementing and Passing an EntityResolver
If you want to bootstrap DynamicJAXBContext from the customer.xsd schema, you
need to pass an entity resolver. Do the following:

1. To resolve the locations of the imported schemas, you need to implement an
entityResolver by supplying the code shown in Example 15–30.

Example 15–30 Implementing an EntityResolver

class MyEntityResolver implements EntityResolver {

 public InputSource resolveEntity(String publicId, String systemId) throws SAXException,
IOException {
 // Imported schemas are located in ext\appdata\xsd\

 // Grab only the filename part from the full path
 String filename = new File(systemId).getName();

 // Now prepend the correct path
 String correctedId = "ext/appdata/xsd/" + filename;

 InputSource is = new InputSource(ClassLoader.getSystemResourceAsStream(correctedId));
 is.setSystemId(correctedId);

 return is;
 }

Using Dynamic JAXB/MOXy

15-30 Java Persistence API (JPA) Extensions Reference for EclipseLink

}

2. After you implement your DynamicJAXBContext, pass the EntityResolver, as
shown in Example 15–31.

Example 15–31 Passing in the Entityresolver

FileInputStream xsdInputStream = new FileInputStream("src/example/customer.xsd");
DynamicJAXBContext jaxbContext =
 DynamicJAXBContextFactory.createContextFromXSD(xsdInputStream, new MyEntityResolver(), null,
null);

15.6.1.5 Error Handling
You might see the following exception when importing another schema:

Internal Exception: org.xml.sax.SAXParseException: schema_reference.4: Failed to read schema
document '<imported-schema-name>', because 1) could not find the document; 2) the document could
not be read; 3) the root element of the document is not <xsd:schema>.

To work around this exception, disable XJC's schema correctness check by setting the
noCorrectnessCheck Java property. You can set this property one of two ways:

■ From within the code, by adding this line:

System.setProperty("com.sun.tools.xjc.api.impl.s2j.SchemaCompilerImpl.noCorrect
nessCheck", "true")

■ From the command line, by using this command:

-Dcom.sun.tools.xjc.api.impl.s2j.SchemaCompilerImpl.noCorrectnessCheck=true

15.6.1.6 Specifying a ClassLoader
Use your application's current class loader as the classLoader parameter. This
parameter verifies that specified classes exist before new DynamicTypes are generated.
In most cases you can pass null for this parameter and use
Thread.currentThread().getContextClassLoader() instead.

15.6.2 Task 2: Create Dynamic Entities and Marshal Them to XML
This example shows how to create dynamic entities and marshal then to XML.

15.6.2.1 Creating the Dynamic Entities
Use the DynamicJAXBContext to create instances of DynamicEntity. The entity and
property names correspond to the class and property names—in this case, the
customer and address—that would have been generated if you had used static JAXB.

Example 15–32 Creating the Dynamic Entity

DynamicEntity customer = jaxbContext.newDynamicEntity("org.example.Customer");
customer.set("name", "Jane Doe");

DynamicEntity address = jaxbContext.newDynamicEntity("org.example.Address");
address.set("street", "1 Any Street").set("city", "Any Town");
customer.set("address", address);

Using Dynamic JAXB/MOXy

Mapping JPA to XML 15-31

15.6.2.2 Marshalling the Dynamic Entities to XML
The marshaller obtained from the DynamicJAXBContext is a standard marshaller and
can be used normally to marshal instances of DynamicEntity.

Example 15–33 Standard Dynamic JAXB Marshaller

Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
marshaller.marshal(customer, System.out);

Example 15–34 shows the resultant XML document:

Example 15–34 Updated XML Document Showing <address> Element and Its Attributes

<?xml version="1.0" encoding="UTF-8"?>
<customer xmlns="www.example.org">
 <name>Jane Doe</name>
 <address>
 <street>1 Any Street</street>
 <city>Any Town</city>
 </address>
</customer>

15.6.3 Task 3: Unmarshal the Dynamic Entities from XML
In this example shows how to unmarshal from XML the dynamic entities you created
in Task 2: Create Dynamic Entities and Marshal Them to XML. The XML in reference is
shown in Example 15–34.

15.6.3.1 Unmarshal DynamicEntities from XML
The Unmarshaller obtained from the DynamicJAXBContext is a standard unmarshaller,
and can be used normally to unmarshal instances of DynamicEntity.

Example 15–35 Standard Dynamic JAXB Unmarshaller

FileInputStream xmlInputStream = new FileInputStream("src/example/dynamic/customer.xml");
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
DynamicEntity customer = (DynamicEntity) unmarshaller.unmarshal(xmlInputStream);

15.6.3.2 Get Data from the Dynamic Entity
Next, specify which data in the dynamic entity to obtain. Specify this value by using
System.out.println() and passing in the entity name. DynamicEntity offers
property-based data access; for example, get("name") instead of getName():

System.out.println(customer.<String>get("name"));

15.6.3.3 Use DynamicType to Introspect Dynamic Entity
Instances of DynamicEntity have a corresponding DynamicType, which you can use to
introspect the DynamicEntity, as shown in Example 15–36.

Example 15–36

DynamicType addressType = jaxbContext.getDynamicType("org.example.Address");

DynamicEntity address = customer.<DynamicEntity>get("address");
for(String propertyName: addressType.getPropertiesNames()) {
 System.out.println(address.get(propertyName));

Additional Resources

15-32 Java Persistence API (JPA) Extensions Reference for EclipseLink

}

15.7 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Developing JAXB Applications Using EclipseLink MOXy

16

Converting Objects to and from JSON Documents 16-1

16Converting Objects to and from JSON
Documents

This chapter describes how EclipseLink MOXy supports the ability to convert objects
to and from JSON (JavaScript Object Notation). This feature is useful when creating
RESTful services; JAX-RS services can accept both XML and JSON messages.

This chapter includes the following sections:

■ Section 16.1, "Introduction to the Solution"

■ Section 16.2, "Implementing the Solution"

■ Section 16.3, "Additional Resources"

Use Case
Users need to convert objects to and from JSON documents.

Solution
EclipseLink provides JSON support through the EclipseLink MOXy implementation.

Components
■ EclipseLink 2.4 or later.

■ JSON documents.

Sample
See the following EclipseLink samples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/MOXy

■ http://wiki.eclipse.org/EclipseLink/Examples/MOXy/JSON_
Metadata

■ http://wiki.eclipse.org/EclipseLink/Examples/MOXy/MOXy_JSON_
Provider

16.1 Introduction to the Solution
EclipseLink supports all MOXy object-to-XML options when reading and writing
JSON, including:

■ EclipseLink’s advanced and extended mapping features (in addition to the JAXB
specification)

■ Storing mappings in external bindings files

Implementing the Solution

16-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Creating dynamic models with Dynamic JAXB

■ Building extensible models that support multitenant applications

16.2 Implementing the Solution
This section contains the following tasks for converting objects to and from JSON
documents.

■ Task 1: Marshalling and Unmarshalling JSON Documents

■ Task 2: Specifying JSON Bindings

■ Task 3: Specifying JSON Data Types

■ Task 4: Supporting Attributes

■ Task 5: Supporting no Root Element

■ Task 6: Using Collections

■ Task 7: Mapping Root-Level Collections

■ Task 8: Wrapping Text Values

16.2.1 Task 1: Marshalling and Unmarshalling JSON Documents
Use the eclipselink.media-type property on your JAXB Marshaller or Unmarsaller to
produce and use JSON documents with your application, as shown in Example 16–1.

Example 16–1 Marshalling and Unmarshalling

...

Marshaller m = jaxbContext.createMarshaller();
m.setProperty("eclipselink.media-type", "application/json");

Unmarshaller u = jaxbContext.createUnmarshaller();
u.setProperty("eclipselink.media-type", "application/json");

...

You can also specify the eclipselink.media-type property in the Map of the properties
used when you create the JAXBContext, as shown in Example 16–2.

Example 16–2 Using a Map

import org.eclipse.persistence.jaxb.JAXBContextProperties;
import org.eclipse.persistence.oxm.MediaType;

Map<String, Object> properties = new HashMap<String, Object>();
properties.put("eclipselink.media-type", "application/json");

JAXBContext ctx = JAXBContext.newInstance(new Class[] { Employee.class },
properties);
Marshaller jsonMarshaller = ctx.createMarshaller();
Unmarshaller jsonUnmarshaller = ctx.createUnmarshaller();

When specified in a Map, the Marshallers and Unmarshallers created from the
JAXBContent will automatically use the specified media type.

Implementing the Solution

Converting Objects to and from JSON Documents 16-3

You can also configure your application to use JSON documents by using the
MarshallerProperties, UnmarshallerProperties, and MediaType constants, as shown
in Example 16–3.

Example 16–3 Using MarshallerProperties and UnarshallerProperties

import org.eclipse.persistence.jaxb.MarshallerProperties;
import org.eclipse.persistence.jaxb.UnarshallerProperties;
import org.eclipse.persistence.oxm.MediaType;

m.setProperty(MarshallerProperties.MEDIA_TYPE, MediaType.APPLICATION_JSON);
u.setProperty(UnmarshallerProperties.MEDIA_TYPE, MediaType.APPLICATION_JSON);
...

16.2.2 Task 2: Specifying JSON Bindings
Example 16–4 shows a basic JSON binding that does not require compile time
dependencies in addition to those required for normal JAXB usage. This example
shows how to unmarshal JSON from a StreamSource into the user object
SearchResults, add a new Result to the collection, and then marshal the new
collection to System.out.

Example 16–4 Using Basic JSON Binding

package org.example;

import org.example.model.Result;
import org.example.model.SearchResults;

import java.util.Date;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.transform.stream.StreamSource;

public class Demo {

 public static void main(String[] args) throws Exception {
 JAXBContext jc = JAXBContext.newInstance(SearchResults.class);

 Unmarshaller unmarshaller = jc.createUnmarshaller();
 unmarshaller.setProperty("eclipselink.media-type", "application/json");
 StreamSource source = new
StreamSource("http://search.twitter.com/search.json?q=jaxb");
 JAXBElement<SearchResults> jaxbElement = unmarshaller.unmarshal(source,
SearchResults.class);

 Result result = new Result();
 result.setCreatedAt(new Date());
 result.setFromUser("bsmith");
 result.setText("You can now use EclipseLink JAXB (MOXy) with JSON :)");
 jaxbElement.getValue().getResults().add(result);

 Marshaller marshaller = jc.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

Implementing the Solution

16-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

 marshaller.setProperty("eclipselink.media-type", "application/json");
 marshaller.marshal(jaxbElement, System.out);
 }

}

You can also write MOXy External Bindings files as JSON documents. Example 16–5
shows how to use bindings.json to map Customer and PhoneNumber classes to
JSON.

Example 16–5 Using External Bindings

{
 "package-name" : "org.example",
 "xml-schema" : {
 "element-form-default" : "QUALIFIED",
 "namespace" : "http://www.example.com/customer"
 },
 "java-types" : {
 "java-type" : [{
 "name" : "Customer",
 "xml-type" : {
 "prop-order" : "firstName lastName address phoneNumbers"
 },
 "xml-root-element" : {},
 "java-attributes" : {
 "xml-element" : [
 {"java-attribute" : "firstName","name" : "first-name"},
 {"java-attribute" : "lastName", "name" : "last-name"},
 {"java-attribute" : "phoneNumbers","name" : "phone-number"}
]
 }
 }, {
 "name" : "PhoneNumber",
 "java-attributes" : {
 "xml-attribute" : [
 {"java-attribute" : "type"}
],
 "xml-value" : [
 {"java-attribute" : "number"}
]
 }
 }]
 }
}

Example 16–6 shows how to use the JSON file (created in Example 16–5) when
bootstrapping a JAXBContext.

Example 16–6 Using JSON to Bootstrap a JAXBContext

Map<String, Object> properties = new HashMap<String, Object>(2);
properties.put("eclipselink.oxm.metadata-source", "org/example/binding.json");
properties.put("eclipselink.media-type", "application/json");
JAXBContext context = JAXBContext.newInstance("org.example",
Customer.class.getClassLoader() , properties);

Unmarshaller unmarshaller = context.createUnmarshaller();
StreamSource json = new StreamSource(new File("src/org/example/input.json"));
...

Implementing the Solution

Converting Objects to and from JSON Documents 16-5

16.2.3 Task 3: Specifying JSON Data Types
Although XML has a single datatype, JSON differentiates between strings, numbers,
and booleans. EclipseLink supports these datatypes automatically, as shown in
Example 16–7

Example 16–7 Using JSON Data Types

public class Address {

 private int id;
 private String city;
 private boolean isMailingAddress;

}

{
 "id" : 1,
 "city" : "Ottawa",
 "isMailingAddress" : true
}

16.2.4 Task 4: Supporting Attributes
JSON does not use attributes; anything mapped with a @XmlAttribute annotation will
be marshalled as an element. By default, EclipseLink triggers both the attribute and
element events, thereby allowing either the mapped attribute or element to handle the
value.

You can override this behavior by using the JSON_ATTRIBUTE_PREFIX property to
specify an attribute prefix, as shown in Example 16–8. EclipseLink prepends the prefix
to the attribute name during marshal and will recognize it during unmarshal.

In the example below the number field is mapped as an attribute with the prefix @.

Example 16–8 Using a Prefix

jsonUnmarshaller.setProperty(UnmarshallerProperties.JSON_ATTRIBUTE_PREFIX, "@");
jsonMarshaller.setProperty(MarshallerProperties.JSON_ATTRIBUTE_PREFIX, "@") ;

{
 "phone" : {
 "area-code" : "613",
 "@number" : "1234567"
 }
}
You can also set the JSON_ATTRIBUTE_PREFIX property in the Map used when creating
the JAXBContext, as shown in Example 16–9. All marshallers and unmarshalers
created from the context will use the specified prefix.

Implementing the Solution

16-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

Example 16–9 Setting a Prefix in a Map

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextProperties.JSON_ATTRIBUTE_PREFIX, "@");

JAXBContext ctx = JAXBContext.newInstance(new Class[] { Phone.class },
properties);

16.2.5 Task 5: Supporting no Root Element
EclipseLink supports JSON documents without a root element. By default, if no
@XmlRootElement annotation exists, the marshalled JSON document will not have a
root element. You can override this behavior (that is omit the root element from the
JSON output, even if the @XmlRootElement is specified) by setting the JSON_INCLUDE_
ROOT property when marshalling a document, as shown in Example 16–10.

Example 16–10 Marshalling no Root Element Documents

marshaller.setProperty(MarshallerProperties.JSON_INCLUDE_ROOT, false);

When unmarshaling a document with no root elements, you should specify the class
to which to unmarshal, as shown in Example 16–11.

Example 16–11 Unmarshalling no Root Element Documents

unmarshaller.setProperty(UnmarshallerProperties.JSON_INCLUDE_ROOT, false);
JAXBElement<SearchResults> jaxbElement = unmarshaller.unmarshal(source,
SearchResults.class);

Note: If the document has no root element, you must specify the
class to unmarshal to.

16.2.6 Task 5 Using Namespaces
Because JSON does not use namespces, by default all namespaces and prefixes are
ignored when marshaling and unmarshaling. In some cases, this may be an issue if
you have multiple mappings with the same local name – there will be no way to
distinguish between the mappings.

With EclipseLink, you can supply a Map of namespace-to-prefix (or an instance of
NamespacePrefixMapper) to the Marshaller and Unmarshaller. The namespace prefix
will appear in the marshalled document prepended to the element name. EclipseLink
will recognize the prefix during an unmarshal operation and the resulting Java objects
will be placed in the proper namespaces.

Example 16–12 shows how to use the NAMESPACE_PREFIX_MAPPER property.

Example 16–12 Using Namesapces

Map<String, String> namespaces = new HashMap<String, String>();
namespaces.put("namespace1", "ns1");
namespaces.put("namespace2", "ns2");
jsonMarshaller.setProperty(MarshallerProperties.NAMESPACE_PREFIX_MAPPER,
namespaces);
jsonUnmarshaller.setProperty(UnmarshallerProperties.JSON_NAMESPACE_PREFIX_MAPPER,

Implementing the Solution

Converting Objects to and from JSON Documents 16-7

namespaces);

The MarshallerProperties.NAMESPACE_PREFIX_MAPPER applies to both XML and
JSON; UnmarshallerProperties.JSON_NAMESPACE_PREFIX_MAPPER is a JSON-only
property. XML unmarshalling can obtain the namespace information directly from the
document.

When JSON is marshalled, the namespaces will be given the prefix from the Map
separated by a dot (.):

{
 "ns1.employee : {
 "ns2.id" : 123
 }
}

The dot separator can be set to any custom character by using the JSON_NAMESPACE_
SEPARATOR property. Here, a colon (:) will be used instead:

jsonMarshaller.setProperty(MarshallerProperties.JSON_NAMESPACE_SEPARATOR, ':');
jsonUnmarshaller.setProperty(UnmarshallerProperties.JSON_NAMESPACE_SEPARATOR,
':');

16.2.7 Task 6: Using Collections
By default, when marshalling to JSON, EclipseLink marshals empty collections as [],
as shown in Example 16–13.

Example 16–13 Marshalling Empty Collections

{
 "phone" : {
 "myList" : []
 }
}

Use the JSON_MARSHAL_EMPTY_COLLECTIONS property to override this behavior (so that
empty collections are not marshalled at all).

jsonMarshaller.setProperty(MarshallerProperties.JSON_MARSHAL_EMPTY_COLLECTIONS,
Boolean.FALSE) ;

{
 "phone" : {
 }
}

16.2.8 Task 7: Mapping Root-Level Collections
If you use the @XmlRootElement(name="root") annotation to specify a root level, the
JSON document can be marshaled as:

marshaller.marshal(myListOfRoots, System.out);

Implementing the Solution

16-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

[{
 "root" : {
 "name" : "aaa"
 }
}, {
 "root" : {
 "name" : "bbb"
 }
}]

Because the root element is present in the document, you can unmarsal it using:

unmarshaller.unmarshal(json);

If the class does not have an @XmlRootElement (or if JSON_INCLUDE_ROOT = false), the
marshal would produce:

[{
 "name":"aaa"
}, {
 "name":"bbb"
}]

Because the root element is not present, you must indicate the class to unmarshal to:

unmarshaller.unmarshal(json, Root.class);

16.2.9 Task 8: Wrapping Text Values
JAXB supports one or more @XmlAttributes on @XmlValue classes, as shown in
Example 16–14.

Example 16–14 Using @XmlAttributes

public class Phone {

 @XmlValue
 public String number;

 @XmlAttribute
 public String areaCode;

 public Phone() {
 this("", "");
 }

 public Phone(String num, String code) {
 this.number = num;
 this.areaCode = code;
 }

}

To produce a valid JSON document, EclipseLink uses a value wrapper, as shown in
Example 16–15.

Example 16–15 Using a value Wrapper

{
 "employee" : {

Implementing the Solution

Converting Objects to and from JSON Documents 16-9

 "name" : "Bob Smith",
 "mainPhone" : {
 "areaCode" : "613",
 "value" : "555-5555"
 },
 "otherPhones" : [{
 "areaCode" : "613",
 "value" : "123-1234"
 }, {
 "areaCode" : "613",
 "value" : "345-3456"
 }]
 }
}

By default, EclipseLink uses value as the name of the wrapper. Use the JSON_VALUE_
WRAPPER property to customize the name of the value wrapper, as shown in
Example 16–16.

Example 16–16 Customizing the Name of the Value Wrapper

jsonMarshaller.setProperty(MarshallerProperties.JSON_VALUE_WRAPPER, "$");
jsonUnmarshaller.setProperty(UnmarshallerProperties.JSON_VALUE_WRAPPER, "$");

Would produce:

{
 "employee" : {
 "name" : "Bob Smith",
 "mainPhone" : {
 "areaCode" : "613",
 "$" : "555-5555"
 },
 "otherPhones" : [{
 "areaCode" : "613",
 "$" : "123-1234"
 }, {
 "areaCode" : "613",
 "$" : "345-3456"
 }]
 }
}

You can also specify the JSON_VALUE_WRAPPER property in the Map of the properties
used when you create the JAXBContext, as shown in Example 16–17.

Example 16–17 Using a Map

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(JAXBContextProperties.JSON_VALUE_WRAPPER, "$");

JAXBContext ctx = JAXBContext.newInstance(new Class[] { Employee.class },
properties);
Marshaller jsonMarshaller = ctx.createMarshaller();
Unmarshaller jsonUnmarshaller = ctx.createUnmarshaller();

When specified in a Map, the Marshallers and Unmarshallers created from the
JAXBContent will automatically use the specified value wrapper.

Additional Resources

16-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

16.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Developing JAXB Applications Using EclipseLink MOXy

17

Testing JPA Outside a Container 17-1

17Testing JPA Outside a Container

This chapter describes how, with EclipseLink, you can use the persistence unit JAR file
to test your application outside the container (for instance, in applications for the Java
Platform, Standard Edition (Java SE platform)).

This chapter includes the following sections:

■ Section 17.1, "Understanding JPA Deployment"

■ Section 17.2, "Configuring the persistence.xml File"

■ Section 17.3, "Using a Property Map"

■ Section 17.4, "Using Weaving"

■ Section 17.5, "Additional Resources"

Use Case
Users need to use EclipseLink both inside and outside the container (such as
applications for the Java SE platform).

Solution
This solution highlights the primary differences when using EclipseLink outside a
container.

Components
■ EclipseLink 2.4 or later.

■ An application server (such as Oracle WebLogic Server, IBM WebSphere, or
Glassfish)

17.1 Understanding JPA Deployment
When deploying outside of a container, use the createEntityManagerFactory method
of the javax.persistence.Persistence class to create an entity manager factory. This
method accepts a Map of properties and the name of the persistence unit. The
properties that you pass to this method are combined with those specified in the
persistence.xml file. They may be additional properties or they may override the
value of a property that you specified previously in the persistence.xml file.

Tip: This is a convenient way to set properties obtained from
program input, such as the command line.

Configuring the persistence.xml File

17-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

17.1.1 Using EntityManager
The EntityManager is the access point for persisting an entity bean, loading it from the
database. Usually, the Java Persistence API (JPA) container manages interaction with
the data source. However, if you are using a JTA data source for your JPA persistence
unit, you can access the JDBC connection from the Java EE program container’s data
source. Because the managed data source is unavailable, you can pass properties to
createEntityManagerFactory to change the transaction type from JTA to RESOURCE_
LOCAL and to define JDBC connection information, as shown here:

Example 17–1 Changing transaction type and defining connection information

import static org.eclipse.persistence.jpa.config.PersistenceUnitProperties.*;

...

Map properties = new HashMap();

// Ensure RESOURCE_LOCAL transactions is used.
properties.put(TRANSACTION_TYPE,
 PersistenceUnitTransactionType.RESOURCE_LOCAL.name());

// Configure the internal EclipseLink connection pool
properties.put(JDBC_DRIVER, "oracle.jdbc.OracleDriver");
properties.put(JDBC_URL, "jdbc:oracle:thin:@localhost:1521:ORCL");
properties.put(JDBC_USER, "user-name");
properties.put(JDBC_PASSWORD, "password");
properties.put(JDBC_READ_CONNECTIONS_MIN, "1");
properties.put(JDBC_WRITE_CONNECTIONS_MIN, "1");

// Configure logging. FINE ensures all SQL is shown
properties.put(LOGGING_LEVEL, "FINE");

// Ensure that no server-platform is configured
properties.put(TARGET_SERVER, TargetServer.None);

You also have access to the EclipseLink extensions to the EntityManager.

17.2 Configuring the persistence.xml File
The persistence.xml file is the deployment descriptor file for persistence using JPA. It
specifies the persistence units and declares the managed persistence classes, the
object/relation mapping, and the database connection details.

17.2.1 Main Tasks
To configure the persistence.xml file, the following tasks:

■ Task 1: Use the persistence.xml File

■ Task 2: Instantiate EntityManagerFactory

17.2.1.1 Task 1: Use the persistence.xml File
Example 17–2 illustrates a persistence.xml file for a Java SE platform configuration
(that is, outside a container).

Example 17–2 A persistence.xml File Specifying the Java SE Platform Configuration

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

Using a Property Map

Testing JPA Outside a Container 17-3

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">
 <persistence-unit name="my-app" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.jdbc.driver"
value="oracle.jdbc.OracleDriver"/>
 <property name="javax.persistence.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:orcl"/>
 <property name="javax.persistence.jdbc.user" value="scott"/>
 <property name="javax.persistence.jdbc.password" value="tiger"/>
 </properties>
 </persistence-unit>
</persistence>

17.2.1.2 Task 2: Instantiate EntityManagerFactory
An EntityManagerFactory provides an efficient way to construct EntityManager
instances for a database. You can instantiate the EntityManagerFactory for the
application (illustrated in Example 17–2) by using:

Persistence.createEntityManagerFactory("my-app");

17.3 Using a Property Map
You can use a property map to override the default persistence properties and use
container deployment.

17.3.1 Main Tasks
To use a property map, perform the following steps:

■ Task 1: Configure the persistence.xml File

■ Task 2: Configure the Bootstrapping API

■ Task 3: Instantiate the EntityManagerFactory

17.3.1.1 Task 1: Configure the persistence.xml File
Example 17–3 illustrates a persistence.xml file that uses container deployment.

Example 17–3 A persistence.xml File Specifying the Java SE Platform Configuration, for
use with a Property Map

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
version="1.0">
 <persistence-unit name="employee" transaction-type="RESOURCE_LOCAL">
 <non-jta-data-source>jdbc/MyDS</non-jta-data-source>
 </persistence-unit>
</persistence>

Note: There is no data source available when tested outside a
container.

Using Weaving

17-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

17.3.1.2 Task 2: Configure the Bootstrapping API
To test the persistence unit shown in Example 17–3 outside the container, you must use
the Java SE platform bootstrapping API. Example 17–4 contains sample code that
illustrates this bootstrapping.

Example 17–4 Sample Configuration

import static org.eclipse.persistence.config.PersistenceUnitProperties.*;

...

 Map properties = new HashMap();

 // Ensure RESOURCE_LOCAL transactions is used.
 properties.put(TRANSACTION_TYPE,
 PersistenceUnitTransactionType.RESOURCE_LOCAL.name());

 // Configure the internal connection pool
 properties.put(JDBC_DRIVER, "oracle.jdbc.OracleDriver");
 properties.put(JDBC_URL, "jdbc:oracle:thin:@localhost:1521:ORCL");
 properties.put(JDBC_USER, "scott");
 properties.put(JDBC_PASSWORD, "tiger");

 // Configure logging. FINE ensures all SQL is shown
 properties.put(LOGGING_LEVEL, "FINE");
 properties.put(LOGGING_TIMESTAMP, "false");
 properties.put(LOGGING_THREAD, "false");
 properties.put(LOGGING_SESSION, "false");

 // Ensure that no server-platform is configured
 properties.put(TARGET_SERVER, TargetServer.None);

17.3.1.3 Task 3: Instantiate the EntityManagerFactory
An EntityManagerFactory provides an efficient way to construct EntityManager
instances for a database. You can instantiate the EntityManagerFactory for the
application (illustrated in Example 17–4) by using:

Persistence.
createEntityManagerFactory("unitName", "properties");

17.4 Using Weaving
Weaving is a technique of manipulating the byte-code of compiled Java classes.

EclipseLink uses weaving to enhance Plain Old Java Object (POJO) classes and JPA
entities with many features such lazy loading, change tracking, fetch groups, and
internal optimizations.

Additional Resources

Testing JPA Outside a Container 17-5

17.4.1 How to Disable or Enable Weaving in a Java SE Environment
In a Java SE environment weaving is not enabled by default. This can affect LAZY
One-To-One, Many-To-One and Basic relationships. It also has a major effect on
performance and disable attribute change tracking.

To enable weaving in Java SE, the EclipseLink agent must be used when starting the
Java VM.

java -javaagent:eclipselink.jar

Spring could also be used to allow JPA weaving in Java SE. See
http://wiki.eclipse.org/EclipseLink/Examples/JPA/JPASpring for
more information.

Static weaving can also be used, by including the following persistence property,

<property name="eclipselink.weaving" value="static"/>

See "weaving" in Java Persistence API (JPA) Extensions Reference for EclipseLink for more
information.

17.4.2 How to Disable or Enable Weaving in a Java EE Environment
In a Java EE environment weaving is enabled by default (on any Java EE 5 or greater
fully compliant application server, such as Weblogic, Webspehere, and Glassfish. JBoss
does not allow weaving so you must use static weaving or Spring).

To disable weaving the weaving persistence unit property can be used,

<property name="eclipselink.weaving" value="false">

For more information on weaving see "weaving" in Java Persistence API (JPA) Extensions
Reference for EclipseLink.

17.5 Additional Resources
For additional information about JPA deployment, see the following sections of the
JPA Specification (http://jcp.org/en/jsr/detail?id=317):

■ Section 7.2, "Bootstrapping in Java SE Environments"

■ Chapter 7, "Container and Provider Contracts for Deployment and Bootstrapping"

17.5.1 Related Javadoc
For more information, see the following APIs in Java API Reference for EclipseLink:

■ PersistenceUnitProperties class

■ EntityManagerFactory interface

■ JpaEntityManager interface

Additional Resources

17-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

18

Enhancing Performance 18-1

18Enhancing Performance

This chapter describes EclipseLink performance features, provided by EclipseLink,
and how to monitor and optimize EclipseLink-enabled applications.

This chapter includes the following sections:

■ Section 18.1, "Performance Features"

■ Section 18.2, "Monitoring and Optimizing EclipseLink-Enabled Applications"

Use Case
Users want to improve the performance of their EclipseLink-enabled application.

Solution
EclipseLink provides many configuration options that can improve performance, such
as caching. In addition, there are ways to improve the performance of specific
functions, such as using Join Fetching for queries.

Components
■ EclipseLink 2.4 or later.

Sample
See the following EclipseLink samples for related information:

■ http://wiki.eclipse.org/EclipseLink/Performance

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/Performance

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/Monitoring

18.1 Performance Features
EclipseLink includes a number of performance features that make it the industry's best
performing and most scalable JPA implementation. These features include:

■ Object Caching

■ Querying

■ Mapping

■ Transactions

■ Database

■ Automated Tuning

Performance Features

18-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Tools

18.1.1 Object Caching
The EclipseLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. The cache helps improve performance
by holding recently read or written objects and accessing them in-memory to minimize
database access.

Caching allows you to:

■ Set how long the cache lives and the time of day, a process called cache
invalidation.

■ Configure cache types (Weak, Soft, SoftCache, HardCache, Full) on a per entity
basis.

■ Configure cache size on a per entity basis.

■ Coordinate clustered caches.

18.1.1.1 Caching Annotations
EclipseLink defines these entity caching annotations:

■ @Cache

■ @TimeOfDay

■ @ExistenceChecking

EclipseLink also provides a number of persistence unit properties that you can specify
to configure the EclipseLink cache (see "Persistence Property Extensions Reference" in
Java Persistence API (JPA) Extensions Reference for EclipseLink). These properties might
compliment or provide an alternative to the usage of annotations.

18.1.1.2 Using the @Cache Annotation
EclipseLink uses identity maps to cache objects in order to enhance performance, as
well as maintain object identity. You can control the cache and its behavior by using
the @Cache annotation in your entity classes. Example 18–1 shows how to implement
this annotation.

Example 18–1 Using the @Cache Annotation

@Entity
 @Table(name="EMPLOYEE")
 @Cache (
 type=CacheType.WEAK,
 isolated=false,
 expiry=600000,
 alwaysRefresh=true,
 disableHits=true,
 coordinationType=INVALIDATE_CHANGED_OBJECTS
)
 public class Employee implements Serializable {
 ...
 }

For more information about object caching and using the @Cache annotation, see
"@Cache" in the Java Persistence API (JPA) Extensions Reference for EclipseLink.

Performance Features

Enhancing Performance 18-3

18.1.2 Querying
The scope of a query, the amount of data returned, and how that data is returned can
all affect the performance of a EclipseLink-enabled application. EclipseLink query
mechanisms enhance query performance by providing these features:

■ Read-only Queries

■ Join Fetching

■ Batch Reading

■ Fetch Size

■ Pagination

■ Cache Usage

This section describes how these features improve performance.

18.1.2.1 Read-only Queries
EclipseLink uses the eclipselink.read-only hint, QueryHint (@QueryHint) to retrieve
read-only results back from a query. On nontransactional read operations, where the
requested entity types are stored in the shared cache, you can request that the shared
instance be returned instead of a detached copy.

For more information about read-only queries, see the documentation for the
read-only hint in Java Persistence API (JPA) Extensions Reference for EclipseLink.

18.1.2.2 Join Fetching
Join Fetching enhances performance by enabling the joining and reading of the related
objects in the same query as the source object. Enable Join Fetching by using the
@JoinFetch annotation, as shown in Example 18–2. This example shows how the
@JoinFetch annotation specifies the Employee field managedEmployees.

Example 18–2 Enabling JoinFetching

@Entity
 public class Employee implements Serializable {
 ...
 @OneToMany(cascade=ALL, mappedBy="owner")
 @JoinFetch(value=OUTER)
 public Collection<Employee> getManagedEmployees() {
 return managedEmployees;
 }
 ...
 }

For more details on Join Fetching, see "@JoinFetch" in Java Persistence API (JPA)
Extensions Reference for EclipseLink.

18.1.2.3 Batch Reading
The eclipselink.batch hint supplies EclipseLink with batching information so
subsequent queries of related objects can be optimized in batches instead of being
retrieved one-by-one or in one large joined read. Batch reading is more efficient than
joining because it avoids reading duplicate data. Batching is only allowed on queries
that have a single object in their select clause.

Performance Features

18-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

18.1.2.4 Fetch Size
If you have large queries that return a large number of objects you can improve
performance by reducing the number database hits required to satisfy the selection
criteria. To do this, use the The eclipselink.jdbc.fetch-size hint. This hint specifies
the number of rows that should be fetched from the database when more rows are
required (depending on the JDBC driver support level). Most JDBC drivers default to a
fetch size of 10, so if you are reading 1000 objects, increasing the fetch size to 256 can
significantly reduce the time required to fetch the query's results. The optimal fetch
size is not always obvious. Usually, a fetch size of one half or one quarter of the total
expected result size is optimal. Note that if you are unsure of the result set size,
incorrectly setting a fetch size too large or too small can decrease performance.

18.1.2.5 Pagination
Slow paging can result in significant application overhead; however, EclipseLink
includes a variety of solutions for improving paging results; for example, you can:

■ Configure the first and maximum number of rows to retrieve when executing a
query.

■ Perform a query on the database for all of the ID values that match the criteria and
then use these values to retrieve specific sets.

■ Configure EclipseLink to return a ScrollableCursor object from a query by using
query hints. This returns a database cursor on the query's result set and allows the
client to scroll through the results page by page.

For details on improving paging performance, see "How to use EclipseLink
Pagination" in the EclipseLink online documentation, at:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Pagination#How_
to_use_EclipseLink_Pagination

18.1.2.6 Cache Usage
EclipseLink uses a shared cache mechanism that is scoped to the entire persistence
unit. When operations are completed in a particular persistence context, the results are
merged back into the shared cache so that other persistence contexts can use them.
This happens regardless of whether the entity manager and persistence context are
created in Java SE or Java EE. Any entity persisted or removed using the entity
manager will always be kept consistent with the cache.

You can specify how the query should interact with the EclipseLink cache by using the
eclipselink.cache-usage hint. For more information, see "cache usage" in tJava
Persistence API (JPA) Extensions Reference for EclipseLink.

18.1.3 Mapping
Mapping performance is enhanced by these features:

■ Read-Only Objects

■ Weaving

This section describes these features.

18.1.3.1 Read-Only Objects
When you declare a class read-only, clones of that class are neither created nor merged
greatly improving performance. You can declare a class as read-only within the context
of a unit of work by using the addReadOnlyClass() method.

Performance Features

Enhancing Performance 18-5

■ To configure a read-only class for a single unit of work, specify that class as the
argument to addReadOnlyClass():

myUnitofWork.addReadOnlyClass(B.class);

■ To configure multiple classes as read-only, add them to a vector and specify that
vector as the argument to addReadOnlyClass():

myUnitOfWork.addReadOnlyClasses(myVectorOfClasses);

For more information about using read-only objects to enhance performance, see
"@ReadOnly" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

18.1.3.2 Weaving
Weaving is a technique of manipulating the byte-code of compiled Java classes. The
EclipseLink JPA persistence provider uses weaving to enhance both JPA entities and
Plain Old Java Object (POJO) classes for such things as lazy loading, change tracking,
fetch groups, and internal optimizations.

Weaving can be performed either dynamically at runtime, when entities are loaded, or
statically at compile time by post-processing the entity .class files. By default,
EclipseLink uses dynamic weaving whenever possible. This includes inside an Java EE
5/6 application server and in Java SE when the EclipseLink agent is configured.
Dynamic weaving is recommended as it is easy to configure and does not require any
changes to a project's build process

For details on how to use weaving to enhance application performance, see "weaving"
in Java Persistence API (JPA) Extensions Reference for EclipseLink.

18.1.4 Transactions
To optimize performance during data transactions, use change tracking,. Change
tracking allows you to tune the way EclipseLink detects changes that occur during a
transaction. You should choose the strategy based on the usage and data modification
patterns of the entity type as different types may have different access patterns and
hence different settings, and so on.

Enable change tracking by using the @ChangeTracking annotation, as shown in
Example 18–3.

Example 18–3 Enabling Change Tracking

@Entity
@Table(name="EMPLOYEE")
@ChangeTracking(OBJECT) (
public class Employee implements Serializable {
 ...
}

For more details on change tracking, see "@ChangeTracking" in Java Persistence API
(JPA) Extensions Reference for EclipseLink.

18.1.5 Database
Database performance features in EclipseLink include:

■ Connection Pooling

■ Parameterized SQL and Statement Caching

Performance Features

18-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Batch Writing

■ Serialized Object Policy

This section describes these features.

18.1.5.1 Connection Pooling
Establishing a connection to a data source can be time-consuming, so reusing such
connections in a connection pool can improve performance. EclipseLink uses
connection pools to manage and share the connections used by server and client
sessions. This feature reduces the number of connections required and allows your
application to support many clients.

By default, EclipseLink sessions use internal connection pools. These pools allow you
to optimize the creation of read connections for applications that read data only to
display it and only infrequently modify data. The also allow you to use Workbench to
configure the default (write) and read connection pools and to create additional
connection pools for object identity or any other purpose.

In addition to internal connection pools, you can also configure EclipseLink to use any
of these types of connection pools:

■ External connection pools; you must use this type of connection pool to integrate
with external transaction controller (JTA).

■ Default (write) and read connection pools;

■ Sequence connection pools; Use these types of pools when your application
requires table sequencing (that is, non-native sequencing) and you are using an
external transaction controller.

■ Application-specific connection pools; These are connection pools that you can
create and use for any application purpose, provided you are using internal
EclipseLink connection pools in a session.

For more information about using connection pools with EclipseLink, see the
following topics in EclipseLink Concepts:

■ "Understanding Connections"

■ "Understanding Connection Pools"

18.1.5.2 Parameterized SQL and Statement Caching
Parameterized SQL can prevent the overall length of an SQL query from exceeding the
statement length limit that your JDBC driver or database server imposes. Using
parameterized SQL along with prepared statement caching can improve performance
by reducing the number of times the database SQL engine parses and prepares SQL
for a frequently called query

By default, EclipseLink enables parameterized SQL but not prepared statement
caching. You should enable statement caching either in EclipseLink when using an
internal connection pool or in the data source when using an external connection pool
and want to specify a statement cache size appropriate for your application.

To enable parameterized SQL, add this line to the persistence.xml file that is in the
same path as your domain classes:

<property name="eclipselink.jdbc.bind-parameters" value="true"/>

To disable parameterized SQL, change value= to false.

Performance Features

Enhancing Performance 18-7

For more information about using parameterized SQL and statement caching, see
"jdbc.bind-parameters" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

18.1.5.3 Batch Writing
Heterogeneous batch writing is an optimization that allows EclipseLink to send
multiple heterogeneous dynamic SQL statements to the database to be executed as a
single batch. Batch writing is best used for applications that perform multiples writes
in each transaction.

To configure batch writing, include the eclipselink.jdbc.batch-writing and
eclipselink.jdbc.batch-writing.size properties in the persistence.xml file. The
following example enables Oracle’s native batch writing feature that is available with
the Oracle JDBC driver and configures the batch size to 150 statements:

<property name="eclipselink.jdbc.batch-writing" value="Oracle-JDBC"/>
<property name="eclipselink.jdbc.batch-writing.size" value="150"/>

Different batch options are supported and custom batch implementations can also be
used. For a detailed reference of the batch writing properties, see the batch-writing
and batch-writing.size documentation in Java Persistence API (JPA) Extensions
Reference for EclipseLink.

18.1.5.4 Serialized Object Policy
Serialized object policy is an optimization that allows EclipseLink to write out the
whole entity object with its privately owned (and nested privately owned) entities and
element collections into an additional field in the database. Serialized object policy
optimizes fetching from the database, provides faster database reads, and reduces
middle tier CPU and network access in certain situations.

Serialized object policy is best for read-only or read-mostly applications and should
only be used for entities that load all their dependent entities or element collections.
When using serialized object policy, database write operations (insert and update) are
slower and queries for objects without private-owned data are slower. See "A Simple
Serialized Object Policy Example" on page 18-10 that demonstrates when serialized
object policy is best used to increase performance.

Consider using serialized object policy only for complex objects with numerous
aggregation as characterized by:

■ Multiple database rows mapped to a single Java object

■ When the object is read from the database all these rows are read at once (no
indirection, or all indirection always triggered). There may be un-triggered
indirection for other fields that are not included in the serialized object policy field

■ If versionning is used, then updating or deleting any mapped row (or inserting of
a new one) should result in incrementing of the object's version

■ Object deletion causes all the rows to be deleted.

■ Irregular structure of the aggregation makes it less possible to use other common
optimizations (such as join fetching and batch reading).

Serialized Object Policy Configuration
Serialized object policy is enabled by using the @SerializedObject annotation on an
entity or mapped superclass and passing in an implementation of the
SerializedObjectPolicy interface. You must provide an implementation of this
interface; there is no default implementation. The annotations also includes a field to

Performance Features

18-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

define the column name for the object in the database. The default column name is
SOP.

Example 18–4 enables serialized object policy, overrides the default column name, and
sets optimistic locking to cascade, which can increase performance by keeping the
serialized object policy field in the database up-to-date.

Note: If serialized object policy is set on an entity, then policies with
the same fields are set on all inheriting entities.

Example 18–4 Enabling Serialized Object Policy Using Annotations

@Entity
@SerializedObject(MySerializedObjectPolicy.class)
@OptimisticLocking(cascade = true)
public class Employee implements Serializable {
...

@Entity
@SerializedObject(MySerializedObjectPolicy.class, column = @Column(name="ADDR_
SOP"))
@OptimisticLocking(cascade = true)
public class Address implements Serializable {
...

Example 18–5 enables serialized object policy in the eclipselink-orm.xml file

Example 18–5 Enabling Serialized Object Policy Using eclipselink-orm.xml

<entity class="Employee">
 <optimistic-locking cascade="true">
 <serialized-object class="MySerializedObjectPolicy">
</entity>

<entity class="Address">
 <optimistic-locking cascade="true">
 <serialized-object class="MySerializedObjectPolicy">
 <column name="ADDR_SOP"/>
 </serialized-object>
</entity>

Example 18–6 enables serialized object policy in a customizer (either session or
descriptor):

Example 18–6 Enabling Serialized Object Policy in a Customizer

if (descriptor.hasSerializedObjectPolicy()) {

 MySerializedObjectPolicy sop = (MySerializedObjectPolicy)descriptor.
 getSerializedObjectPolicy();

 // to compare pk cached in SOP Object with pk read directly from the row from
 //pk field(s) (false by default):

 sop.setShouldVerifyPrimaryKey(true);

 // to NOT compare version cached in SOP Object with version read directly from
 // the row from version field (true by default):

Performance Features

Enhancing Performance 18-9

 sop.setShouldVerifyVersion(false);

 // to define recoverable SOP (false by default):

 sop.setIsRecoverable(true);
}

To use a descriptor customizer, define the class and specify it using the @Customizer
annotation:

public class MyDescriptorCustomizer implements
 org.eclipse.persistence.config.DescriptorCustomizer {
 public void customize(ClassDescriptor descriptor) throws Exception
 {
 ...
 }
}
...
@Customizer(MyDescriptorCustomizer.class)
public class Employee implements Serializable {...

To use a session customizer to reach all descriptors at once, specify it in a persistence
unit property:

public class MySessionCustomizer implements
 org.eclipse.persistence.config.SessionCustomizer {
 public void customize(Session session) throws Exception
 {
 for (ClassDescriptor descriptor : session.getDescriptors().values()) {
 ...
 }
 }
}

<property name="eclipselink.session.customizer" value="MySessionCustomizer"/>

Read queries (including find and refresh) automatically use a serialized object if
serialized object policy is enabled. If the serialized object column contains null, or an
obsolete version of the object, then a query using a serialized object policy would
either throw an exception or, if all other fields have been read as well, build the object
using these fields (exactly as in the case where a serialized object policy is not used).

To disable querying the serialized object, set the SERIALIZED_OBJECT property to false
as part of a query hint. For example:

Query query = em.createQuery("SELECT e FROM Employee e")
 .setHint(QueryHints.SERIALIZED_OBJECT, "false");

The following example demonstrates disabling searching for a serialized object:

Map hints = new HashMap();
hints.put("eclipselink.serialized-object", "false");
Employee emp = em.find(Employee.class, id, hints);

Applications that use serialized object policy should also consider using the result set
access optimization. Use the optimization when querying to avoid the costly reading
of the serialized object policy field (which can be large) if it is already cached and the
query is not a refresh query. The optimization ensures that only the primary key is
retrieved from the result set and only gets additional values if the cached object cannot
be used. To enable the result set access optimization, set the

Performance Features

18-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

eclipselink.jdbc.result-set-access-optimization persistent unit property to
true in the persistence.xml file. For example:

<property name="eclipselink.jdbc.result-set-access-optimization" value="true"/>

A Simple Serialized Object Policy Example
Consider the following example object model:

@Entity(name="SOP_PartOrWhole")
@Table(name="SOP_PART_OR_WHOLE")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@Index(columnNames={"LEFTPART_ID", "RIGHTPART_ID"})
public abstract class PartOrWhole implements Serializable {
 @Id
 @GeneratedValue(strategy=GenerationType.TABLE)
 public long id;

 protected String description = "";

 @OneToOne(cascade=CascadeType.ALL, orphanRemoval=true)
 protected Part leftPart;
 @OneToOne(cascade=CascadeType.ALL, orphanRemoval=true)
 protected Part rightPart;
}

@Entity(name="SOP_Whole")
@DiscriminatorValue("W")
@SerializedObject(MySerializedObjectPolicy.class)
@NamedQueries({
 @NamedQuery(name="findWhole", query="Select w from SOP_Whole w where w.id =
 :id", hints= @QueryHint(name="eclipselink.serialized-object", value="false")),
 @NamedQuery(name="findWholeSOP", query="Select w from SOP_Whole w where w.id =
 :id"),
})
public class Whole extends PartOrWhole {
}

@Entity(name="SOP_Part")
@DiscriminatorValue("P")
public class Part extends PartOrWhole {
}

The above data model allows the construction of a Whole object with any number of
(nested) Part objects. For example:

■ 1 level – A Whole object contains left and right Part objects (3 objects all together)

■ 2 levels – A Whole object contains left and right Part objects; each of the Part
objects has left and right Part objects (7 objects all together)

■ 3 levels – A Whole object contains left and right Part object; each of the Part
objects has a left and right Part objects; which each have a left and right Part
objects (15 objects all together)

■ n levels – (2n+1 - 1 objects all together)

Performance for the above data model increases as the number of levels in the model
increases. For example:

■ 1 level – performance is slower than without serialized object policy.

Monitoring and Optimizing EclipseLink-Enabled Applications

Enhancing Performance 18-11

■ 2 levels – performance is only slightly faster than without serialized object policy.

■ 5 levels – performance is 7 times faster than without serialized object policy.

■ 10 levels – performance is more than 25 times faster than without serialized object
policy.

18.1.6 Automated Tuning
Automated tuning is an optimization that allows applications to automatically tune
JPA and session configuration for a specific purpose. Multiple configuration options
can be configured by a single tuner and different configurations can be specified
before and after application deployment and after application metadata has been
processed but before connecting the session. Automated tuning simplifies
configuration and allows a dynamic single tuning option.

Tuners are created by implementing the
org.eclipse.persistence.tools.tuning.SessionTuner interface. Two tuner
implementations are provided and custom tuners can be created as required:

■ Standard (StandardTuner) – The standard tuner is enabled by default and does not
change any of the default configuration settings.

■ Safe (SafeModeTuner) – The safe tuner configures the persistence unit for
debugging. It disables caching and several performance optimizations to provide a
simplified debugging and development configuration:

WEAVING_INTERNAL = false
WEAVING_CHANGE_TRACKING = false
CACHE_SHARED_DEFAULT = false
JDBC_BIND_PARAMETERS = false
ORM_SCHEMA_VALIDATION = true
TEMPORAL_MUTABLE = true
ORDER_UPDATES = true

To enable a tuner, specify a predefined tuner or enter the fully qualified name of a
SessionTuner implementation as the value of the eclipselink.tuning property in the
persistence.xml file. The following example enables the safe tuner.

<property name="eclipselink.tuning" value="Safe"/>

For a detailed reference of the tuning property, see Java Persistence API (JPA) Extensions
Reference for EclipseLink.

18.1.7 Tools
EclipseLink provides monitoring and optimization tools, as described in Section 18.2,
"Monitoring and Optimizing EclipseLink-Enabled Applications".

18.2 Monitoring and Optimizing EclipseLink-Enabled Applications
The most important challenge to performance tuning is knowing what to optimize. To
improve the performance of your application, identify the areas of your application
that do not operate at peak efficiency. This section contains information about these
subjects:

■ Performance Optimization Recommendations and Tips

■ Task 1: Measure EclipseLink Performance with the EclipseLink Profiler

■ Task 2: Measure EclipseLink Performance in the Server Environment

Monitoring and Optimizing EclipseLink-Enabled Applications

18-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Task 3: Measure Fetch Group Field Usage

■ Task 4: Identify Sources of Application Performance Problems

■ Task 5: Modify Poorly-Performing Application Components

■ Task 6: Measure Performance Again

18.2.1 Performance Optimization Recommendations and Tips
EclipseLink provides a diverse set of features to measure and optimize application
performance. You can enable or disable most features in the descriptors or session,
making any resulting performance gains global.Performance considerations are
present at every step of the development cycle. Although this implies an awareness of
performance issues in your design and implementation, it does not mean that you
should expect to achieve the best possible performance in your first pass.

For example, if optimization complicates the design, leave it until the final
development phase. You should still plan for these optimizations from your first
iteration, to make them easier to integrate later.

The most important concept associated with tuning your EclipseLink application is the
idea of an iterative approach. The most effective way to tune your application is to do
the following tasks:

■ Task 1: Measure EclipseLink Performance with the EclipseLink Profiler.

■ Task 2: Measure EclipseLink Performance in the Server Environment

■ Task 3: Measure Fetch Group Field Usage

■ Task 4: Identify Sources of Application Performance Problems.

■ Task 5: Modify Poorly-Performing Application Components.

■ Task 6: Measure Performance Again.

18.2.2 Task 1: Measure EclipseLink Performance with the EclipseLink Profiler
The EclipseLink performance profiler helps you identify performance problems by
logging performance statistics for every executed query in a given session. Use the
performance profiler to monitor a single query, or simple single-threaded use case.

The EclipseLink performance profiler logs the following information to the log file.

Table 18–1 Information Logged by the EclipseLink Performance Profiler

Information Logged Description

Query Class Query class name.

Domain Class Domain class name.

Total Time Total execution time of the query, including any nested queries
(in milliseconds).

Local Time Execution time of the query, excluding any nested queries (in
milliseconds).

Number of Objects The total number of objects affected.

Number of Objects Handled
per Second

How many objects were handled per second of transaction time.

Logging the amount of time spent printing logging messages (in
milliseconds).

Monitoring and Optimizing EclipseLink-Enabled Applications

Enhancing Performance 18-13

18.2.2.1 Enabling the EclipseLink Profiler
The EclipseLink performance profiler is an instance of
org.eclipse.persistence.tools.profiler.PerformanceProfiler class. To enable it,
add the following line to the persistence.xml file:

<property name="eclipselink.profiler" value="PerformanceProfiler.logProfiler"/>

In addition to enabling the EclipseLink profiler, The PerformanceProfiler class public
API also provides the functionality described in Table 18–2:

Table 18–2 Additional PerformanceProfiler Functionality

To... Use...

Disable the profiler dontLogProfile

Organize the profiler log into a summary of all the
individual operation profiles including operation statistics
like the shortest time of all the operations that were profiled,
the total time of all the operations, the number of objects
returned by profiled queries, and the total time that was
spent in each kind of operation that was profiled

logProfileSummary

Organize the profiler log into a summary of all the
individual operation profiles by query

logProfileSummaryByQuery

Organize the profiler log into a summary of all the
individual operation profiles by class.

logProfileSummaryByClass

18.2.2.2 Accessing and Interpreting Profiler Results
You can see profiling results by opening the profile log in a text reader, such as
Notepad.

The profiler output file indicates the health of a EclipseLink-enabled application.

Example 18–7 shows an sample of the EclipseLink profiler output.

Example 18–7 Performance Profiler Output

Begin Profile of{
ReadAllQuery(com.demos.employee.domain.Employee)

SQL Prepare The amount of time spent preparing the SQL script (in
milliseconds).

SQL Execute The amount of time spent executing the SQL script (in
milliseconds).

Row Fetch The amount of time spent fetching rows from the database (in
milliseconds)

Cache The amount of time spent searching or updating the object cache
(in milliseconds)

Object Build The amount of time spent building the domain object (in
milliseconds)

query Prepare the amount of time spent to prepare the query prior to execution
(in milliseconds)

SQL Generation the amount of time spent to generate the SQL script before it is
sent to the database (in milliseconds)

Table 18–1 (Cont.) Information Logged by the EclipseLink Performance Profiler

Information Logged Description

Monitoring and Optimizing EclipseLink-Enabled Applications

18-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

Profile(ReadAllQuery,# of obj=12, time=139923809,sql execute=21723809,
prepare=49523809, row fetch=39023809, time/obj=11623809,obj/sec=8)
} End Profile

Example 18–7 shows the following information about the query:

■ ReadAllQuery(com.demos.employee.domain.Employee): specific query profiled,
and its arguments.

■ Profile(ReadAllQuery: start of the profile and the type of query.

■ # of obj=12: number of objects involved in the query.

■ time=139923809: total execution time of the query (in milliseconds).

■ sql execute=21723809: total time spent executing the SQL statement.

■ prepare=49523809: total time spent preparing the SQL statement.

■ row fetch=39023809: total time spent fetching rows from the database.

■ time/obj=116123809: number of nanoseconds spent on each object.

■ obj/sec=8: number of objects handled per second.

18.2.3 Task 2: Measure EclipseLink Performance in the Server Environment
Use the Performance Monitor to provide detailed profiling and monitoring
information in a multithreaded server environment. Use the performance monitor to
monitor a server, multiple threads, or long running processes.

Enable the monitor in persistence.xml file as follows:

<property name="eclipselink.profiler" value="PerformanceMonitor"/>

The performance monitor can also be enabled through code using a
SessionCustomizer.

The performance monitor will output a dump of cumulative statistics every minute to
the EclipseLink log. The statistics contains three sets of information:

■ Info; statistics that are constant informational data, such as the session name, or
time of login.

■ Counter; statistics that are cumulative counters of total operations, such as cache
hits, or query executions.

■ Timer; statistics that are cumulative measurements of total time (in nano seconds)
for a specific type of operation, reading, writing, database operations.

Statistics are generally grouped in total and also by query type, query class, and query
name. Counters and timers are generally recorded for the same operations, so the time
per operation could also be calculated.

The time between statistic dumps can be configured by using the setDumpTime(long)
method in the PerformanceMonitor class. If dumping the results is not desired, then
the dumpTime attribute can be set to be very large such as Long.MAX_VALUE. The statistic
can also be accessed in a Java program with the getOperationTime(String) method.

The performance monitor can also be configured with a profile weight. The profile
weights are defined in the SessionProfiler class and used by the
PerformanceMonitor class. The weights include:

■ NONE—No statistics are recorded.

■ NORMAL—Informational statistics are recorded.

Monitoring and Optimizing EclipseLink-Enabled Applications

Enhancing Performance 18-15

■ HEAVY—Informational, counter and timer statistics are recorded.

■ ALL—All statistics are recorded (this is the default).

Note: In the current release, the performance monitor responds with
the same information for the HEAVY and ALL values.

18.2.4 Task 3: Measure Fetch Group Field Usage
Use the Fetch Group Monitor to measure fetch group field usage. This can be useful
for performance analysis in a complex system.

Enable this monitor by using the system property
org.eclipse.persistence.fetchgroupmonitor=true.

The monitor outputs the attribute used for a class every time a new attribute is
accessed.

18.2.5 Task 4: Identify Sources of Application Performance Problems
Areas of the application where performance problems could occur include the
following:

■ Identifying General Performance Optimization

■ Schema

■ Mappings and Descriptors

■ Sessions

■ Cache

■ Data Access

■ Queries

■ Unit of Work

■ Application Server and Database Optimization

Task 5: Modify Poorly-Performing Application Components provides some guidelines
for dealing with problems in each of these areas.

18.2.6 Task 5: Modify Poorly-Performing Application Components
For each source of application performance problems listed in Section 18.2.5, "Task 4:
Identify Sources of Application Performance Problems", you can try specific
workarounds, as described in this section.

18.2.6.1 Identifying General Performance Optimizations
Avoid overriding EclipseLink default behavior unless your application requires it.
Some of these defaults are suitable for a development environment; you should
change these defaults to suit your production environment. These defaults may
include:

■ Batch writing – See "jdbc.batch-writing" in Java Persistence API (JPA) Extensions
Reference for EclipseLink.

■ Statement caching – See "jdbc.cache-statements" in Java Persistence API (JPA)
Extensions Reference for EclipseLink.

Monitoring and Optimizing EclipseLink-Enabled Applications

18-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Read and write connection pool size – See "connection-pool" in Java Persistence API
(JPA) Extensions Reference for EclipseLink.

■ Session cache size – See "maintain-cache" in Java Persistence API (JPA) Extensions
Reference for EclipseLink.

Use the Workbench rather than manual coding. These tools are not only easy to use:
the default configuration they export to deployment XML (and the code it generates, if
required) represents best practices optimized for most applications.

18.2.6.2 Schema
Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or database
schema is too complex, as this can make the database slow and difficult to query. This
is most likely to happen if you derive your database schema directly from a complex
object model.

To optimize performance, design the object model and database schema together.
However, allow each model to be designed optimally: do not require a direct
one-to-one correlation between the two.

Possible ways to optimize the schema include:

■ Aggregating two tables into one

■ Splitting one table into many

■ Using a collapsed hierarchy

■ Choosing one out of many

See "Data Storage Schema" in EclipseLink Concepts for additional information.

18.2.6.3 Mappings and Descriptors
If you find performance bottlenecks in your mapping and descriptors, try these
solutions:

■ Always use indirection (lazy loading). It is not only critical in optimizing database
access, but also allows EclipseLink to make several other optimizations including
optimizing its cache access and unit of work processing. See "cache-usage" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

■ Avoid using method access in your EclipseLink mappings, especially if you have
expensive or potentially dangerous side-effect code in your get or set methods; use
the default direct attribute access instead. See "Using Method or Direct Field
Access" in the EclipseLink Concepts.

■ Avoid using the existence checking option checkCacheThenDatabase on
descriptors, unless required by the application. The default existence checking
behavior offers better performance. See "@ExistenceChecking" in Java Persistence
API (JPA) Extensions Reference for EclipseLink.

■ Avoid expensive initialization in the default constructor that EclipseLink uses to
instantiate objects. Instead, use lazy initialization or use an EclipseLink
instantiation policy to configure the descriptor to use a different constructor. See
"@InstantiationCopyPolicy" in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Monitoring and Optimizing EclipseLink-Enabled Applications

Enhancing Performance 18-17

18.2.6.4 Cache
You can often improve performance through caching, even in a clustered environment
by implementing cache coordination. Cache coordination allows multiple, possibly
distributed instances of a session to broadcast object changes among each other so that
each session's cache can be kept up-to-date. For detailed information about optimizing
cache behavior, see "Understanding Caching" in EclipseLink Concepts and the following
examples:

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordinat
ion

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

18.2.6.5 Data Access
Depending on the type of data source your application accesses, EclipseLink offers a
variety of Login options that you can use to tune the performance of low level data
reads and writes. For optimizing higher-level data reads and writes, "Understanding
Data Access" in EclipseLink Concepts offers several techniques to improve data access
performance for your application. These techniques show you how to:

■ Optimize JDBC driver properties.

■ Optimize data format.

■ Use batch writing for optimization.

■ Use Outer-Join Reading with Inherited Subclasses.

■ Use Parameterized SQL (Parameter Binding) and Prepared Statement Caching for
Optimization.

18.2.6.6 Queries
EclipseLink provides an extensive query API for reading, writing, and updating data.
"Understanding EclipseLink Queries" in EclipseLink Concepts offers several techniques
to improve query performance for your application. These techniques show you how
to:

■ Use parameterized SQL and prepared statement caching for optimization.

■ Use named queries for optimization.

■ Use batch and join reading for optimization.

■ Use partial object queries and fetch groups for optimization.

■ Use read-only queries for optimization.

■ Use JDBC fetch size for optimization.

■ Use cursored streams and scrollable cursors for optimization.

■ Use result set pagination for optimization.

It also includes links to read and write optimization examples.

18.2.6.7 Application Server and Database Optimization
To optimize the application server and database performance, consider these
techniques:

Monitoring and Optimizing EclipseLink-Enabled Applications

18-18 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Configuring your application server and database correctly can have a big impact
on performance and scalability. Ensure that you correctly optimize these key
components of your application in addition to your EclipseLink application and
persistence.

■ For your application or Java EE server, ensure your memory, thread pool and
connection pool sizes are sufficient for your server's expected load, and that your
JVM has been configured optimally.

■ Ensure that your database has been configured correctly for optimal performance
and its expected load.

18.2.7 Task 6: Measure Performance Again
Finally, after identifying possible performance bottlenecks and taking some action on
them, rerun your application, again with the profiler enabled (see Section 18.2.2.1,
"Enabling the EclipseLink Profiler"). Review the results and, if more action is required,
follow the procedures outlined in Section 18.2.6, "Task 5: Modify Poorly-Performing
Application Components".

19

Exposing JPA Entities Through RESTful Data Services 19-1

19Exposing JPA Entities Through RESTful
Data Services

This chapter describes how to expose JPA persistence units using RESTful Data
services.

This chapter includes the following sections:

■ Section 19.1, "Introduction to the Solution"

■ Section 19.2, "Implementing the Solution"

■ Section 19.3, "Additional Resources"

■ Section 19.4, "RESTful Data Services API Reference"

Use Case
Expose persistent data model and application logic over REST for the development of
Thin Server Architecture (TSA) clients including HTML5/JavaScript and mobile
technologies.

Solution
Use RESTful Data Services to expose entities using a RESTful service, without writing
JAX-RS code.

Components
■ A Java EE application server with the following:

– EclipseLink 2.4 or later.

– Support for Java API for RESTful Web Services (JAX-RS) 1.0, for example the
JAX-RS reference implementation, Jersey (see http://jersey.java.net/).

■ A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, or MySQL

19.1 Introduction to the Solution
REpresentational State Transfer (REST) defines a set of architectural principles for
distributed systems, in which Web Services are viewed as resources. Those resources
are identified by URIs and can be addressed and transferred using the HTTP protocol.
REST can be used with a number of technologies, including JPA. HTTP methods are
used to access and perform operations on resources.

The Java API for RESTful Web Services (JAX-RS) is an API designed to make it easy to
develop Java applications that use the REST architecture. With JAX-RS, you use

Implementing the Solution

19-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

annotations to define resources and the actions that can be performed on those
resources.

While it is possible to use JAX-RS directly to interact with JPA persistence units in a
RESTful application, RESTful Data Services provide an API that makes it easier to
implement REST for JPA persistence,. You can use this API to interact with JPA
persistence units without explicitly writing JAX-RS code, thus providing a simple way
to expose persistence units through REST.

Note: For an example that uses JAX-RS directly to implement JPA
persistence in a RESTful application, see "RESTful Service Example" at
http://wiki.eclipse.org/EclipseLink/Examples/REST/Ge
ttingStarted. For information about simplifying that process by
using RESTful Data Services, continue reading this chapter.

RESTful Data Services are made available via a web fragment, which extends the
capabilities of a web application. The REST functionality is made available by
including the RESTful Data Services JAR file in the WEB-INF/lib folder of a web
application.

The RESTful Data Services runtime provides access to all persistence units packaged in
the application in which it is running, as well as any dynamic persistence units that are
provisioned within it.

19.2 Implementing the Solution
This section contains the following tasks for exposing JPA entities using RESTful Data
Services:

■ Step 1: Prerequisites

■ Step 2: Create and Configure the Application

■ Step 3: Understand RESTful Data Services URI Basics

■ Step 4: Represent Entities Using JPA, JAXB, or JSON

■ Step 5: Issue Client Calls for Operations on the Persistence Unit

■ Step 6: Implement Security

■ Step 7: Understand the Structure of RESTful Data Services Responses

19.2.1 Step 1: Prerequisites
To implement and use RESTful Data Services, you need:

■ Either of the following Java EE application servers:

– Oracle WebLogic Server Release 2.6 or later.

– Glassfish Server 3.1.2 or later.

Note: With Glassfish Server 3.1.2, you must upgrade the EclipseLink
version to use the version of the RESTful Data Services shipped in
EclipseLink 2.4.2 (and must also include DBWS). See
http://www.eclipse.org/eclipselink/downloads/ for
EclipseLink downloads.

Implementing the Solution

Exposing JPA Entities Through RESTful Data Services 19-3

Those servers include the following:

– EclipseLink 2.4 or later, configured as the persistence provider.

– Jersey, the reference implementation of the Java API for RESTful Web Services
(JAX-RS) 1.0 specification.

■ The org.eclipse.persistence.jpars_version_num.jar file, where version_num
is the version of the jpars file, for example, org.eclipse.persistence.jpars_
2.4.1.v20121003-ad44345.jar. This file is included in the EclipseLink
distributions from the Eclipse foundation, at
http://www.eclipse.org/eclipselink/downloads/:

– In the installer distribution, the file is located in eclipselink\jlib\jpa\.

– In the bundles distribution, the file is located with the other bundles.

■ Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see

19.2.2 Step 2: Create and Configure the Application
RESTful Data Services are designed to function with standard JPA applications, with
little extra work required beyond enabling the service, as described below:

1. Develop an application using one or more standard JPA persistence units, package
it in a Web ARchive (WAR) file, and deploy it normally.

Note: The fragment must be placed inside a WAR, because it offers
Web services. That WAR may optionally be packaged inside an
Enterprise Archive (EAR) file.

Note: Weaving is required for several RESTful Data Services features
to work: providing relationships as links, editing relationships, and
dealing with lazy many-to-one relationships. Therefore, for those
features, you must either deploy to a Java EE compliant server or
statically weave your classes.

2. Include the RESTful Data Services servlet in the WAR containing the application.
(For instructions on downloading, see.Step 1: Prerequisites)

Note: The RESTful Data Services JAR file includes a
web-fragment.xml file that identifies the servlet and defines the root
URI for the RESTful service.

Add the org.eclipse.persistence.jpars_version_num.jar file to the WAR
containing the application, under WEB-INF/lib.

19.2.3 Step 3: Understand RESTful Data Services URI Basics
URIs used for making REST calls for RESTful Data Services follow these standard
patterns:

Implementing the Solution

19-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ The base URI for an application is:
http://server:port/application-name/persistence/{version}

Note: As of EclipseLink 2.4.2, support for using RESTful Data
Services URIs without a version number is deprecated and will be
removed in future releases. The version of RESTful Data Services in
EclipseLink 2.4.2 is v1.0, and that version number should be used to
make REST requests to RESTful Data Services.

■ For base operations on the persistence unit, add the persistence unit name:

/persistence/{version}/{unit-name}

■ For specific types of operations, add the type of operation, for example:

■ Entity operations: /persistence/{version}/{unit-name}/entity

■ Query operations: /persistence/{version}/{unit-name}/query

■ Single result query operations:
/persistence/{version}/{unit-name}/singleResultQuery

■ Persistence unit level metadata operations:
/persistence/{version}/{unit-name}/metadata

■ Base operations: /persistence/{version}

For complete documentation on how to construct these URIs, see Section 19.4,
"RESTful Data Services API Reference."

19.2.4 Step 4: Represent Entities Using JPA, JAXB, or JSON
Entities in RESTful Data Services are represented in two ways:

■ As JPA Entities - The mappings of the JPA entities must be represented in the
typical JPA fashion, using either annotations or XML files. These mappings are
used to interact with the data source.

■ As JAXB/JSON - No specific mapping information is required when using
JAXB/JSON. By default, RESTful Data Services use the JAXB defaults (defined in
the JAXB specification) to map to JAXB/JSON. You can optionally provide JAXB
annotations on the classes to alter the way the objects are mapped. Additionally,
the persistence unit property eclipselink.jpa-rs.oxm can be specified in a
persistence unit's persistence.xml to specify XML-defined JAXB mappings.

19.2.4.1 Relationships
In general, JAXB default mappings are sufficient to allow information exchange using
JSON/JAXB. There are, however, some special cases when dealing with relationships.

Bidirectional Relationships and Cycles
Bidirectional relationships are typical in JPA and are easy to represent in a database
using foreign keys. They are more difficult to represent in an XML or JSON document
using standard JAXB. However, the EclipseLink JAXB implementation provides a way
to define an inverse relationship. Inverse relationships are not directly written to XML
or JSON but are populated when the XML or JSON is unmarshalled. The way this is
handled is as follows:

JPA bidirectional relationships are defined to have an owning side and a non-owning
side. The entity that has the table with a foreign key in the database is the owning

Implementing the Solution

Exposing JPA Entities Through RESTful Data Services 19-5

entity. The other table--the one pointed to--is the inverse (non-owning) entity. JPA
mapping provides a mapped-by attribute that defines which is which. The mappedBy
attribute must be on the inverse side. RESTful Data Services default the owning side to
be an inverse relationship. As a result, when an object with an owned relationship is
read or written, that relationship is ignored.

Consider the following pseudo-code:

 @Entity
 ClassA{

 @Id
 int id

 @OneToOne
 myB

}

 @Entity
 ClassB{

 @Id
 int id

 @OneToOne(mappedby="myB")
 myA

}

If the objects are identified as follows...

■ A1 with id=1 and myB = B1

■ B1 with id=11 and myA = A1

...the following JSON corresponds to those objects:

 A {
 id:1
 }

 B {
 id:11
 myA: {
 id: 1
 }
 }

Passing By Value vs. Passing By Reference
RESTful Data Services allow relationship objects to be passed either by value or by
reference in the REST request. JSON attributes hold resource references (see "Pass By
Value"), while _relationships have "navigation" links (see "Pass By Reference").

Pass By Value
To pass an object by value, create typical JSON or XML that represents the object. The
following JSON passes myA by value:

 B {

Implementing the Solution

19-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

 id:11
 myA {
 id: 1
 }
 }

Pass By Reference
To pass an object by reference, use a _link. The link represents the RESTful Data
Services call necessary to get that object. The following JSON passes myA by reference:

 B {
 id:11
 myA {
 _link:{
 href: "http://localhost:8080/app/persistence/v1.0/pu/entity/A/1"
 method: "GET"
 rel: "self"
 }
 }
 }

A link consists of href, method and rel attributes.

■ The href (Hypertext REFerence) is the URI of the entity linked to. The href
uniquely identifies the linked entity or attribute.

■ The method identifies the operation the href is to be used for.

■ The rel represents the relationship between the containing entity and the entity
linked to.

Lists can mix and match items represented by reference and by value. The
corresponding entity must exist if an item is represented by reference in a request;
otherwise RESTful Data Services returns an error.

The following example shows JSON that can be sent to RESTful Data Services as a
request, in a regular-expression-like syntax:

{
 "numericAttribute": 1
 "stringAttribute": "auction1"
 "dateAttribute": 12-09-16
 "singleRelatedItem": RELATED_ITEM?
 "listRelatedItem":
 {
 RELATED_ITEM*
 }
 }

 RELATED_ITEM =

 {
 "numericAttribute": 11
 "stringAttribute": "myName"
 }

 OR

 "_link" {
 "rel"="self",

Implementing the Solution

Exposing JPA Entities Through RESTful Data Services 19-7

 "href" = "LINK_HREF",
 "method"="GET"
 }

The following JSON represents an entity called Auction with several directly mapped
fields and a collection of an entity called Bid.

 {
 "description": "Auction 1",
 "endPrice": 0,
 "id": 2,
 "image": "auction1.jpg",
 "name": "A1",
 "sold": false,
 "startPrice": 100,
 "bids": [
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/auction/entity/Bid/5",
 "method": "GET",
 "rel": "self"
 }
 },
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/auction/entity/Bid/6",
 "method": "GET",
 "rel": "self"
 }
 }
]
 }

XML representation mimics the JSON representation. The following is sample XML for
an entity called Auction, with several directly mapped attributes and a list of an entity
called Bid.

<?xml version="1.0" encoding="UTF-8"?>
<Auction>
 <description>Auction 1</description>
 <endPrice>0.0</endPrice>
 <id>2</id>
 
 <name>A1</name>
 <sold>false</sold>
 <startPrice>100.0</startPrice>
 <bids>
 <_link
href="http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/auction/entity/Bid/5"
method="GET" rel="self" />
 </bids>
 <bids>
 <_link
href="http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/auction/entity/Bid/6"
method="GET" rel="self" />
 </bids>
 </Auction>

Implementing the Solution

19-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

19.2.5 Step 5: Issue Client Calls for Operations on the Persistence Unit
Clients use HTTP calls to perform operations on persistence units in a deployed
application. The requirements and options for constructing the calls are described in
Section 19.4, "RESTful Data Services API Reference."

19.2.5.1 Specify Media Format in the Header
This REST interface can handle both XML and JSON representations of data. The caller
is responsible for using HTTP header values to indicate the format of the content:

■ Content-Type = application/json indicates that the content being sent is JSON

■ Content-Type = application/xml indicates that the content being sent is XML

■ Accept = application/json indicates that the expected format of the result is
JSON

■ Accept = application/xml indicates that the expected format of the result is XML

If no header value is specified, JSON is used by default. If Content-type is specified
and Accept is not specified, the returned format matches the Content-type passed in.

Note: In many REST utilities, the Accept value is defaulted to
application/xml. In those cases, you must configure this value
explicitly if you want JSON.

19.2.5.2 About Logging
Messages related to RESTful Data Services operations are logged to a logger called
org.eclipse.persistence.jpars. Most messages are logged at the FINE level.
Exception stacks are logged at FINER.

Messages related to operations within EntityManagers, EntityManagerFactorys and
JAXBContexts are logged in the same manner as other EclipseLink logging.

19.2.6 Step 6: Implement Security
Secure RESTful Data Services through typical REST security mechanisms.

19.2.7 Step 7: Understand the Structure of RESTful Data Services Responses
The RESTful Data Services response messages, either in XML or in JSON, contain
following categories:

■ Basic data types, such as int, double, String, Integer, Double, Boolean, etc.

■ Relationships (links and relationships)

The next sections explain the semantic and syntactic details of each category of data.

There is also a minor generic difference between the XML and JSON responses (other
than format). The JSON responses do not include the root name of an entity, while
XML responses do. See the employee root/grouping name in the XML response below.
The root name is derived from the name of the entity it represents.

JSON

{
 "firstName":"John",
 "lastName": "Smith",
 …

Implementing the Solution

Exposing JPA Entities Through RESTful Data Services 19-9

}

XML

<?xml version="1.0" encoding="UTF-8"?>
<employee>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 …
</employee>

19.2.7.1 Basic Data Types
In the RESTful Data Services responses, basic data types and primitives are presented
as simple JSON or XML fields. For example:

JSON

{
 "firstName":"John",
 "lastName": "Smith",
 …
}
XML

<?xml version="1.0" encoding="UTF-8"?>
<employee>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 …
</employee>

19.2.7.2 Links and Relationships
RESTful Data Services operations return all relationships by reference, with the
exception of JPA embeddables and element collections.

The relationships are links pointing to the (JPA) relationships of an entity, such as
one-to-one and one-to-many. For example, assume that an employee has multiple
phone numbers (one-to-many). When the employee is read, the response will contain a
relationship link pointing to the relationship between the employee and the phone
entities, plus a list of the links, with each link pointing to a (unique) phone number
that the employee owns. For example:

{
 "firstName": "Jacob",
 "gender": "Male",
 "id": 743627,
 "lastName": "Smith",
 "version": 1,
 "_relationships": [
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/hr/entity/Employee/743627/phoneNumbers",
 "rel": "phoneNumbers"
 }
 }
],

Implementing the Solution

19-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

 "phoneNumbers": [
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/hr/entity/PhoneNumber/743627+cell",
 "method": "GET",
 "rel": "self"
 }
 },
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/hr/entity/PhoneNumber/743627+work",
 "method": "GET",
 "rel": "self"
 }
 }
]
}

Embedded objects and element collections are strictly privately-owned (dependent)
objects.They have no identity, and there is no cascade option on an
ElementCollection. The target objects are always persisted, merged, and removed
with their parent. Therefore, RESTful Data Services embeds these objects directly in
responses, rather than providing links to them. For example, assume the Employee
object has EmploymentPeriod defined as Embedded. When the Employee is read, the
response will contain EmploymentPeriod as an embedded object, not a link to it.
Relationships are currently not supported for embedded attributes. See the example
below:

{
 "firstName": "John",
 "lastName": "Smith",

 "employmentPeriod": {
 "startDate": "2010-04-23T14:12:03.905-04:00",
 "endDate": "2013-01-23T12:00:02.301-04:00",
 "_relationships": []
 },
 ...
}
Similarly, element collections are also directly contained in RESTful Data Services
responses as collections, not as links. For example, assume the Employee object has a
"certifications" attribute defined as a collection of Certification objects. When
the Employee is read, the response will contain list of Certification objects, not links:

{
 "firstName": "John",
 "lastName": "Smith",
 "certifications": [
 {
 "issueDate": "2013-04-23T15:02:23.071-04:00",
 "name": "Java"
 },
 {
 "issueDate": "2010-05-23T11:02:23.033-04:00",
 "name": "Weblogic"
 }
],

RESTful Data Services API Reference

Exposing JPA Entities Through RESTful Data Services 19-11

 ...
}

19.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ "Building RESTful Web Services with JAX-RS" in The Java EE 6 Tutorial at
http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html.

■ "RESTful Service Example" at
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStar
ted.

■ JSR 311: JAX-RS: The Java API for RESTful Web Services" at
http://jcp.org/en/jsr/detail?id=311

■ Jersey project at http://jersey.java.net/.

19.4 RESTful Data Services API Reference
The following types of RESTful operations can be used with JPA via HTTP when using
RESTful Data Services:

■ Entity Operations

■ Entity Operations on Relationships

■ Query Operations

■ Base Operations

■ Metadata Operations

Entity Operations

19-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

Entity Operations

Entity operations are those performed against a specific entity type within the
persistence unit.

The base URI for entity operations is as follows:

/persistence/{version}/{unit-name}/entity/{type}/*

The {type} value refers to the type name (descriptor alias).

Supported entity operations are:

■ FIND

■ PERSIST

■ MERGE

■ DELETE

Entity Operations

Exposing JPA Entities Through RESTful Data Services -13

FIND

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/entity/{type}/{id}?{hints}

where:

■ {id} is a string

■ hints are specified using HTTP query parameters, with the key being the name of
the EclipseLink query hint

Example
GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1

Produces
JSON or XML

Response
■ OK, with a payload containing the entity

■ NOT_FOUND if the entity does not exist

Usage

19Composite Keys
Composite keys are supported. The + character is reserved and therefore cannot be
used in fields that represent keys. Composite keys are separated using the + character
and should be specified in an order corresponding to the Java default sorting of the
attribute names.

For example, consider an entity Phone, with attributes extB=123 and extA=321. The
URL to find the entity is:

http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Phone/3
21+123

The 321 comes before the 123 because extA comes before extB when sorted in Java.

19Result Caching
Default EclipseLink and HTTP caching is enabled and configured through standard
means.

19Refresh
The EntityManager.refresh operation can be invoked using the find with the query
hint for Refresh.

19Attributes
Navigating into the attributes of an entity (for example, to get the Address entity
associated with an employee in a single REST request) is supported to one level, for
example:

FIND

-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

/persistence/v1.0/{unit-name}/entity/{type}/{id}/{relationship} will work

while

/persistence/v1.0/{unit-name}/entity/{type}/{id}/{relationship}/{index}/{r
elationship2} will not

Entity Operations

Exposing JPA Entities Through RESTful Data Services -15

PERSIST

HTTP Request Syntax
PUT /persistence/{version}/{unit-name}/entity/{type}

Example
PUT http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo

Consumes
JSON or XML

Payload
Entity

Produces
JSON or XML

Response
Payload containing the entity returned by the persist operation

Usage
PUT is required to be idempotent. As a result, it will fail if called with an object that
expects the server to provide an ID field. Typically this will occur if the metadata
specifies a generated key and the field that contains that key is unpopulated.

MERGE

-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

MERGE

HTTP Request Syntax
POST /persistence/{version}/{unit-name}/entity/{type}

Example
POST
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo

Consumes
JSON or XML

Payload
Entity

Produces
JSON or XML

Response
Payload containing the entity returned by the merge operation.

Merge takes an object graph and makes it part of the persistence context through
comparison. It compares the object and all related objects to the ones that already exist
and issues INSERTs, UPDATEs, and DELETEs to put the object in the persistence context.

Entity Operations

Exposing JPA Entities Through RESTful Data Services -17

DELETE

HTTP Request Syntax
DELETE /persistence/{version}/{unit-name}/entity/{type}{id}

where {id} is defined using a string

Example
DELETE
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1

Response
OK

Entity Operations on Relationships

-18 Java Persistence API (JPA) Extensions Reference for EclipseLink

Entity Operations on Relationships

The base URI for relationship operations is as follows:

/persistence/{version}/{unit-name}/entity/{entity}/{id}/{relationship}

Supported relationship operations are:

■ READ

■ ADD

■ REMOVE

Entity Operations on Relationships

Exposing JPA Entities Through RESTful Data Services -19

READ

Use this operation to get the values of a relationship.

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/entity/{type}/{id}/{relationship}

where:

■ {id} is a string.

■ {relationship} is the JPA name of the relationship.

Example
GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1/m
yRelationship

Produces
JSON or XML

Response
■ OK, Payload containing an entity or a list of entities.

■ NOT_FOUND if the entity does not exist

ADD

-20 Java Persistence API (JPA) Extensions Reference for EclipseLink

ADD

Use this operation to add to a list or replace the value of a many-to-one relationship.

HTTP Request Syntax
POST
/persistence/{version}/{unit-name}/entity/{type}/{id}/{relationship}?{part
ner}

Note: As of EclipseLink 2.4.2, partner should be specified as a query
parameter. Specifying partner as a matrix parameter is deprecated.

Examples
For unidirectional relationships, {partner} is not required, for example:

POST
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1/m
yRelationship

For bi-directional relationships, you must provide the name of the attribute that makes
up the opposite side of the relationship. For example, to update an Auction.bid where
the opposite side of the relationship is Bid.auction, use the following:

POST
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1/m
yRelationship?partner=bid

Consumes
JSON or XML

Payload
Entity with the new value.

Note: Relationship objects can be passed by value or by reference.
See "Passing By Value vs. Passing By Reference" on page 19-5.

Produces
JSON or XML

Response
Payload containing the entity with the added element

Entity Operations on Relationships

Exposing JPA Entities Through RESTful Data Services -21

REMOVE

Use this operation to remove a specific entity from the list or a null on a many-to-one
relationship.

HTTP Request Syntax
DELETE
/persistence/{version}/{unit-name}/entity/{type}/{id}/{relationship}?{rela
tionshipListItemId}

where relationshipListItemId is an optional query parameter. The
relationshipListItemId is meaningful only when the {relationship} to be removed
is a list. The relationshipListItemId should be set to the id of a member in the
relationship list when only that member of the relationship list needs to be removed.
The entire list specified by the {relationship} will be removed when
relationshipListItemId is not specified.

Example
DELETE
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/entity/Foo/1/m
yRelationship

Consumes
JSON or XML

Note: Relationship objects can be passed by value or by reference.
See "Passing By Value vs. Passing By Reference" on page 19-5.

Produces
JSON or XML

Response
■ OK

■ Payload containing the entity with the removed element

Query Operations

-22 Java Persistence API (JPA) Extensions Reference for EclipseLink

Query Operations

The base URI for query operations is as follows:

GET /persistence/{version}/{unit-name}/query/{name}{params}

The following query operations are supported:

Named queries doing reads can be run two ways in JPA. Both are supported in the
REST API. They are:

■ Query Returning List of Results

■ Update/Delete Query

Query Operations

Exposing JPA Entities Through RESTful Data Services -23

Query Returning List of Results

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/query/{name};{parameters}? {hints}

where:

■ parameters are specified using HTTP matrix parameters

■ hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Examples
GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/query/Foo.find
ByName;name=myname

GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/query/Foo.find
ByName;name=myname?eclipselink.jdbc.max-results=500

Produces
JSON or XML

Response
A payload containing a list of entities. An XML response contains a List as a grouping
name for a collection of items and item as a grouping name for each member of a
collection returned. JSON responses use square brackets [] to encapsulate a collection
and curly braces {} to encapsulate each member of a collection. For example:

XML Example

<?xml version="1.0" encoding="UTF-8"?>
<List>
 <item>
 <firstName>Miles</firstName>
 <lastName>Davis</lastName>
 <manager>
 <firstName>Charlie</firstName>
 <lastName>Parker</lastName>
 <gender>Male</gender>
 <id>26</id>
 </manager>
 </item>
 <item>
 <firstName>Charlie</firstName>
 <lastName>Parker</lastName>
 <manager>
 <firstName>Louis</firstName>
 <lastName>Armstrong</lastName>
 <gender>Male</gender>
 <id>27</id>
 </manager>
 </item>
</List>

JSON Example

Query Returning List of Results

-24 Java Persistence API (JPA) Extensions Reference for EclipseLink

[
 {
 "firstName": "Miles",
 "lastName": "Davis",
 "manager": {
 "firstName": "Charlie",
 "lastName": "Parker",
 "gender": "Male",
 "id": 26
 }
 },
 {
 "firstName": "Charlie",
 "lastName": "Parker",
 "manager": {
 "firstName": "Louis",
 "lastName": "Armstrong",
 "gender": "Male",
 "id": 27
 }
 }
]

Query Operations

Exposing JPA Entities Through RESTful Data Services -25

Update/Delete Query

HTTP Request Syntax
POST /persistence/{version}/{unit-name}/query/{name};parameters?hints

where:

■ parameters are specified using HTTP matrix parameters

■ hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Examples
POST
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/query/Foo.dele
teAllByName;name=myname

POST
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/query/Foo.upda
teName;name=myname?eclipselink.jdbc.max-results=500

Produces
JSON or XML

Response
A payload containing the number of entities updated or deleted

Single Result Queries

-26 Java Persistence API (JPA) Extensions Reference for EclipseLink

Single Result Queries

HTTP Request Syntax
GET
/persistence/{version}/{unit-name}/singleResultQuery/{name};{parameters}?{
hints}

where:

■ parameters are specified using HTTP matrix parameters

■ hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Example
GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/singleResultQu
ery/Foo.findByName;name=myname

Produces
JSON, XML, or application/octet-stream

Response
A payload containing an entity

Base Operations

Exposing JPA Entities Through RESTful Data Services -27

Base Operations

Base operations are:

■ List Existing Persistence Units

List Existing Persistence Units

-28 Java Persistence API (JPA) Extensions Reference for EclipseLink

List Existing Persistence Units

HTTP Request Syntax
GET /persistence/{version}

Example
GET http://localhost:8080/exampleApp/persistence/v1.0

Produces
JSON or XML

Response
A payload containing a list of persistence unit names and links to metadata about
them. For example:

[
 {

 "_link": {
 "href": "http://localhost:8080/exampleApp/persistence/v1.0/employee/metadata",
 "method": "application/json",
 "rel": "employee"
 }
 },
 {
 "_link": {
 "href": "http://localhost:8080/exampleApp/persistence/v1.0/traveler/metadata",
 "method": "application/json",
 "rel": "traveler"
 }
 }
]

Metadata Operations

Exposing JPA Entities Through RESTful Data Services -29

Metadata Operations

The following metadata operations are supported:

■ List Types in a Persistence Unit

■ List Queries in a Persistence Unit

■ Describe a Specific Entity

List Types in a Persistence Unit

-30 Java Persistence API (JPA) Extensions Reference for EclipseLink

List Types in a Persistence Unit

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/metadata

Example
GET http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/metadata

Produces
JSON

Response
■ OK, with a payload containing a list of types, with links to more detailed metadata,

for example:

{
 "persistenceUnitName": "hr",
 "types": [
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/metadata/enti
ty/Employee",
 "method": "application/json",
 "rel": "Employee"
 }
 },
 {
 "_link": {
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/metadata/enti
ty/PhoneNumber",
 "method": "application/json",
 "rel": "PhoneNumber"
 }
 }
]
}

■ NOT_FOUND if the persistence unit is not found

Metadata Operations

Exposing JPA Entities Through RESTful Data Services -31

List Queries in a Persistence Unit

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/metadata/query

Example
GET
http://localhost:8080/exampleApp/persistence/v1.0/ExamplePU/metadata/query

Produces
JSON

Response
■ OK with a payload containing a list of all available queries, for example:

[
 {
 "queryName": "Employee.count",
 "returnTypes": [
 "Long"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.count",
 "rel": "execute"
 },
 "jpql": "SELECT count(e) FROM Employee e"
 },
 {
 "queryName": "EmployeeAddress.getRegion",
 "returnTypes": [
 "String",
 "String",
 "String"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
eAddress.getRegion",
 "rel": "execute"
 },
 "jpql": "SELECT u.postalCode, u.province, u.street FROM EmployeeAddress
u"
 },
 {
 "queryName": "Employee.getPhoneNumbers",
 "returnTypes": [
 "String",
 "String",
 "PhoneNumber"
],
 "linkTemplate": {
 "method": "get",

List Queries in a Persistence Unit

-32 Java Persistence API (JPA) Extensions Reference for EclipseLink

 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getPhoneNumbers",
 "rel": "execute"
 },
 "jpql": "SELECT e.firstName, e.lastName, pn FROM Employee e JOIN
e.phoneNumbers pn"
 },
 {
 "queryName": "EmployeeAddress.getPicture",
 "returnTypes": [
 "byte[]"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
eAddress.getPicture;id={id}",
 "rel": "execute"
 },
 "jpql": "SELECT u.areaPicture FROM EmployeeAddress u where u.id = :id"
 },
 {
 "queryName": "EmployeeAddress.updatePostalCode",
 "returnTypes": [
 "EmployeeAddress"
],
 "linkTemplate": {
 "method": "post",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
eAddress.updatePostalCode;postalCode={postalCode};id={id}",
 "rel": "execute"
 },
 "jpql": "UPDATE EmployeeAddress u SET u.postalCode = :postalCode where
u.id = :id"
 },
 {
 "queryName": "Employee.salaryMax",
 "returnTypes": [
 "int",
 "Object"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.salaryMax",
 "rel": "execute"
 },
 "jpql": "SELECT e.id, max(e.salary) AS max_salary from Employee e GROUP
BY e.id, e.salary"
 },
 {
 "queryName": "EmployeeAddress.getAll",
 "returnTypes": [
 "EmployeeAddress"
],
 "linkTemplate": {
 "method": "get",

Metadata Operations

Exposing JPA Entities Through RESTful Data Services -33

 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
eAddress.getAll",
 "rel": "execute"
 },
 "jpql": "SELECT u FROM EmployeeAddress u"
 },
 {
 "queryName": "EmployeeAddress.getById",
 "returnTypes": [
 "EmployeeAddress"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
eAddress.getById;id={id}",
 "rel": "execute"
 },
 "jpql": "SELECT u FROM EmployeeAddress u where u.id = :id"
 },
 {
 "queryName": "Employee.getManagerById",
 "returnTypes": [
 "String",
 "String",
 "Employee"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getManagerById;id={id}",
 "rel": "execute"
 },
 "jpql": "select u.firstName, u.lastName, u.manager from Employee u
where u.id = :id"
 },
 {
 "queryName": "Employee.findAll",
 "returnTypes": [
 "Employee"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.findAll",
 "rel": "execute"
 },
 "jpql": "SELECT e FROM Employee e ORDER BY e.id"
 },
 {
 "queryName": "Employee.getManager",
 "returnTypes": [
 "String",
 "String",
 "Employee"
],
 "linkTemplate": {

List Queries in a Persistence Unit

-34 Java Persistence API (JPA) Extensions Reference for EclipseLink

 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getManager",
 "rel": "execute"
 },
 "jpql": "select u.firstName, u.lastName, u.manager from Employee u"
 }
]

■ NOT_FOUND if persistence unit is not found

Metadata Operations

Exposing JPA Entities Through RESTful Data Services -35

Describe a Specific Entity

HTTP Request Syntax
GET /persistence/{version}/{unit-name}/metadata/entity/ type

Example
GET
http://localhost:8080/CustomerApp/persistence/v1.0/Inventory/metadata/enti
ty/Customer

Produces
JSON

Response
■ OK, with a payload containing details about the entity and available operations on

it, for example,

{
 "name": "Employee",
 "attributes": [
 {
 "name": "id",
 "type": "int"
 },
 {
 "name": "firstName",
 "type": "String"
 },
 {
 "name": "gender",
 "type": "Gender"
 },
 {
 "name": "lastName",
 "type": "String"
 },
 {
 "name": "salary",
 "type": "double"
 },
 {
 "name": "version",
 "type": "Long"
 },
 {
 "name": "period",
 "type": "EmploymentPeriod"
 },
 {
 "name": "manager",
 "type": "Employee"
 },
 {
 "name": "office",
 "type": "Office"
 },

Describe a Specific Entity

-36 Java Persistence API (JPA) Extensions Reference for EclipseLink

 {
 "name": "address",
 "type": "EmployeeAddress"
 },
 {
 "name": "certifications",
 "type": "List<Certification>"
 },
 {
 "name": "responsibilities",
 "type": "List<String>"
 },
 {
 "name": "projects",
 "type": "List<Project>"
 },
 {
 "name": "expertiseAreas",
 "type": "List<Expertise>"
 },
 {
 "name": "managedEmployees",
 "type": "List<Employee>"
 },
 {
 "name": "phoneNumbers",
 "type": "List<PhoneNumber>"
 }
],
 "linkTemplates": [
 {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/entity/Employ
ee/{primaryKey}",
 "rel": "find"
 },
 {
 "method": "put",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/entity/Employ
ee",
 "rel": "persist"
 },
 {
 "method": "post",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/entity/Employ
ee",
 "rel": "update"
 },
 {
 "method": "delete",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/entity/Employ
ee/{primaryKey}",
 "rel": "delete"
 }
],
 "queries": [

Metadata Operations

Exposing JPA Entities Through RESTful Data Services -37

 {
 "queryName": "Employee.count",
 "returnTypes": [
 "Long"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.count",
 "rel": "execute"
 },
 "jpql": "SELECT count(e) FROM Employee e"
 },
 {
 "queryName": "Employee.getPhoneNumbers",
 "returnTypes": [
 "String",
 "String",
 "PhoneNumber"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getPhoneNumbers",
 "rel": "execute"
 },
 "jpql": "SELECT e.firstName, e.lastName, pn FROM Employee e JOIN
e.phoneNumbers pn"
 },
 {
 "queryName": "Employee.salaryMax",
 "returnTypes": [
 "int",
 "Object"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.salaryMax",
 "rel": "execute"
 },
 "jpql": "SELECT e.id, max(e.salary) AS max_salary from Employee e
GROUP BY e.id, e.salary"
 },
 {
 "queryName": "Employee.getManagerById",
 "returnTypes": [
 "String",
 "String",
 "Employee"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getManagerById;id={id}",
 "rel": "execute"

Describe a Specific Entity

-38 Java Persistence API (JPA) Extensions Reference for EclipseLink

 },
 "jpql": "select u.firstName, u.lastName, u.manager from Employee u
where u.id = :id"
 },
 {
 "queryName": "Employee.findAll",
 "returnTypes": [
 "Employee"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.findAll",
 "rel": "execute"
 },
 "jpql": "SELECT e FROM Employee e ORDER BY e.id"
 },
 {
 "queryName": "Employee.getManager",
 "returnTypes": [
 "String",
 "String",
 "Employee"
],
 "linkTemplate": {
 "method": "get",
 "href":
"http://localhost:8080/eclipselink.jpars.test/persistence/v1.0/hr/query/Employe
e.getManager",
 "rel": "execute"
 },
 "jpql": "select u.firstName, u.lastName, u.manager from Employee u"
 }
]
}

■ NOT_FOUND if the persistence unit is not found

20

Using Database Events to Invalidate the Cache 20-1

20Using Database Events to Invalidate the
Cache

This chapter describes EclipseLink Database Change Notification (DCN), which allows
you to use caching with a shared database in JPA.

This chapter includes the following sections:

■ Section 20.1, "Introduction to the Solution"

■ Section 20.2, "Implementing the Solution"

■ Section 20.3, "Limitations on the Solution"

■ Section 20.4, "Additional Resources"

Use Case
Users want to use a shared cache with their JPA application, however, external
applications update the same database data, or the cache is in a clustered environment.
The cache may retain stale data.

Solution
EclipseLink provides an API which allows the database to notify EclipseLink of
database changes. The changed objects can then be invalidated in the EclipseLink
shared cache. Stale data can be discarded, even if other applications access the same
data in the database.

Components
■ Oracle 11gR2 (11.2) (or higher) database

■ EclipseLink 2.4 or later.

– EclipseLink library: eclipselink.jar

– JDBC library: ojdbc6.jar.

– JPA library: persistence.jar.

Sample
For sample files that illustrate the use of Database Change Notification and shared
caching in an application that uses JPA, see "EclipseLink/Examples/JPA/DCN" in the
EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

Introduction to the Solution

20-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

20.1 Introduction to the Solution
EclipseLink provides a shared (L2) object cache that can reduce database access for
objects and their relationships. This cache is enabled by default which is normally not
a problem, unless the contents of the database are modified directly by other
applications, or by the same application on other servers in a clustered environment.
This may result in stale data in the cache.

If the contents of the database are modified, then a mechanism is needed to ensure that
the contents of the cache are synchronized with the database. That mechanism is
provided by EclipseLink Database Change Notification. DCN allows shared caching to
be used in the JPA environment.

Note: Database Change Notification extends the functionality
provided by the Oracle Database Continuous Query Notification
feature. For more information, see "Continuous Query Notification" in
Oracle Database JDBC Developer’s Guide.

EclipseLink Database Change Notification extends the functionality provided by the
Oracle Database Continuous Query Notification. One of the features of Continuous
Query Notification is that it allows database events to be raised when rows in a table
are modified.

To detect modifications, EclipseLink DCN uses the ROWID to inform of row level
changes in the primary table. EclipseLink includes the ROWID in all queries for a
DCN-enabled class. EclipseLink also selects the object's ROWID after an insert operation.
EclipseLink maintains a cache index on the ROWID, in addition to the object's Id.
EclipseLink also selects the database transaction ID once for each transaction to avoid
invalidating the cache on the server that is processing the transaction.

EclipseLink DCN is enabled through the OracleChangeNotificationListener
(org.eclipse.persistence.platform.database.oracle.dcn.OracleChangeNotifica
tionListener) listener class. This listener integrates with Oracle JDBC to receive
database change events. To enable the listener, specify the full path to the
OracleChangeNotificationListener class as the value of the
eclipselink.cache.database-event-listener property in the persistence.xml file.

By default, all entities in the domain are registered for change notification. However,
you can selectively disable change notification for certain classes by tagging them in
the Java files with the databaseChangeNotificationType
(org.eclipse.persistence.annotations.DatabaseChangeNotificationType)
attribute of the Cache annotation. The value of this attribute determines the type of
database change notification an entity should use. The default value of the
databaseChangeNotificationType attribute is Invalidate. To disable change
notification for a class, set the value of the attribute to None.

The databaseChangeNotificationType attribute is relevant only if the persistence unit
has been configured with a database event listener, such as the
OracleChangeNotificationListener class, that receives database change events. This
allows the EclipseLink cache to be invalidated or updated from database changes.

Oracle strongly suggests that you use optimistic locking (writes on stale data will fail
and automatically invalidate the cache) in your transactions. If you include an
@Version annotation in your entity, then the version column in the primary table will
always be updated, and the object will always be invalidated.

Implementing the Solution

Using Database Events to Invalidate the Cache 20-3

20.2 Implementing the Solution
This section contains the following tasks to enable shared caching in a JPA
environment:

■ Task 1: Set up the Database and Tables

■ Task 2: Grant User Permissions

■ Task 3: Set the Classpath

■ Task 4: Identify Classes that will Participate in Change Notification

■ Task 5: Add the Database Event Listener

■ Task 6: Edit the Java Files

20.2.1 Task 1: Set up the Database and Tables
The solution presumes that you are working with an Oracle 11gR2 (11.2) or higher
database that contains the tables that you are interested in.

20.2.2 Task 2: Grant User Permissions
Among other permissions, the database user must be granted the CHANGE
NOTIFICATION privilege. To do this, you must have a DBA privilege, such as SYS, or
have your database administrator apply it:

grant change notification to user

The following example illustrates granting the change notification privilege to user
SCOTT.

...
define user="SCOTT"
define pass="tiger"
grant create session, alter session to &&user
/
grant resource, connect to &&user
/
grant select any dictionary to &&user
/
grant select any table to &&user
/
grant change notification to &&user
/
...

20.2.3 Task 3: Set the Classpath
Ensure that the eclipselink.jar EclipseLink library, the ojdbc6.jar JDBC library, the
persistence.jar JPA library, and the domain classes are present on the classpath.

20.2.4 Task 4: Identify Classes that will Participate in Change Notification
By default, all entities in the domain will participate in change notification. There are
several different ways to limit the entities that will participate. For example, the entity
classes can be indicated by the <entity class ...> element in the orm.xml file,
indicated with the <exclude-unlisted-classes> element in the persistence.xml file,
or contained in a JAR file.

Note: The <exclude-unlisted-classes> element is not intended for
use in the Java SE environment.

Implementing the Solution

20-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

Entity classes can also be excluded by using a Cache annotation attribute in the Java
files. For more information, see Section 20.2.6.2, "Exclude Classes from Change
Notification (Optional)."

Another way to identify the entity classes is to use the <class> element in the
persistence.xml file. The following example indicates that the Order, OrderLine, and
Customer classes in the model package will participate in change notification. For an
example of a complete persistence.xml file, see Example 20–1.

...
<class>model.Order</class>
<class>model.OrderLine</class>
<class>model.Customer</class>
...

20.2.5 Task 5: Add the Database Event Listener
Use the eclipselink.cache.database-event-listener property to identify the
database event listener. The
org.eclipse.persistence.platform.database.oracle.dcn.OracleChangeNotificat
ionListener class is the listener for EclipseLink Database Change Notification. This
allows the EclipseLink cache to be invalidated by database events.

The following example illustrates the eclipselink.cache.database-event-listener
property configured with the OracleChangeNotificationListener class. For an
example of a complete persistence.xml file, see Example 20–1.

...
 <properties>
 <property name="eclipselink.cache.database-event-listener"
value="org.eclipse.persistence.platform.database.oracle.dcn.OracleChangeNotificati
onListener"/>
 </properties>
...

Note that you can also use:

<property name="eclipselink.cache.database-event-listener" value="DCN">

Example 20–1 illustrates an example of a complete persistence.xml file. The classes
that will participate in change notification are the Order, OrderLine, and Customer
classes from the model package. The eclipselink.cache.database-event-listener
property is set to the full path of the OracleChangeNotificationListener class.

Note: A <provider> tag is optional if running in a container where
EclipseLink is the default provider.

Example 20–1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
persistence_2_0.xsd"

Implementing the Solution

Using Database Events to Invalidate the Cache 20-5

 version="2.0">
 <persistence-unit name="acme" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>model.Order</class>
 <class>model.OrderLine</class>
 <class>model.Customer</class>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.cache.database-event-listener"
value="DCN"/>
 </properties>
 </persistence-unit>
</persistence>

20.2.6 Task 6: Edit the Java Files
Typically, to participate in change notification, no changes are needed to the Java
classes which correspond to database tables. However, setting optimistic locking with
the @Version annotation is strongly suggested.

If you want to exclude classes that are listed in the persistence unit, you can tag them
in the Java files. EclipseLink tracks changes only to the primary table. If you want
changes to secondary tables to also be tracked, you can indicate this in the Java files.

20.2.6.1 Set Optimistic Locking
Oracle strongly suggests that you use optimistic locking: writes on stale data will fail
and automatically invalidate the cache. Include an @Version annotation in your entity;
the version column in the primary table will always be updated, and the older version
of the object will always be invalidated.

In Example 20–2 the @Version annotation is defined for the entity Customer. Note that
getters and setters are defined for the version variable.

Example 20–2 Defining the @Version Annotation

...
@Entity
@Table(name="DBE_CUSTOMER")
public class Customer implements Serializable {
 @Id
 @GeneratedValue(generator="CUST_SEQ")
 @TableGenerator(name="CUST_SEQ")
 @Column(name="CUST_NUMBER")
 private long id;

 @Version
 private long version;

 ...
 public long getVersion() {
 return version;
 }

 public void setVersion(long version) {
 this.version = version;
 }
...

Limitations on the Solution

20-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

20.2.6.2 Exclude Classes from Change Notification (Optional)
Use the databaseChangeNotificationType attribute of the Cache annotation to
identify the classes for which you do not want change notifications. To exclude a class
from change notification, set the attribute to DatabaseChangeNotificationType.NONE,
as illustrated in the following example.

...
@Entity
@Cache(databaseChangeNotificationType=DatabaseChangeNotificationType.NONE)
public class Order {
...

20.2.6.3 Track Changes in Secondary Tables (Optional)
EclipseLink tracks changes only to the primary table. If any updates occur in a
secondary table, EclipseLink will not invalidate the object. If you want changes to
secondary tables to be tracked as well, add the @Version annotation to the entity.

Oracle DCN listens only for events from the primary table. It does not track changes in
secondary tables, or relationships tables. The reason for this is that Oracle DCN only
tracks the ROWID, so there is no correlation from the ROWID of the primary, secondary
and relationship tables. Thus, to receive events when a secondary or relationship table
changes, the version in the primary table must change so that the event is returned.

20.3 Limitations on the Solution
EclipseLink Database Change Notification has the following limitations:

■ Changes to an object's secondary tables will not trigger it to be invalidate unless a
@Version annotation is used and updated in the primary table.

■ Changes to an object's OneToMany, ManyToMany, and ElementCollection
relationships will not trigger it to be invalidate, unless an @Version annotation is
used and updated in the primary table.

20.4 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ "Continuous Query Notification" in Oracle Database JDBC Developer’s Guide.

■ "EclipseLink/Examples/JPA/DCN"—This page describes an example of cache
sharing in a JPA environment that employs DCN. Sample files and instructions for
running the example are included. See the EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

21

Using EclipseLink with NoSQL Databases 21-1

21Using EclipseLink with NoSQL Databases

This chapter describes how Oracle TopLink supports the ability to map objects to
NoSQL database systems such as internet databases, object databases, XML databases,
and even legacy databases.

This chapter includes the following sections:

■ Section 21.1, "Introduction to the Solution"

■ Section 21.2, "Implementing the Solution"

■ Section 21.3, "Additional Resources"

Use Case
Users need to use EclipseLink with NoSQL data sources.

Solution
EclipseLink provides support for multiple NoSQL data sources. This solution
illustrates using Oracle NoSQL and MongoDB.

Components
■ EclipseLink 2.4 or later

■ NoSQL datasource.

■ JCA Adapter.

Sample
See the following EclipseLink samples for related information:

■ http://wiki.eclipse.org/EclipseLink/Examples/JPA/NoSQL

21.1 Introduction to the Solution
EclipseLink supports access to NoSQL data through the JavaEE Connector
Architecture. You must use a JCA adapter (provided by EclipseLink, a third party, or
custom built).

Most NoSQL data is hierarchical in form so using embeddable objects is common.
Some NoSQL adaptors support XML data, so NoSQL mapped objects can use XML
mappings when mapping to XML.

Implementing the Solution

21-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

21.2 Implementing the Solution
This section contains the following tasks for converting objects to and from JSON
documents.

■ Task 1: Prerequisites

■ Task 2: Mapping the Data

■ Task 3: Defining IDs

■ Task 4: Defining Mappings

■ Task 5: Using Locking

■ Task 6: Defining Queries

■ Task 7: Connecting to the Database

21.2.1 Task 1: Prerequisites

21.2.2 Task 2: Mapping the Data
You can configure mappings to NoSQL data with the EclipseLink @NoSQL annotation
and <no-sql> XML element. The @NoSQL annotation defines the class as mapping to
non-relational data. You can use @NoSQL with JPA Entity or Embeddable classes.

The @NoSQL annotation allows you to specify the dataType and dataFormat of the data.
The dataType will vary, depending on your NoSQL datasource:

■ For MongoDB, dataType is the collection name that the JSON documents are
stored to.

■ For Oracle NoSQL, dataType is the first part of the major key value.

The dataFormat depends on the type structure (data format) of data being stored.

■ For MongoDB, use MAPPED for its structured database.

■ For Oracle NoSQL, use MAPPED (for key/value data) or XML (for a single XML
document).

Example 21–1 illustrates how to use @NoSQL with @Entity and @Embeddable classes.

Example 21–1 Using @NoSql Annotation with JSON

@Entity
@NoSQL(dataType="orders", dataFormat=DataFormatType.MAPPED)
public class Order {
 @Id
 @GeneratedValue
 @Field(name="_id")
 private long id;
 @Basic
 @Field(name="description")
 private String description;
 @Embedded
 @Field(name="deliveryAddress")
 private Address deliveryAddress
 @ElementCollection
 @Field(name="orderLines")

Implementing the Solution

Using EclipseLink with NoSQL Databases 21-3

 private List<OrderLine> orderLines;
 @ManyToOne
 @JoinField(name="customerId")
 private Customer customer;
}

@Embeddable
@NoSQL(dataFormat=DataFormatType.MAPPED)
public class OrderLine {
 @Field(name="lineNumber")
 private int lineNumber;
 @Field(name="itemName")
 private String itemName;
 @Field(name="quantity")
 private int quantity;
}

21.2.3 Task 3: Defining IDs
With EclipseLink, you can use any field (or set of fields) as your ID when using a
non-relational database, just like any other relational Entity. You can use a natural ID
(that is, assigned by the application) or a generated ID (that is, assigned by EclipseLink).

MongoDB also requires an _id field in every document. If no _id field is present,
Mongo will automatically generate and assign the _id field using an OID (object
identifier), which is similar to a UUID (universally unique identifier).

■ To use a natural ID as the Mongo ID, simply name the field as _id by using the
@Field (or @Column) annotation without any of the relational details.

For example:

@Field(name="_id")
private long id;

■ To use the generated Mongo OID as your ID, simply include @Id,
@GeneratedValue, and @Field(name="_id") annotations in the object’s ID field
mapping.

The @GeneratedValue tells EclipseLink to use the Mongo OID to generate this ID
value. To use a UUID instead of the Mongo OID, use the @UUIDGenerator
annotation.

Note: MongoDB does not support @SequenceGenerator or
@TableGenerator nor the IDENTITY, TABLE, and SEQUENCE generation
types.

The ID of the Mongo OID or UUID is not a numerical value; you must
map it as a String or byte[].

For example:

@Id
@GeneratedValue
@Field(name="_id")
private String id;

Implementing the Solution

21-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

21.2.4 Task 4: Defining Mappings
With non-relational databases, EclipseLink maps objects to structured data such as
XML or JSON. NoSQL supports all existing JPA mapping annotations and XML,
including embedded data and embedded collections. If you do not define a mapping
annotation (or XML) for an attribute EclipseLink uses the default mapping.

Basic Mappings
Because the NoSQL defaults follow the JPA defaults, most simple mappings do not
require any configuration. Field names used in the Mongo BSON document will
mirror the object attribute names (in uppercase). To use a different BSON field name,
use the @Field annotation.

Note: Do not use @Column or @JoinColumn. Instead use @Field and
@JoinField. Additionally, the @JoinTable and @CollectionTable
annotations are not supported or required.

Embedded Values
Use the @Embedded annotation to persist embedded values and the
@ElementCollection annotation for embedded collections. Because all data is stored in
the XML document, no separate table (that is, @CollectionTable) is needed.
Additionally, because embedded objects are nested in the document and do not
require unique field names, the @AttributeOverride attribute is not needed.

Note: Normally, you will not need to use the @Embedded annotation,
since it will default correctly.

However, EclipseLink does not default @ElementCollection
mappings, therefore you must include that annotation.

Relationships
You should use the relationship annotations (such as @OneToOne, @ManyToOne,
@OneToMany and @ManyToMany) only with external relationships. Relationships within the
document should use the Embedded Values.

EclipseLink fully supports external relationships to other documents by using a
foreign key. The ID of the target object is stored in the source object's document. For a
collection, a collection of IDs is stored. Use the @JoinField annotation to define the
name of the foreign key field in the BSON document.

Note: EclipseLink does not support the mappedBy option for
relationships with non-relational databases, as the foreign keys would
need to be stored on both sides.

You can also define a relationship mapping by using a query. However you must use a
DescriptorCustomizer instead of an annotation.

Implementing the Solution

Using EclipseLink with NoSQL Databases 21-5

Example 21–2 Sample Mappings

@Basic
private String description;
@Basic
private double totalCost = 0;
@Embedded
private Address billingAddress;
@Embedded
private Address shippingAddress;
@ElementCollection
private List<OrderLine> orderLines = new ArrayList<OrderLine>();
@ManyToOne(fetch=FetchType.LAZY)
private Customer customer;

21.2.5 Task 5: Using Locking
Locking support is dependent on the NoSQL platform. Some NoSQL platforms may
offer support for optimistic version locking.

■ Oracle NoSQL – Locking is not supported.

■ MongoDB – Version locking is supported.

Note: MongoDB does not support transactions. If a lock error occurs
during a transaction, any objects that have been previously written
will not be rolled back.

If the NoSQL platform does not support locking, you can use the @Version annotation
(as shown in Example 21–3) to validate objects on merge() operations.

Example 21–3 Using @Version

@Version
private long version;
...

21.2.6 Task 6: Defining Queries
Querying in NoSQL is dependent on the NoSQL platform. Some NoSQL data-sources
may support dynamic querying through their own query language, others may not
support querying at all.

21.2.6.1 JPQL Queries
The Java Persistence Query Language (JPQL) is the query language defined by JPA.
JPQL can be used for reading (SELECT), as well as bulk updates (UPDATE) and deletes
(DELETE). You can use JPQL in a NamedQuery (through annotations or XML) or in
dynamic queries using the EntityManager createQuery() API.

■ Oracle NoSQL – Supports find() and JPQL and Criteria by Id or with no WHERE
clause.

■ MongoDB – Supports JPQL and Criteria queries, with some restrictions: joins,
sub-selects, group by and certain database functions are not supported.

Implementing the Solution

21-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

Example 21–4 Oracle NoSQL JPQL Examples

Example 21–5 MongoDB JPQL Examples

Query query = em.createQuery("Select o from Order o where o.totalCost > 1000");
List<Order> orders = query.getResultList();

Query query = em.createQuery("Select o from Order o where o.description like
'Pinball%'");
List<Order> orders = query.getResultList();

Query query = em.createQuery("Select o from Order o join o.orderLines l where
l.description = :desc");
query.setParameter("desc", "shipping");
List<Order> orders = query.getResultList();

Query query = em.createQuery("Select o.totalCost from Order o");
List<BigDecimal> orders = query.getResultList();

21.2.6.2 Native Queries
Native SQL queries are not translated, and passed directly to the database. SQL
queries can be used for advanced queries that require database specific syntax.

Although native SQL queries are not supported with NoSQL, some NoSQL platforms
have their own, native query language. EclipseLink supports JPA native queries using
that language.

■ MongoDB – Supports JPA native queries by using the MongoDB native command
language.

Example 21–6 Oracle NoSQL Native Query

Example 21–7 MongoDB Native Query

Query query = em.createNativeQuery("db.ORDER.findOne({\"_id\":\"" + oid + "\"})",
Order.class);
Order order = (Order)query.getSingleResult();

21.2.7 Task 7: Connecting to the Database
EclipseLink connects to NoSQL databases through the persistence.xml file. Use the
<eclipselink.target-database> property to define the specific NoSQL platform. You
must also define a connection with the <eclipselink.nosql.connection-spec>
property. Additional connection values (such as the db, port, and host can also be
defined.

Note: To connect to a cluster of Mongo databases, enter a comma,
separated list of values for the host and port.

Additional Resources

Using EclipseLink with NoSQL Databases 21-7

Example 21–8 Oracle NoSQL persistence.xml Example

Example 21–9 MongoDB persistence.xml Example

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_2_0.xsd"
version="2.0">
 <persistence-unit name="acme" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-database"
value="org.eclipse.persistence.nosql.adapters.mongo.MongoPlatform"/>
 <property name="eclipselink.nosql.connection-spec"
value="org.eclipse.persistence.nosql.adapters.mongo.MongoConnectionSpec"/>
 <property name="eclipselink.nosql.property.mongo.port" value="27017,
27017"/>
 <property name="eclipselink.nosql.property.mongo.host" value="host1,
host2"/>
 <property name="eclipselink.nosql.property.mongo.db" value="acme"/>
 </properties>
 </persistence-unit>
</persistence>

21.3 Additional Resources
See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

■ Developing JAXB Applications Using EclipseLink MOXy

■ Java Persistence API (JPA) Extensions Reference for EclipseLink

■ EclipseLink Extensions Incubator:
http://wiki.eclipse.org/EclipseLink/Development/Incubator/Pla
tform

Additional Resources

21-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

22

Using EclipseLink with the Oracle Database 22-1

22Using EclipseLink with the Oracle Database

This chapter provides instructions for understanding and usingEclipseLink features
that are designed specifically to support the Oracle Database platform.

This chapter includes the following sections:

■ Introduction to the Solution

■ Implementing the Solution

■ Additional Resources

Use Case
EclipseLink offers a persistence solution that is designed to work with any database.
However, applications that plan to use the Oracle Database platform can take
advantage of enhanced support for the Oracle Database.

Solution
The solution is achieved by using various EclipseLink APIs and Oracle products.
Applications choose to implement different EclipseLink APIs based on the Oracle
Database feature or products being used.

Components
■ EclipseLink 2.4 or later.

■ Oracle Database

■ Additional Oracle Database and Middleware products are required depending on
the features that an application chooses to use.

22.1 Introduction to the Solution
EclipseLink includes enhanced support for the Oracle Database platform. Applications
that have standardized on the Oracle Database can take advantage of this support to
gain ease-of-use, increase performance and scalability, and enhance security.
EclipseLink includes support for native Oracle JDBC-specific APIs, PL/SQL, Oracle
Real Application Clusters (RAC), Oracle Virtual Private Database, Oracle Proxy
Authentication, and Oracle Spatial and Graph. Refer to the Oracle Database
documentation for details on these technologies.

Much of the Oracle Database platform support is contained in the
org.eclipse.persistence.platform.database.oracle* package. For details on the
APIs, see Java API Reference for EclipseLink.

Implementing the Solution

22-2 Java Persistence API (JPA) Extensions Reference for EclipseLink

22.2 Implementing the Solution
The solution in this section is organized according to technology. The organization
allows developers to easily understand the different parts of the solution and choose
specific parts to implement.

This section includes the following topics:

■ Using Oracle Platform-Specific APIs

■ Using Oracle PL/SQL With EclipseLink

■ Using Oracle Virtual Private Database

■ Using Oracle Proxy Authentication

■ Using EclipseLink with Oracle RAC

■ Using Oracle Spatial and Graph

22.2.1 Using Oracle Platform-Specific APIs
Oracle Database platform support is provided in the
org.eclipse.persistence.platform.database.OraclePlatform class, the
org.eclipse.persistence.platform.database.oracle* packages, and the
org.eclipse.persistence.mappings.xdb package for Oracle XML Database support.
For details on the API, see Java API Reference for EclipseLink. For details on specific
Oracle SQL types, see Oracle Database JDBC Java API Reference.

The following support is provided for the Oracle Database:

■ Batch writing with optimistic locking

■ Native SQL for byte[], Date, Time, Timestamp and Calendar

■ Support for BLOB and CLOB database types using Oracle JDBC specific LOBLocator
for large values

Note: For non-Oracle thin JDBC drivers or applications
environments where the thin driver is wrapped, it is possible to turn
off LOBLocator usage using
setShouldUseLocatorForLOBWrite(boolean) on the platform
instance.

■ Native support for outer join syntax (+) =

■ Native Sequencing (SELECT SEQ_NAME.NEXTVAL FROM DUAL)

■ Native SQL/ROWNUM support for MaxRows and FirstResult filtering.

■ Hierarchical selects (connect by prior)

■ Returning clause

■ Custom expression functions (REGEXP_LIKE, LOCATE, ATAN2, LOG, CONCAT, SYSDATE
(Date, Time, Today), EXCEPT)

■ PLSQL data types, stored functions, stored procedure syntax for invoking and
parameter passing, output parameters and output cursors. See Section 22.2.2,
"Using Oracle PL/SQL With EclipseLink."

■ Timestamp query for use in optimistic locking using SYSDATE and SYSTIMESTAMP

■ Multi-byte support of NCHAR, NSTRING, and NCLOB

Implementing the Solution

Using EclipseLink with the Oracle Database 22-3

■ Support of TIMESTAMP, TIMESTAMPTZ, and TIMESTAMPLTZ

■ Oracle XML Database support of XMLType field and custom XSQL functions
(extract, extractValue, existsNode, isFragment, getStringVal, and
getNumberVal)

■ XDK XML parser

■ Flashback Querying in Historical Sessions

■ Object-relational Mappings (ReferenceMapping, StructureMapping,
NestedTableMapping, ArrayMapping, ObjectArrayMapping)

■ Oracle AQ

■ Oracle Real Application Clusters. See Section 22.2.5, "Using EclipseLink with
Oracle RAC."

■ Virtual Private Database (VPD), including Oracle Label Security. Section 22.2.3,
"Using Oracle Virtual Private Database."

■ Proxy Authentication. See Section 22.2.4, "Using Oracle Proxy Authentication."

22.2.2 Using Oracle PL/SQL With EclipseLink
EclipseLink includes APIs for use with Oracle PL/SQL. The APIs are located in the
org.eclipse.persistence.platform.database.oracle.plsql package and the
org.eclipse.persistence.platform.database.oracle.annotations package.

This Section contains the following topics:

■ Executing an Oracle PL/SQL Stored Function

■ Handling PL/SQL arguments for Oracle Stored Procedures

22.2.2.1 Executing an Oracle PL/SQL Stored Function
Oracle PL/SQL stored functions can be used to return complex PL/SQL data-types
such as RECORD types and TABLE types. PL/SQL types are not supported by Oracle
JDBC, so these types must be translated to Oracle OBJECT types and VARRAY types.
OBJECT types are returned as java.sql.Struct and VARRAY as java.sql.Array types in
JDBC.

Executing PL/SQL stored functions or procedures requires defining mirror OBJECT and
VARRAY types for the RECORD and TABLE types. OBJECT types can be mapped to classes
annotated with either @Entity or @Embeddable using the @Struct annotation.
Typically, classes annotated with @Embeddable are used, unless the OBJECT type defines
an Id and can be stored in a table. Nested OBJECT and VARRAY types are mapped using
the @Structure and @Array annotations.

Use the PLSQLStoredFunctionCall class or the @NamedPLSQLStoredFunctionQuery
annotation to call a stored function using PL/SQL types. The
PLSQLStoredProcedureCall class and the @NamedPLSQLStoredProcedureQuery
annotation also exist for stored procedures. Use the StoredFunctionCall class, the
@NamedStoredFunctionQuery annotation, the StoredProcedureCall class, and the
@NamedStoredProcedureQuery annotation for stored functions and procedure that do
not return complex PL/SQL types.

22.2.2.1.1 Main Tasks To execute an Oracle PL/SQL stored function:

■ Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type

■ Task 2: Define an Object Type Mirror

Implementing the Solution

22-4 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Task 3: Define a Java Class Mapping The OBJECT Type

■ Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager

■ Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery

■ Task 6: Use the Stored Function in a Query

22.2.2.1.2 Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type

CREATE OR REPLACE PACKAGE EMP_PKG AS
TYPE EMP_REC IS RECORD (F_NAME VARCHAR2(30), L_NAME VARCHAR2(30),
 SALARY NUMBER(10,2));
FUNCTION GET_EMP RETURN EMP_REC;
END EMP_PKG;

CREATE OR REPLACE PACKAGE BODY EMP_PKG AS
FUNCTION GET_EMP RETURN EMP_REC AS
 P_EMP EMP_REC;
 BEGIN P_EMP.F_NAME := 'Bob'; P_EMP.F_NAME := 'Smith'; P_EMP.SALARY := 30000;
 RETURN P_EMP;
END;
END EMP_PKG;

22.2.2.1.3 Task 2: Define an Object Type Mirror

CREATE OR REPLACE TYPE EMP_TYPE AS OBJECT (F_NAME VARCHAR2(30),
 L_NAME VARCHAR2(30), SALARY NUMBER(10,2))

22.2.2.1.4 Task 3: Define a Java Class Mapping The OBJECT Type

@Embeddable
@Struct(name="EMP_TYPE", fields={"F_NAME", "L_NAME", "SALARY"})
public class Employee {
 @Column(name="F_NAME")
 private String firstName;
 @Column(name="L_NAME")
 private String lastName;
 @Column(name="SALARY")
 private BigDecimal salary;
 ...
}

22.2.2.1.5 Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager

import javax.persistence.Query;
import org.eclipse.persistence.platform.database.orcle.plsql.
 PLSQLStoredFunctionCall;
import org.eclipse.persistence.queries.ReadAllQuery;

DataReadQuery databaseQuery = new DataReadQuery();
databaseQuery.setResultType(DataReadQuery.VALUE);
PLSQLrecord record = new PLSQLrecord();
record.setTypeName("EMP_PKG.EMP_REC");
record.setCompatibleType("EMP_TYPE");
record.setJavaType(Employee.class);
record.addField("F_NAME", JDBCTypes.VARCHAR_TYPE, 30);
record.addField("L_NAME", JDBCTypes.VARCHAR_TYPE, 30);
record.addField("SALARY", JDBCTypes.NUMERIC_TYPE, 10, 2);

Implementing the Solution

Using EclipseLink with the Oracle Database 22-5

PLSQLStoredFunctionCall call = new PLSQLStoredFunctionCall(record);
call.setProcedureName("EMP_PKG.GET_EMP");
databaseQuery.setCall(call);

Query query = ((JpaEntityManager)entityManager.getDelegate()).
 createQuery(databaseQuery);
Employee result = (Employee)query.getSingleResult();

22.2.2.1.6 Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery

@NamedPLSQLStoredFunctionQuery(name="getEmployee", functionName="EMP_PKG.GET_EMP",
 returnParameter=@PLSQLParameter(name="RESULT", databaseType="EMP_PKG.EMP_REC"))
@Embeddable
@Struct(name="EMP_TYPE", fields={"F_NAME", "L_NAME", "SALARY"})
@PLSQLRecord(name="EMP_PKG.EMP_REC", compatibleType="EMP_TYPE",
 javaType=Employee.class,fields={@PLSQLParameter(name="F_NAME"),
@PLSQLParameter(name="L_NAME"), @PLSQLParameter(name="SALARY",
 databaseType="NUMERIC_TYPE")})

public class Employee {
 ...
}

22.2.2.1.7 Task 6: Use the Stored Function in a Query

Query query = entityManager.createNamedQuery("getEmployee");
Employee result = (Employee)query.getSingleResult();

22.2.2.2 Handling PL/SQL arguments for Oracle Stored Procedures
The standard way of handling a stored procedure is to build an instance of the
StoredProcedureCall class. However, the arguments must be compatible with the
JDBC specification. To handle Oracle PL/SQL arguments (for example, BOOLEAN, PLS_
INTEGER, PL/SQL record, and so on), use the PLSQLStoredProcedureCall class.

Note: the PLSQLStoredProcedureCall class is only supported on
Oracle8 or higher.

22.2.2.2.1 Using the PLSQLStoredProcedureCall Class The following example
demonstrates handling PL/SQL arguments using the PLSQLStoredProcedureCall
class. The example is based on the following target procedure:

PROCEDURE bool_in_test(x IN BOOLEAN)

Example of Using the PLSQLStoredProcedureCall Class
import java.util.List;
import java.util.ArrayList;
import org.eclipse.persistence.logging.SessionLog;
import org.eclipse.persistence.platform.database.jdbc.JDBCTypes;
import org.eclipse.persistence.platform.database.oracle.Oracle10Platform;
import org.eclipse.persistence.platform.database.oracle.OraclePLSQLTypes;
import org.eclipse.persistence.platform.database.oracle.PLSQLStoredProcedureCall;
import org.eclipse.persistence.queries.DataModifyQuery;
import org.eclipse.persistence.sessions.DatabaseLogin;
import org.eclipse.persistence.sessions.DatabaseSession;

Implementing the Solution

22-6 Java Persistence API (JPA) Extensions Reference for EclipseLink

import org.eclipse.persistence.sessions.Project;
import org.eclipse.persistence.sessions.Session;

public class TestClass {

 public static String DATABASE_USERNAME = "username";
 public static String DATABASE_PASSWORD = "password";
 public static String DATABASE_URL = "jdbc:oracle:thin:@localhost:1521:ORCL";
 public static String DATABASE_DRIVER = "oracle.jdbc.driver.OracleDriver";

 public static void main(String[] args) {
 Project project = new Project();
 DatabaseLogin login = new DatabaseLogin();
 login.setUserName(DATABASE_USERNAME);
 login.setPassword(DATABASE_PASSWORD);
 login.setConnectionString(DATABASE_URL);
 login.setDriverClassName(DATABASE_DRIVER);
 login.setDatasourcePlatform(new Oracle10Platform());
 project.setDatasourceLogin(login);
 Session s = project.createDatabaseSession();
 s.setLogLevel(SessionLog.FINE);
 ((DatabaseSession)s).login();

 PLSQLStoredProcedureCall call = new PLSQLStoredProcedureCall();
 call.setProcedureName("bool_in_test");
 call.addNamedArgument("X", OraclePLSQLTypes.PLSQLBoolean);
 DataModifyQuery query = new DataModifyQuery();
 query.addArgument("X");
 query.setCall(call);
 List queryArgs = new ArrayList();
 queryArgs.add(Integer.valueOf(1));
 s.executeQuery(query, queryArgs);
 }
}

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

...
[EclipseLink Info]: 2007.11.23 01:03:23.890--DatabaseSessionImpl(15674464)--
 Thread(Thread[main,5,main])-- login successful
[EclipseLink Fine]: 2007.11.23 01:03:23.968--DatabaseSessionImpl(15674464)--
 Connection(5807702)--Thread(Thread[main,5,main])--
DECLARE
 X_TARGET BOOLEAN := SYS.SQLJUTL.INT2BOOL(:1);
BEGIN
 bool_in_test(X=>X_TARGET);
END;
 bind => [:1 => 1]

Note: Notice the conversion of the Integer to a PL/SQL BOOLEAN type
in the DECLARE stanza (as a similar conversion is used for OUT
BOOLEAN arguments).

22.2.2.2.2 Mixing JDBC Arguments With Non JDBC Arguments A Stored Procedure may
have a mix of regular and non JDBC arguments. Use the PLSQLStoredProcedureCall
class when at least one argument is a non JDBC type. In addition, some additional
information may be required for the JDBC type (length, scale or precision) because the

Implementing the Solution

Using EclipseLink with the Oracle Database 22-7

target procedure is invoked from an anonymous PL/SQL block. The example is based
on the following target procedure:

PROCEDURE two_arg_test(x IN BOOLEAN, y IN VARCHAR)

Example of Mixing JDBC Arguments With NonJDBC Arguments
import org.eclipse.persistence.platform.database.jdbc.JDBCTypes;
...
 PLSQLStoredProcedureCall call = new PLSQLStoredProcedureCall();
 call.setProcedureName("two_arg_test");
 call.addNamedArgument("X", OraclePLSQLTypes.PLSQLBoolean);
 call.addNamedArgument("Y", JDBCTypes.VARCHAR_TYPE, 40);
 DataModifyQuery query = new DataModifyQuery();
 query.addArgument("X");
 query.addArgument("Y");
 query.setCall(call);
 List queryArgs = new ArrayList();
 queryArgs.add(Integer.valueOf(0));
 queryArgs.add("test");
 boolean worked = false;
 String msg = null;
 s.executeQuery(query, queryArgs);

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 02:54:46.109--DatabaseSessionImpl(15674464)--
 Connection(5807702)--Thread(Thread[main,5,main])--
DECLARE
 X_TARGET BOOLEAN := SYS.SQLJUTL.INT2BOOL(:1);
 Y_TARGET VARCHAR(40) := :2;
BEGIN
 two_arg_test(X=>X_TARGET, Y=>Y_TARGET);
END;
 bind => [:1 => 0, :2 => test]

22.2.2.2.3 Handling IN and OUT Arguments The following example demonstrates a stored
procedure that contain both IN and OUT arguments and is based on the following target
procedure:

PROCEDURE two_arg_in_out(x OUT BINARY_INTEGER, y IN VARCHAR) AS
BEGIN
 x := 33;
END;

Example of Handling IN and OUT Arguments
import static org.eclipse.persistence.platform.database.oracle.OraclePLSQLTypes.
 BinaryInteger;
...
 PLSQLStoredProcedureCall call = new PLSQLStoredProcedureCall();
 call.setProcedureName("two_arg_in_out");
 call.addNamedOutputArgument("X", OraclePLSQLTypes.BinaryInteger);
 call.addNamedArgument("Y", JDBCTypes.VARCHAR_TYPE, 40);
 DataReadQuery query = new DataReadQuery();
 query.setCall(call);
 query.addArgument("Y");
 List queryArgs = new ArrayList();

Implementing the Solution

22-8 Java Persistence API (JPA) Extensions Reference for EclipseLink

 queryArgs.add("testsdfsdfasdfsdfsdfsdfsdfsdfdfsdfsdffds");
 boolean worked = false;
 String msg = null;
 List results = (List)s.executeQuery(query, queryArgs);
 DatabaseRecord record = (DatabaseRecord)results.get(0);
 BigDecimal x = (BigDecimal)record.get("X");
 if (x.intValue() != 33) {
 System.out.println("wrong x value");
 }

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 03:15:25.234--DatabaseSessionImpl(15674464)--
 Connection(5807702)--Thread(Thread[main,5,main])--
DECLARE
 Y_TARGET VARCHAR(40) := :1;
 X_TARGET BINARY_INTEGER;
BEGIN
 two_arg_in_out(X=>X_TARGET, Y=>Y_TARGET);
 :2 := X_TARGET;
END;
 bind => [:1 => testsdfsdfasdfsdfsdfsdfsdfsdfdfsdfsdffds, X => :2]

Note: The order in which arguments are bound at runtime must be
altered. Anonymous PL/SQL blocks must process the ordinal markers
(:1,:2) for all the IN arguments first, then the OUT arguments. Inside
the block, the arguments are passed in the correct order for the target
procedure, but the bind order is managed in the DECLARE stanza and
after the target procedure has been invoked.

22.2.2.2.4 Handling IN OUT Arguments Anonymous PL/SQL blocks cannot natively
handle IN OUT arguments. The arguments must be split into two parts: an IN-half and
an OUT-half. The following example demonstrates a stored procedure that handles IN
OUT arguments and is based on the following target procedure:

PROCEDURE two_args_inout(x VARCHAR, y IN OUT BOOLEAN) AS
BEGIN
 y := FALSE;
END;

Example of Handling IN OUT Arguments
...
 PLSQLStoredProcedureCall call = new PLSQLStoredProcedureCall();
 call.setProcedureName("two_args_inout");
 call.addNamedArgument("X", JDBCTypes.VARCHAR_TYPE, 20);
 call.addNamedInOutputArgument("Y", OraclePLSQLTypes.PLSQLBoolean);
 DataReadQuery query = new DataReadQuery();
 query.addArgument("X");
 query.addArgument("Y");
 query.setCall(call);
 List queryArgs = new ArrayList();
 queryArgs.add("test");
 queryArgs.add(Integer.valueOf(1));
 List results = (List)s.executeQuery(query, queryArgs);
 DatabaseRecord record = (DatabaseRecord)results.get(0);

Implementing the Solution

Using EclipseLink with the Oracle Database 22-9

 Integer bool2int = (Integer)record.get("Y");
 if (bool2int.intValue() != 0) {
 System.out.println("wrong bool2int value");
 }

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 03:39:55.000--DatabaseSessionImpl(25921812)--
 Connection(33078541)--Thread(Thread[main,5,main])--
DECLARE
 X_TARGET VARCHAR(20) := :1;
 Y_TARGET BOOLEAN := SYS.SQLJUTL.INT2BOOL(:2);
BEGIN
 two_args_inout(X=>X_TARGET, Y=>Y_TARGET);
 :3 := SYS.SQLJUTL.BOOL2INT(Y_TARGET);
END;
 bind => [:1 => test, :2 => 1, Y => :3]

Note: The Y argument is split in two using the :2 and :3 ordinal
markers.

22.2.3 Using Oracle Virtual Private Database
EclipseLink supports Oracle Virtual Private Database (VPD). Oracle VPD is a
server-enforced, fine-grained access control mechanism. Oracle VPD ties a security
policy to a table by dynamically appending SQL statements with a predicate to limit
data access at the row level. You can create your own security policies, or use Oracle's
custom implementation called Oracle Label Security (OLS). For details about Oracle
VPD, see Oracle Database Security Guide. For details about Oracle Label Security, see
Oracle Label Security Administrator's Guide.

For details about using Oracle VPD with Multitenancy, see Section 14.4, "Using VPD
Multi-Tenancy."

To use the Oracle Database VPD feature in an EclipseLink application, an isolated
cache should be used. Any entity that maps to a table that uses Oracle VPD should
have the descriptor configured as isolated. In addition, you typically use exclusive
connections.

To support Oracle VPD, you must implement session event handlers that the are
invoked during the persistence context's life cycle. The session event handler you must
implement depends on whether or not you are using Oracle Database proxy
authentication.

Oracle VPD with Oracle Database Proxy Authentication
By using Oracle Database proxy authentication, you can set up Oracle VPD support
entirely in the database. That is, rather than session event handlers to execute SQL, the
database performs the required setup in an after login trigger using the proxy session_
user.

For details on using Oracle proxy authentication, see Section 22.2.4, "Using Oracle
Proxy Authentication."

Oracle VPD Without Oracle Database Proxy Authentication
If you are not using Oracle Database proxy authentication, implement session event
handlers for the following session events:

Implementing the Solution

22-10 Java Persistence API (JPA) Extensions Reference for EclipseLink

■ postAcquireExclusiveConnection: used to perform Oracle VPD setup at the time
a dedicated connection is allocated to an isolated session and before the isolated
session user uses the connection to interact with the database.

■ preReleaseExclusiveConnection: used to perform Oracle VPD cleanup at the
time the isolated session is released and after the user is finished interacting with
the database.

In the implementation of these handlers, you can obtain the required user credentials
from the associated session's properties.

22.2.4 Using Oracle Proxy Authentication
JPA and EclipseLink are typically used in a middle tier/server environment with a
shared connection pool. A connection pool allows database connections to be shared to
avoid the cost of reconnecting to the database. Typically, the user logs into the
application but does not have their own database login as a shared login is used for
the connection pool. The provides a mechanism to set a proxy user on an existing
database connection. This allows for a shared connection pool to be used, but to also
gives the database a user context.

Oracle proxy authentication is configured using the following persistence unit
properties on an EntityManager object:

■ "eclipselink.oracle.proxy-type" :
oracle.jdbc.OracleConnection.PROXYTYPE_USER_NAME, PROXYTYPE_
CERTIFICATE, PROXYTYPE_DISTINGUISHED_NAME

■ oracle.jdbc.OracleConnection.PROXY_USER_NAME : user_name

■ oracle.jdbc.OracleConnection.PROXY_USER_PASSWORD : password

■ oracle.jdbc.OracleConnection.PROXY_DISTINGUISHED_NAME

■ oracle.jdbc.OracleConnection.PROXY_CERTIFICATE

■ oracle.jdbc.OracleConnection.PROXY_ROLES

Note: This connection is only used for writing by default; reads still
use the shared connection pool. To force reads to also use the
connection, the eclipselink.jdbc.exclusive-connection.mode
property should be set to Always, but this depends on if the
application wishes to audit writes or reads as well. The
eclipselink.jdbc.exclusive-connection.is-lazy property
configures whether the connection should be connected up front, or
only when first required. If only writes are audited, then lazy
connections allow for the cost of creating a new database connection
to be avoided unless a write occurs.

22.2.4.1 Main Tasks:
To setup proxy authentication, create an EntityManager object and set the persistence
unit properties. Three examples are provided:

Task: Audit Only Writes
To configure proxy authentication when auditing only writes:

Map properties = new HashMap();
properties.put("eclipselink.oracle.proxy-type",
 oracle.jdbc.OracleConnection.PROXYTYPE_USER_NAME);

Implementing the Solution

Using EclipseLink with the Oracle Database 22-11

properties.put(oracle.jdbc.OracleConnection.PROXY_USER_NAME, user);
properties.put(oracle.jdbc.OracleConnection.PROXY_USER_PASSWORD, password);
properties.put("eclipselink.jdbc.exclusive-connection.mode", "Transactional");
properties.put("eclipselink.jdbc.exclusive-connection.is-lazy", "true");
EntityManager em = factory.createEntityManager(properties);

Task: Audit Reads and Writes
To configure proxy authentication when auditing reads and writes:

Map properties = new HashMap();
properties.put("eclipselink.oracle.proxy-type",
 oracle.jdbc.OracleConnection.PROXYTYPE_USER_NAME);
properties.put(oracle.jdbc.OracleConnection.PROXY_USER_NAME, user);
properties.put(oracle.jdbc.OracleConnection.PROXY_USER_PASSWORD, password);
properties.put("eclipselink.jdbc.exclusive-connection.mode", "Always");
properties.put("eclipselink.jdbc.exclusive-connection.is-lazy", "false");
EntityManager em = factory.createEntityManager(properties);

Task: Configure Proxy Authentication in Java EE Applications
If a JEE and JTA managed entity manager is used, specifying a proxy user and
password can be more difficult, as the entity manager and JDBC connection is not
under the applications control. The persistence unit properties can still be specified on
an EntityManager object as long as this is done before establishing a database
connection.

If using JPA 2.n, the setProperty API can be used:

em.setProperty("eclipselink.oracle.proxy-type",
 oracle.jdbc.OracleConnection.PROXYTYPE_USER_NAME);
em.setProperty(oracle.jdbc.OracleConnection.PROXY_USER_NAME, user);
em.setProperty(oracle.jdbc.OracleConnection.PROXY_USER_PASSWORD, password);
em.setProperty("eclipselink.jdbc.exclusive-connection.mode", "Always");
em.setProperty("eclipselink.jdbc.exclusive-connection.is-lazy", "false");

Otherwise, the getDelegate API can be used:

Map properties = new HashMap();
properties.put("eclipselink.oracle.proxy-type",
 oracle.jdbc.OracleConnection.PROXYTYPE_USER_NAME);
properties.put(oracle.jdbc.OracleConnection.PROXY_USER_NAME, user);
properties.put(oracle.jdbc.OracleConnection.PROXY_USER_PASSWORD, password);
properties.put("eclipselink.jdbc.exclusive-connection.mode", "Always");
properties.put("eclipselink.jdbc.exclusive-connection.is-lazy", "false");
((org.eclipse.persistence.internal.jpa.EntityManagerImpl)em.getDelegate()).
 setProperties(properties);

22.2.4.2 Caching and security
By default, EclipseLink maintains a shared (L2) object cache. This is fine for auditing,
but if Oracle VPD or user based security is used to prevent the reading of certain
tables/classes, then the cache may need to be disabled for these secure classes. To
disable the shared cache, see "Disabling Entity Caching" on page 10-3.

If the database user is used to check security for reads, then set the
eclipselink.jdbc.exclusive-connection.mode property to Isolated to only use the
user connection for reads for the classes whose shared cache has been disabled
(isolated).

Implementing the Solution

22-12 Java Persistence API (JPA) Extensions Reference for EclipseLink

22.2.4.3 Using Oracle Virtual Private Database for Row-Level Security
The Oracle Virtual Private Database (VPD) feature allows for row level security within
the Oracle database. Typically, database security only allows access privileges to be
assigned per table. Row level security allows different users to have access to different
rows within each table.

The Oracle proxy authentication features in EclipseLink can be used to support Oracle
VPD. The proxy user allows for the row level security to be checked. When using
Oracle VPD, it is also important to disable shared caching for the secured objects as
these objects should not be shared. To disable the shared cache, see "Disabling Entity
Caching" on page 10-3.

22.2.5 Using EclipseLink with Oracle RAC
Oracle Real Application Clusters (RAC) extends the Oracle Database so that you can
store, update, and efficiently retrieve data using multiple database instances on
different servers at the same time. Oracle RAC provides the software that manages
multiple servers and instances as a single group. Applications use Oracle RAC features
to maximize connection performance and availability and to mitigate down-time due
to connection problems. Applications have different availability and performance
requirements and implement Oracle RAC features accordingly. For details on Oracle
RAC, see the Oracle Real Application Clusters Administration and Deployment Guide.

The Oracle Database and the Oracle WebLogic Server both provide connection pool
implementations that can create connections to a RAC database and take advantage of
various Oracle RAC features. The features include Fast Connection Failover (FCF),
Run-Time Connection Load Balancing (RCLB), and connection affinity. In WebLogic
Server, applications create JDBC data sources (Multi Data Source or GridLink Data
Source) to connect to a RAC-enabled database. Standalone applications use the
Universal Connection Pool (UCP) JDBC connection pool API (ucp.jar) to create data
sources. Both connection pool implementations require the Oracle Notification Service
library (ons.jar). This library is the primary means by which the connection pools
register for, and listen to, RAC events. For those new to these technologies, refer to the
Oracle Universal Connection Pool for JDBC Developer's Guide and the Oracle Fusion
Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server.

This sections assumes that you have an Oracle JDBC driver and Oracle RAC-enabled
database. Make sure that the RAC-enabled database is operational and that you know
the connection URL. In addition, download the database Oracle Client software that
contains the ons.jar file. The ucp.jar file is included with the Oracle Database.

22.2.5.1 Accessing a RAC-Enabled database from Java EE Applications
The tasks in this section are used to connect to a RAC-enabled database from a
persistence application implemented in Oracle WebLogic Server.

22.2.5.1.1 Task 1: Configure a Multi Data Source or GridLink Data Source Refer to Chapter 3,
"Using EclipseLink with WebLogic Server," and Oracle Fusion Middleware Configuring
and Managing JDBC Data Sources for Oracle WebLogic Server for details about
configuring a data source in WebLogic Server for Oracle RAC.

22.2.5.1.2 Task 2: Configure the Persistence Unit Edit the persistence.xml file and
include the name of the data source within a persistence unit configuration. For
example:

<persistence-unit name="OrderManagement">
 <jta-data-source>jdbc/MyOrderDB</jta-data-source>

Implementing the Solution

Using EclipseLink with the Oracle Database 22-13

 ...
</persistence-unit>

22.2.5.1.3 Task 3: Include the Required JARs Ensure that the ons.jar is in the WebLogic
Server classpath.

22.2.5.2 Accessing a RAC-Enabled Database from Standalone Applications
The tasks in this section are used to connect to a RAC database from a standalone
persistence application. The tasks demonstrate how to use UCP data sources which are
required for advanced RAC features.

22.2.5.2.1 Task 1: Create a UCP Data Source A UCP data source is used to connect to a
RAC database. The data source can specify advanced RAC configuration. For details
on using advanced RAC features with UCP, see Oracle Universal Connection Pool for
JDBC Developer's Guide. The following example creates a data source and enables FCF
and configures ONS.

PoolDataSource datasource = PoolDataSourceFactory.getPoolDataSource();
datasource.setONSConfiguration(“nodes=host1:4200,host2:4200”);
datasource.setFastConnectionFailoverEnabled(true);
datasource.setConnectionFactoryClassName(“oracle.jdbc.pool.OracleDataSource”);
datasource.setURL(“jdbc:oracle:thin:@DESCRIPTION=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host3)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host4)(PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))”);

Applications that do not require the advanced features provided by RAC and UCP can
connect to a RAC-enabled database using the native connection pool in EclipseLink. In
this case, edit the persistence.xml file for you applications and add the RAC URL
connection string for a persistence unit. For example:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 persistence_1_0.xsd" version="1.0">
 <persistence-unit name="my-app" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="javax.persistence.jdbc.driver"
 value="oracle.jdbc.OracleDriver"/>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:oracle:thin@(DESCRIPTION= "+ "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=rac_node) (PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name))")"/>
 <property name="javax.persistence.jdbc.user" value="user_name"/>
 <property name="javax.persistence.jdbc.password" value="password"/>
 </properties>
 </persistence-unit>
</persistence>

To use the persistence unit, instantiate an EntityManagerFactory as follows:

Persistence.createEntityManagerFactory("my-app");

Additional Resources

22-14 Java Persistence API (JPA) Extensions Reference for EclipseLink

22.2.5.2.2 Task 2: Use the UCP Data Source To use the UCP data source, instantiate an
EntityManagerFactory an pass in the data source as follows:

Map properties = new HashMap();
 properties.add("javax.persistence.nonJtaDataSource", datasource);
 Persistence.createEntityManagerFactory(properties);

22.2.5.2.3 Task 3: Include the Required JARs Ensure that both ucp.jar and ons.jar are in
the application classpath.

22.2.6 Using Oracle Spatial and Graph
EclipseLink provides added support for querying Oracle Spatial and Graph data in the
Oracle Database. Oracle Spacial and Graph is used to location-enable applications. It
provides advanced features for spatial data and analysis and for physical, logical,
network, and social and semantic graph applications. The spatial features provide a
schema and functions that facilitate the storage, retrieval, update, and query of
collections of spatial features in an Oracle database. For details about developing
Oracle Spacial and Graph applications, see Oracle Spatial and Graph Developer's Guide.
To use Oracle Spatial and Graph within WebLogic Server, see Chapter 3.2.6, "Task 7:
Extend the Domain to Use Advanced Oracle Database Features,"

EclipseLink applications can construct expressions that use Oracle Spacial and Graph
operators. See the org.eclipse.persistence.expressions.spatial API for details.
For Example:

ExpressionBuilder builder = new ExpressionBuilder();
Expression withinDistance = SpatialExpressions.withinDistance(myJGeometry1,
 myJGeometry2, "DISTANCE=10");
session.readAllObjects(GeometryHolder.class, withinDistance);

The above expression requires a oracle.spatial.geometry.JGeometry object. Use the
EclipseLink
org.eclipse.persistence.platform.database.oracle.converters.JGeometryConve
rter converter to convert the JGeometry object as it is read and written from the Oracle
database. The JGeometryConverter object must be added to the Oracle Database
platform either with the addStructConverter(StructConverter) method or specified
in the sessions.xml file. The JGeometry type must also be available on the classpath.

The following example demonstrates how to use the FUNCTION JPA extension to
perform Oracle Spatial queries. For details on the FUNCTION extension, see Java
Persistence API (JPA) Extensions Reference for EclipseLink:

SELECT a FROM Asset a, Geography geo WHERE geo.id = :id AND a.id IN :id_list AND
 FUNCTION('ST_INTERSECTS', a.geometry, geo.geometry) = 'TRUE'

SELECT s FROM SimpleSpatial s WHERE FUNCTION('MDSYS.SDO_RELATE', s.jGeometry,
 :otherGeometry, :params) = 'TRUE' ORDER BY s.id ASC

22.3 Additional Resources
See the following links for additional resources about the solutions discussed in this
chapter.

■ Java API Reference for EclipseLink

■ Java Persistence API (JPA) Extensions Reference for EclipseLink

■ Oracle Database JDBC Java API Reference

Additional Resources

Using EclipseLink with the Oracle Database 22-15

■ Oracle Database PL/SQL Language Reference

■ Oracle Database Security Guide

■ Oracle Label Security Administrator's Guide

■ Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server

■ Oracle Real Application Clusters Administration and Deployment Guide

■ Oracle Universal Connection Pool for JDBC Developer's Guide

■ Oracle Spatial and Graph Developer's Guide

Additional Resources

22-16 Java Persistence API (JPA) Extensions Reference for EclipseLink

	Contents
	Preface
	Audience
	Related Documents
	Conventions
	What's New in This Guide

	New and Changed Features for Release 2.6
	Other Significant Changes in this Document for Release 2.6
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in this Document for 12c (12.1.2)
	1 Introduction
	1.1 About This Guide
	1.2 What You Need to Know First
	1.3 The Use Cases
	2 Installing EclipseLink

	2.1 Prerequisites
	2.2 Installing EclipseLink for Java SE and Java EE Development
	1. Set the following system environment variables before installing EclipseLink:
	2. Download the EclipseLink install archive zip file, eclipse-ver_no.zip, from the EclipseLink downloads page at http://www.eclipse.org/eclipselink/downloads/
	Note

	3. Unzip the downloaded file in the desired installation directory. When you unzip the file, you will find an eclipselink subdirectory, containing multiple subdirectories. This directory is your new ECLIPSELINK_HOME directory. For example:
	4. If you want to use EclipseLink Workbench, additional steps are required. See "Configuring the Workbench Environment" at http://wiki.eclipse.org/Using_Workbench_ %28ELUG%29#Configuring_the_Workbench_Environment.

	2.3 Installing EclipseLink NoSQL Support
	2.4 Installing EclipseLink with OSGi Support
	3 Using EclipseLink with WebLogic Server
	Use Case
	Solution
	Components
	Note

	Samples

	3.1 Introduction to the Solution
	3.1.1 Advantages to Using EclipseLink with WebLogic Server

	3.2 Implementing the Solution
	3.2.1 Task 1: Prerequisites
	3.2.2 Task 3: Configure JMX MBean Extensions in WebLogic Server
	Note
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane, select your domain to open the Settings page for your domain.
	3. Expand Security > General.
	4. Select Anonymous Admin Lookup Enabled.
	5. To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

	3.2.3 Task 4: Use or Reconfigure the Logging Integration
	3.2.3.1 How the Logging Integration Works
	Table 3–1 Mapping of EclipseLink Logging Levels to WebLogic Server Logging Levels
	Table 3–2 Mapping of WebLogic Server Logging Levels to EclipseLink Logging Levels

	3.2.3.2 Viewing Persistence Unit Logging Levels in the Administration Console
	3.2.3.3 Overriding the Default Logging Integration
	3.2.3.4 Configuring WebLogic Server to Expose EclipseLink Logging
	3.2.3.5 Other Considerations

	3.2.4 Task 5: Add Persistence to Your Java Application Using EclipseLink
	3.2.5 Task 6: Configure a Data Source
	3.2.5.1 Ways to Configure Data Sources for JPA Applications
	3.2.5.2 Configure a Globally Scoped JTA Data Source
	3.2.5.2.1 Create the Data Source in WebLogic Server
	1. Create a new data source, as described in "Configure JDBC generic data sources" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
	Note

	2. Enter values in the Create a New JDBC data source wizard, according to your requirements. For more information, see "Create a JDBC Data Source" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
	Important

	3. Configure connection pools, as described in "Configuring Connection Pool Features" in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server. The connection pool configuration can affect EclipseLink's abilit...

	3.2.5.2.2 Configure the persistence.xml File
	Example 3–1 persistence.xml File With JNDI Data Source Using JTA

	3.2.5.3 Configure an Application-Scoped JTA Data Source
	1. "Specify that the Data Source Is Application-Scoped"
	2. "Add the JDBC Module to the WebLogic Server Application Configuration"
	3. "Configure the JPA Persistence Unit to Use the JTA Data Source"
	3.2.5.3.1 Specify that the Data Source Is Application-Scoped
	Example 3–2 JDBC Data Source Defined in the name-jdbc.xml File
	Hint

	3.2.5.3.2 Add the JDBC Module to the WebLogic Server Application Configuration
	Example 3–3 JDBC Module Defined in the weblogic-application.xml File

	3.2.5.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source
	Example 3–4 JTA Data Source Definition in the persistence.xml File

	3.2.5.4 Configure a non-JTA Data Source and Manage Transactions in the Application
	Example 3–5 non-JTA Data Source Definition in the persistence.xml File

	3.2.5.5 Ensure the Settings Match
	1. In the Domain Structure tree, expand Services, then select Data Sources.
	2. On the Summary of JDBC Data Sources page, click the name of the data source.
	3. On the Settings for data_source_name > Configuration > General page, find the value for JNDI Name, for example localDS. If you are using JTA, then the name must match <jta-data-source> in the persistence.xml file.
	4. On the Settings for data_source_name > Configuration > Connection Pool page, review these settings:
	Example 3–6 Server Domain config.xml File

	3.2.6 Task 7: Extend the Domain to Use Advanced Oracle Database Features
	1. Download the toplink-spatial-template.jar (to support Oracle Spatial) and toplink-xdb-template.jar (to support Oracle XDB) files from:
	2. Copy the files, as shown in Table 3–3 and Table 3–4.
	Table 3–3 File to Support Oracle Spatial
	Table 3–4 Files to Support Oracle XDB

	3. Start the Config wizard (WL_HOME/common/bin/config.sh (or .bat)).
	4. Select Extend an existing WebLogic domain.
	5. Browse and select your WebLogic Server domain.
	6. Select Extend my domain using an existing extension template.
	7. Browse and select the required template JAR file (toplink-spatial-template.jar for Oracle Spatial, toplink-xdb-template.jar for Oracle XDB).
	8. Complete the remaining pages of the wizard.

	3.2.7 Task 8: Start WebLogic Server and Deploy the Application
	3.2.8 Task 9: Run the Application
	3.2.9 Task 10: Configure and Monitor Persistence Settings in WebLogic Server
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the Administration Console, select Deployments.
	3. In the right pane, select the application or module you want to configure.
	4. Select Configuration.
	5. Select Persistence.
	6. Select the persistence unit that you want to configure from the table.
	7. Review and edit properties on the configuration pages. For help on any page, click the Help link at the top of the Administration Console.
	8. To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

	3.3 Additional Resources
	4 Using EclipseLink with GlassFish Server
	Use Case
	Solution
	Components

	4.1 Introduction to the Solution
	4.1.1 Advantages to Using EclipseLink with GlassFish Server

	4.2 Implementing the Solution
	4.2.1 Task 1: Prerequisites
	4.2.2 Task 2: Install GlassFish Server
	Note

	4.2.3 Task 3: Set Up the Data Source
	1. Integrate the JDBC Driver for Oracle Database into GlassFish Server
	2. Create a JDBC Connection Pool for the Resource
	3. Create the JDBC Resource
	4.2.3.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server
	1. Copy the JAR file for the JDBC driver into the domain's lib subdirectory, for example:
	2. You can use the GlassFish Server Administration Console or the command line to restart instances in the domain to make the JDBC driver available to the instances.

	4.2.3.2 Create a JDBC Connection Pool for the Resource
	1. Use the create-jdbc-connection-pool subcommand to create the JDBC connection pool, specifying the database connectivity values. In this command, note the use of two backslashes (\\) preceding the colons in the URL property value. These backslashes...
	2. Verify connectivity to the database.

	4.2.3.3 Create the JDBC Resource

	4.2.4 Task 4: Create the persistence.xml File
	Example 4–1 Sample persistence.xml File
	4.2.4.1 Specify the Persistence Provider
	4.2.4.2 Specify an Oracle Database
	4.2.4.3 Specify Logging

	4.2.5 Task 5: Set Up GlassFish Server for JPA
	4.2.6 Task 6: Create the Application
	4.2.7 Task 7: Deploy the Application to GlassFish Server
	4.2.8 Task 8: Run the Application
	4.2.9 Task 9: Monitor the Application

	4.3 Additional Resources
	5 Using EclipseLink with JBoss 7 Application Server
	Use Case
	Solution
	Components

	5.1 Introduction to the Solution
	5.2 Implementing the Solution
	5.2.1 Task 1: Prerequisites
	Note

	5.2.2 Task 2: Configure EclipseLink as a Module in JBoss
	1. Create a directory as follows:
	2. Copy eclipselink.jar to the directory created in step 1. (The eclipselink.jar file is located in the eclipselink/jlib directory of the eclipselink-ver_no.zip file.)
	3. Create a module.xml file in the directory created in step 1, with the following content:

	5.2.3 Task 3: Add ojdbc6.jar as a Module in JBoss
	1. Create the module directory:
	2. Copy ojdbc6.jar to the module directory created in step 1.
	3. Create a module.xml file in the module directory created in step 1, with the following contents:

	5.2.4 Task 4: Create the Driver Definition and the Datasource
	1. In the standalone configuration file JBOSS_ HOME\standalone\configuration\standalone.xml, find the following:
	2. In that section, configure the datasource. The following example shows a configuration for the Oracle Database, using the Oracle JDBC Thin driver. For instructions on configuring other datasources, see the JBoss documentation.

	5.2.5 Task 5: Create Users
	5.2.6 Task 6: Modify JBoss Properties
	5.2.7 Task 7: Other Requirements
	1. Add junit.jar in the ear under the \lib directory.
	2. Because of a classloading issue in JBoss, you must list all your entity classes in persistence.xml. You can use either <class> elements or a global <exclude-unlisted-classes>false</exclude-unlisted-classes> element.
	3. Add both jndi.properties and jboss-ejb-client.properties in the client classpath.

	5.2.8 Task 8: Start JBoss

	5.3 Additional Resources
	6 Using EclipseLink with IBM WebSphere Application Server
	Use Case
	Solution
	Components

	6.1 Introduction to the Solution
	6.2 Implementing the Solution
	6.2.1 Task 1: Prerequisites
	6.2.2 Task 2: Configure Persistence Units
	Example 6–1 Sample persistence.xml for a container-managed persistence unit
	Example 6–2 Sample persistence.xml for an application-managed persistence unit

	6.2.3 Task 3: Configure the Server and the Application to Use EclipseLink
	6.2.3.1 Modify Server to Make EclipseLink Available Globally
	Option 1: Create a Global Shared Library (Recommended)
	1. Create a global shared library containing the following files:
	2. Associate the shared library with the application.

	Option 2: Add EclipseLink as a Server Library Extension

	6.2.3.2 Package EclipseLink in the Application EAR
	1. Add eclipselink.jar to the application EAR in the following location:
	2. Add the path to the eclipselink.jar to the ejbModule/META-INF/MANIFEST.MF file(s) in your EJB JAR(s), as shown below:
	3. Configure the class loader to load the classes with the application class loader first.
	4. Deploy and start the application. See the IBM WebSphere documentation for instructions.

	6.2.3.3 Package EclipseLink in the WAR
	1. Add eclipselink.jar and javax.persistence_ver_no.jar to the web application archive (WAR) file in the following location:
	2. Configure the class loader order for your application to load the classes with the application class loader first. See the WebSphere documentation for instructions on setting class loader order using the Administrative console.
	3. Deploy and start the application. See the IBM WebSphere documentation for instructions.

	6.3 Additional Resources
	7 Migrating from Native TopLink
	Use Case
	Solution
	Components

	7.1 Introduction to the Solution
	Note
	Note

	7.2 Implementing the Solution
	7.2.1 Task 1: Prerequisites
	7.2.2 Task 2: Replace Deprecated and Removed Native APIs
	Note
	7.2.2.1 APIs Replaced
	Table 7–1 changetracking (oracle.toplink.descriptors.*)
	Table 7–2 databaseaccess (oracle.toplink.internal*)
	Table 7–3 jdo (oracle.toplink.*)
	Table 7–4 mappings (oracle.toplink.*)
	Table 7–5 objectrelational (oracle.toplink.*)
	Table 7–6 oraclespecific (oracle.toplink.*)
	Table 7–7 publicinterface (oracle.toplink.*)
	Table 7–8 sdk (oracle.toplink.*)
	Table 7–9 entitymanager (oracle.toplink.sessions.*)
	Table 7–10 sessionconfiguration (oracle.toplink.tools.*)
	Table 7–11 xml (oracle.toplink.*)
	Table 7–12 XMLCommandConverter (oracle.toplink.*)
	Table 7–13 Remote Protocols (oracle.toplink.*)
	Table 7–14 EJB Mapping for BEA WebLogic 6.1

	7.2.2.2 Deprecated APIs
	Note
	Table 7–15 mappings (oracle.toplink.*)
	Table 7–16 descriptors (oracle.toplink.*)

	7.2.2.3 Removed API
	7.2.2.4 Miscellaneous API Changes
	7.2.2.4.1 JPA Persistence Provider Implementation
	7.2.2.4.2 Session Finalizers Disabled by Default
	7.2.2.4.3 Vector and Hashtable Return Types Changed to List or Map

	7.2.3 Task 3: Rename Packages
	1. Find the packageRename.cmd (Windows) and packageRename.sh (UNIX/LINUX) scripts in toplink_install_directory\toplink\utils\rename directory.
	2. Run either packageRename.cmd or packageRename.sh with the following arguments:

	7.2.4 Task 4: Convert XML Configuration Files
	7.2.4.1 Sessions XML
	7.2.4.2 Deployment XML
	7.2.4.3 Persistence XML
	7.2.4.4 ORM XML

	7.3 Additional Resources
	8 Migrating from Hibernate to EclipseLink
	Use Case
	Solution
	Components

	8.1 Introduction to the Solution
	Reasons to Migrate

	8.2 Main Tasks
	8.2.1 Task 1: Prerequisites
	8.2.2 Task 1: Convert the Hibernate Entity Annotation
	Example 8–1 Sample Hibernate Entity Annotation
	8.2.2.1 Convert the SelectBeforeUpdate, dynamicInsert and dynamicUpdate Attributes
	8.2.2.2 Convert the OptimisticLock Attribute
	Table 8–1 Translating Hibernate's OptimisticLock to EclipseLink's OptimisticLocking

	8.2.3 Task 2: Convert the Hibernate Custom Sequence Generator Annotation
	Example 8–2 Custom Generator for Sequence Values

	8.2.4 Task 3: Convert Hibernate Mapping Annotations
	8.2.4.1 Convert the @ForeignKey Annotation
	Note

	8.2.4.2 Convert the @Cache Annotation

	8.2.5 Task 4: Modify the persistence.xml File
	Example 8–3 Persistence File for an Application that Uses Hibernate
	8.2.5.1 Modified persistence.xml File
	Example 8–4 Persistence File Modified for EclipseLink

	8.2.5.2 Drop and Create the Database Tables
	8.2.5.3 Create or Extend Database Tables
	Note

	8.2.6 Task 5: Convert Hibernate API to EclipseLink API
	Table 8–2 Hibernate Classes and Equivalent JPA Interfaces

	8.3 Additional Resources
	9 Using Multiple Databases with a Composite Persistence Unit
	Note

	Use Case
	Solution
	Components
	Sample

	9.1 Introduction to the Solution
	Example 9–1 Using Multiple Databases
	Figure 9–1 A Simple Composite Persistence Unit
	9.1.1 Composite Persistence Unit Requirements

	9.2 Implementing the Solution
	9.2.1 Task 1: Configure the Composite Persistence Unit
	Example 9–2 The persistence.xml File for a Composite Persistence Unit

	9.2.2 Task 2: Use Composite Persistence Units
	9.2.3 Task 3: Deploy Composite Persistence Units

	9.3 Additional Resources
	9.3.1 Related Javadoc
	10 Scaling Applications in Clusters
	Use Case
	Solution
	Components
	Sample

	10.1 Introduction to the Solution
	10.2 Implementing the Solution
	10.2.1 Task 1: Configure Cache Consistency
	Note
	10.2.1.1 Disabling Entity Caching
	10.2.1.2 Refreshing the Cache
	10.2.1.3 Setting Entity Caching Expiration
	10.2.1.4 Setting Optimistic Locking
	10.2.1.5 Using Cache Coordination
	10.2.1.5.1 Setting Cache Synchronization
	10.2.1.5.2 Configuring JMS Cache Coordination Using Persistence Properties
	10.2.1.5.3 Configuring RMI Cache Coordination Using Persistence Properties
	10.2.1.5.4 Cache Coordination and Oracle WebLogic
	10.2.1.5.5 Cache Coordination and Glassfish
	10.2.1.5.6 Cache Coordination and IBM WebSphere
	10.2.1.5.7 Configuring Cache Coordination Using the Cache Coordination API

	10.2.2 Task 2: Ensure EclipseLink Is Enabled
	10.2.3 Task 3: Ensure All Application Servers Are Part of the Cluster
	Note

	10.2.4 Using Data Partitioning to Scale Data
	Table 10–1 Partitioning Policies
	10.2.4.1 Clustered Databases and Oracle RAC

	10.3 Additional Resources
	11 Providing Software as a Service
	Use Case
	Solution
	Components

	11.1 Introduction to the Solution
	12 Making JPA Entities and JAXB Beans Extensible
	Use Case
	Solution
	Components

	12.1 Making JPA Entities Extensible
	12.1.1 Main Tasks for Creating and Supporting an Extensible JPA Entity
	12.1.1.1 Task 1: Configure the Entity
	12.1.1.1.1 Annotate the Entity Class with @VirtualAccessMethods
	Table 12–1 Attributes for the @VirtualAccessMethods Annotation

	12.1.1.1.2 Add get and set Methods to the Entity
	Note

	12.1.1.1.3 Define Virtual Attribute Storage
	Example 12–1 Entity Class that Uses Property Access

	12.1.1.1.4 Use XML

	12.1.1.2 Task 2: Design the Schema
	12.1.1.3 Task 3: Provide Additional Mappings
	12.1.1.4 Task 4: Externalizing Extensions Using a MetaDataSource
	12.1.1.4.1 Configure the persistence.xml File
	12.1.1.4.2 Configure EntityManagerFactory and the Metadata Repository
	12.1.1.4.3 Refresh the Metadata Repository

	12.1.2 Code Examples
	Example 12–2 Virtual Access Using Default get and set Method Names
	Example 12–3 Overriding get and set Methods
	Example 12–4 Using Property Access

	12.2 Making JAXB Beans Extensible
	12.2.1 Main Steps
	12.2.1.1 Task 1: Configure the Bean
	12.2.1.1.1 Annotate the Bean Class with @Xml VirtualAccessMethods
	Table 12–2 Attributes for the @XmlVirtualAccessMethods Annotation

	12.2.1.1.2 Add get and set Methods to the Bean
	12.2.1.1.3 Define Virtual Attribute Storage
	12.2.1.1.4 Use XML

	12.2.1.2 Task 2: Provide Additional Mappings

	12.2.2 Code Examples
	12.2.2.1 Basic Setup
	Example 12–5 A Base Class for Extensible Classes
	Example 12–6 An Extensible Customer Class
	Example 12–7 A Nonextensible Address Class
	Example 12–8 An Extensible PhoneNumber Class

	12.2.2.2 Define the Tenants
	Tenant 1
	Example 12–9 Defining Virtual Properties for Tenant 1
	Example 12–10 Tenant 1 Code to Provide the Data Associated with Virtual Properties
	Example 12–11 XML Output from the Customer Class for Tenant 1

	Tenant 2
	Example 12–12 Defining Virtual Properties for Tenant 2
	Example 12–13 Tenant 2 Code to Provide the Data Associated with Virtual Properties
	Example 12–14 XML Output from the Customer Class for Tenant 2

	12.3 Additional Resources
	13 Using an External MetaData Source
	Use Case
	Solution
	Components

	13.1 Introduction to the Solution
	13.2 Using the eclipselink-orm.xml File Externally
	13.3 Main Tasks
	13.3.1 Task 1: Configure the Persistence Unit
	13.3.2 Task 2: Configure the Server

	13.4 Additional Resources
	14 Tenant Isolation Using EclipseLink
	Use Case
	Solution
	Components

	14.1 Introduction to the Solution
	14.2 Using Single-Table Multi-Tenancy
	Note
	14.2.1 Main Tasks for Using Single-Table Multi-Tenancy
	14.2.1.1 Task 1: Prerequisites
	14.2.1.2 Task 2: Enable Single-Table Multi-Tenancy
	14.2.1.2.1 Using the @Multitenant Annotation
	Note
	Note

	14.2.1.2.2 Using the <multitenant> Element

	14.2.1.3 Task 3: Specify Tenant Discriminator Columns
	14.2.1.3.1 Use the @TenantDiscriminatorColumn Annotation
	14.2.1.3.2 Use the <tenant-discriminator-column> Element
	14.2.1.3.3 Map Tenant Discriminator Columns
	14.2.1.3.4 Define Persistence Unit and Entity Mappings Defaults

	14.2.1.4 Configure Context Properties and Caching Scope
	1. EntityManager
	2. EntityManagerFactory
	3. Application context (when in a Java EE container)
	Note

	14.2.1.4.1 Configure a Shared Entity Manager
	Caution

	14.2.1.4.2 Configure a Non-Shared Entity Manager
	14.2.1.4.3 Configure an Entity Manager

	14.2.1.5 Task 4: Perform Operations and Queries
	Note

	14.2.1.6 Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

	14.3 Using Table-Per-Tenant Multi-Tenancy
	14.3.1 Main Tasks for Using Table-Per-Tenant Multi-Tenancy
	14.3.1.1 Task 1: Prerequisites
	14.3.1.2 Task 2: Enable Table-Per-Tenant Multi-Tenancy
	14.3.1.2.1 Using the @Multitenant and @TenantTableDiscriminator Annotations
	14.3.1.2.2 Using the <multitenant> Element

	14.3.1.3 Task 3: Specify Tenant Table Discriminator
	14.3.1.3.1 Using the @TenantTableDiscriminator Annotation
	14.3.1.3.2 Using the <tenant-table-discriminator> Element

	14.3.1.4 Task 4: Specify a Context Property at Runtime
	14.3.1.5 Task 5: Perform Operations and Queries
	Note

	14.4 Using VPD Multi-Tenancy
	14.4.1 Main Tasks for Using VPD Multi-Tenancy
	14.4.1.1 Task 1: Prerequisites
	14.4.1.2 Task 2: Configure the Virtual Private Database
	14.4.1.3 Task 3: Configure the Entity or Mapped Superclass
	14.4.1.4 Task 4: Disable Criteria Generation
	14.4.1.5 Task 5: Configure persistence.xml

	14.5 Additional Resources
	15 Mapping JPA to XML
	Use Case
	Solution
	Components
	Sample

	15.1 Introduction to the Solution
	15.1.1 Understanding XML Binding
	15.1.2 Understanding JAXB
	15.1.3 Understanding MOXy
	15.1.4 Understanding an XML Data Representation

	15.2 Binding JPA Entities to XML
	15.2.1 Binding JPA Relationships to XML
	15.2.1.1 Task 1: Define the Accessor Type and Import Classes
	15.2.1.2 Task 2: Map Privately-Owned Relationships
	15.2.1.2.1 Mapping a One-to-One and Embedded Relationship
	1. Ensure that the accessor type FIELD has been defined at the package level, as described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import Classes".
	2. Map one direction of the relationship, in this case, the employee property on Address, by inserting the @OneToOne annotation in the Employee entity:
	3. Map the return direction—that is, the address property on Employee—by inserting the @OneToOne and @XmlInverseMapping annotations into the Address entity:

	15.2.1.2.2 Mapping a One-to-Many Relationship
	1. Ensure that the accessor type FIELD has been defined at the package level, as described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import Classes".
	2. Map one direction of the relationship, in this case, the employee property on PhoneNumber, by inserting the @OneToMany annotation in the Employee entity:
	3. Map the return direction—that is, the phone number property on Employee—by inserting the @ManyToOne and @XmlInverseMapping annotations into the PhoneNumber entity:

	15.2.1.3 Task 3: Map the Shared Reference Relationship
	15.2.1.3.1 Mapping a Many-to-One Shared Reference Relationship
	1. Ensure that the accessor type FIELD has been defined at the package level, as described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import Classes".
	2. Map one direction of the relationship, in this case the phone number property on Employee, by inserting the @ManyToOne annotation in the PhoneNumber entity:
	3. Map the return direction—that is, the employee property on PhoneNumber —by inserting the @OneToMany and @XmlInverseMapping annotations into the Address entity:

	15.2.1.3.2 Mapping a Many-to-Many Shared Reference Relationship
	1. Ensure that the accessor type FIELD has been defined at the package level, as described in Section 15.2.1.1, "Task 1: Define the Accessor Type and Import Classes".
	2. Create a Department entity by inserting the following code:
	3. Under this entity define the many-to-many relationship and the entity's join table by inserting the following code:
	4. Complete the initial mapping—in this case, the Department property employee—and make it a foreign key for this entity by inserting the following code:
	5. In the Employee entity created in Section 15.2.1.2.1, "Mapping a One-to-One and Embedded Relationship", specifying that eId is the primary key for JPA (@Id annotation), and for JAXB (@XmlID annotation) by inserting the following code:
	6. Still within the Employee entity, complete the return mapping by inserting the following code:

	15.2.1.4 JPA Entities
	Note
	Example 15–1 Employee Entity
	Example 15–2 Address Entity
	Example 15–3 PhoneNumber Entity
	Example 15–4 Department Entity

	15.2.2 Binding Compound Primary Keys to XML
	15.2.2.1 Task1: Define the XML Accessor Type
	15.2.2.2 Task 2: Create the Target Object
	1. Create an Employee entity with a composite primary key class called EmployeeID to map to multiple fields or properties of the entity:
	2. Specify the first primary key, eId, of the entity and map it to a column:
	3. Specify the second primary key, country. In this instance, you need to use @XmlKey to identify the primary key because only one property— eId—can be annotated with the @XmlID.
	4. Create a many-to-one mapping of the Employee property on PhoneNumber by inserting the following code:
	Example 15–5 Employee Entity with Compound Primary Keys

	15.2.2.3 Task 3: Create the Source Object
	1. Create the PhoneNumber entity:
	2. Create a many-to-one relationship and define the join columns:
	3. Set up the mapping by using the EclipseLink's @XmlJoinNodes annotation
	4. Define the contact property:
	Example 15–6 PhoneNumber Entity

	15.2.3 Binding Embedded ID Classes to XML
	15.2.3.1 Task1: Define the XML Accessor Type
	15.2.3.2 Task 2: Create the Target Object
	1. Create the Employee entity. Use the @IdClass annotation to specify that the EmployeeID class will be mapped to multiple properties of the entity.
	2. Define the id property and make it embeddable.
	3. Define a one-to-many mapping—in this case, the employee property on PhoneNumber. Because the relationship is bi-directional, use @XmlInverseReference to define the return mapping. Both of these relationships will be owned by the contact field, a...
	Example 15–7 Employee Entity as Target Object

	15.2.3.3 Task 3: Create the Source Object
	1. Create the PhoneNumber entity.
	2. Create a many-to-one mapping and define the join columns.
	3. Define the XML nodes for the mapping, using the EclipseLink @XmlJoinNodes annotation extension. If the target object had a single ID, you would use the @XmlIDREF annotation.
	Example 15–8 PhoneNumber Class as Source Object

	15.2.3.4 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class
	1. Implement DescriptorCustomizer as PhoneNumberCustomizer. Be sure to import org.eclipse.persistence.oxm.mappings.XMLObjectReferenceMapping:
	2. In the customize method, update the following mappings:
	Example 15–9 PhoneNumber Customizer with Updated Key Mappings

	15.2.4 Using the EclipseLink XML Binding Document

	15.3 Mapping Simple Java Values to XML Text Nodes
	15.3.1 Mapping a Value to an Attribute
	Example 15–10 Example XML Schema
	15.3.1.1 Mapping from the Java Object
	1. Create the object and import javax.xml.bind.annotation.*:
	2. Declare the Customer class and use the @XmlRootElement annotation to make it the root element. Set the XML accessor type to FIELD:
	3. Map the id property in the Customer class as an attribute:
	Example 15–11 Customer Object with Mapped id Property

	15.3.1.2 Defining the Mapping in OXM Metadata Format
	Example 15–12 Mapping id as an Attribute in OXM Metadata Format

	15.3.2 Mapping a Value to a Text Node
	15.3.2.1 Mapping a Value to a Simple Text Node
	15.3.2.1.1 Mapping by Using JAXB Annotations
	1. Create the object and import javax.xml.bind.annotation.*:
	2. Declare the PhoneNumber class and use the @XmlRootElement annotation to make it the root element with the name phone-number. Set the XML accessor type to FIELD:
	3. Insert the @XmlValue annotation on the line before the number property in the Customer class to map this value as an attribute:
	Example 15–13 PhoneNumber Object with Mapped number Property

	15.3.2.1.2 Defining the Mapping in OXM Metadata Format
	Example 15–14 Mapping number as an Attribute in OXM Metadata Format

	15.3.2.2 Mapping Values to a Text Node in a Simple Sequence
	15.3.2.2.1 Mapping by Using JAXB Annotations
	1. Create the object and import javax.xml.bind.annotation.*:
	2. Declare the Customer class and use the @XmlRootElement annotation to make it the root element. Set the XML accessor type to FIELD:
	3. Define the firstname and lastname properties and annotate them with the @XmlElement annotation. Use the name= argument to customize the XML element name (if you do not explicitly set the name with name=, the XML element will match the Java attribu...
	Example 15–15 Customer Object Mapping Values to a Simple Sequence

	15.3.2.2.2 Defining the Mapping in OXM Metadata Format
	Example 15–16 Mapping Sequential Attributes in OXM Metadata Format

	15.3.2.3 Mapping a Value to a Text Node in a Sub-element
	15.3.2.3.1 Mapping by Using JAXB Annotations
	1. Create the object and import javax.xml.bind.annotation.* and org.eclipse.persistence.oxm.annotations.*.
	2. Declare the Customer class and use the @XmlRootElement annotation to make it the root element. Set the XML accessor type to FIELD:
	3. Define the firstName and lastName properties.
	4. Map the firstName and lastName properties to the sub-elements defined by the XML schema by inserting the @XmlPath annotation on the line immediately preceding the property declaration. For each annotation, define the mapping by specifying the appr...
	Example 15–17 Customer Object Mapping Properties to Sub-elements

	15.3.2.3.2 Defining the Mapping in OXM Metadata Format
	Example 15–18 Mapping Attributes as Sub-elements in OXM Metadata Format

	15.3.2.4 Mapping Values to a Text Node by Position
	15.3.2.4.1 Mapping by Using JAXB Annotations
	1. Create the object and import javax.xml.bind.annotation.* and org.eclipse.persistence.oxm.annotations.XmlPath.
	2. Declare the Customer class and insert the @XmlType(propOrder) annotation with the arguments "firstName" followed by "lastName". Insert the @XmlRootElement annotation to make Customer the root element and set the XML accessor type to FIELD:
	3. Define the properties firstName and lastName with the type String.
	4. Map the properties firstName and lastName to the appropriate position in the XML document by inserting the @XmlPath annotation with the appropriate XPath predicates.
	Example 15–19 Customer Object Mapping Values by Position

	15.4 Using XML Metadata Representation to Override JAXB Annotations
	Note
	15.4.1 Task 1: Define Advanced Mappings in the XML
	Example 15–20 Updating XML Binding Information in the Mapping File

	15.4.2 Task 2: Configure Usage in JAXBContext
	1. Specify the externalized metadata by inserting this code:
	2. Create the properties object to pass to the JAXBContext. For this example:
	3. Create the JAXBContext. For this example:

	15.4.3 Task 3: Specify the MOXy as the JAXB Implementation
	1. Open a jaxb.properties file and add the following line:
	2. Copy the jaxb.properties file to the package that contains your domain classes.

	15.5 Using XPath Predicates for Mapping
	15.5.1 Understanding XPath Predicates
	15.5.2 Mapping Based on Position
	15.5.3 Mapping Based on an Attribute Value
	Example 15–21
	15.5.3.1 Task 1: Create the Customer Entity
	1. Import the necessary JPA packages by adding the following code:
	2. Declare the Customer class and use the @XmlRootElement annotation to make it the root element. Set the XML accessor type to FIELD:
	3. Declare local to the Customer class these properties:
	4. Also local to the Customer class, declare the phoneNumber property as a List<PhoneNumber> type and assign it the value new ArrayList<PhoneNumber>().
	Example 15–22 Customer Object Mapping to an Attribute Value

	15.5.3.2 Task 2: Create the Address Entity
	1. Import the necessary JPA packages by adding the following code:
	2. Declare the Address class and set the XML accessor type to FIELD:
	3. Declare local to the Address class the String property street. Set the XPath predicate by preceding the property declaration with the annotation @XmlPath("node[@name='street']/text()").
	Example 15–23 Address Object Mapping to an Attribute Value

	15.5.3.3 Task 3: Create the PhoneNumber Entity
	1. Import the necessary JPA packages by adding the following code:
	2. Declare the PhoneNumber class and use the @XmlRootElement annotation to make it the root element. Set the XML accessor type to FIELD:
	3. Create the type and string properties and define their mapping as attributes under the PhoneNumber root element by using the @XmlAttribute. annotation.
	Example 15–24 PhoneNumber Object Mapping to an Attribute Value

	15.5.4 "Self" Mappings
	1. Repeat Tasks 1 and 2 in Section 15.5.3.1, "Task 1: Create the Customer Entity".
	2. Declare local to the Customer class these properties:
	3. For the firstName and lastName properties, set the XmlPath annotation by preceding the property declaration with the annotation @XmlPath(element-name[@attribute-name='value']); for example, for firstName, you would set the XPath predicate with thi...
	4. For the address property, set @XmlPath to "." (dot):
	5. Also local to the Customer class, declare the phoneNumber property as a List<PhoneNumber> type and assign it the value new ArrayList<PhoneNumber>().
	Example 15–25 XML Node with Self-Mapped Address Element

	15.6 Using Dynamic JAXB/MOXy
	15.6.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
	15.6.1.1 Bootstrapping from an XML Schema
	Example 15–26 Specifying the Input Stream and Creating the DynamicJAXBContext

	15.6.1.2 The XML Schema
	Example 15–27 Sample XML Schema Document

	15.6.1.3 Handling Schema Import/Includes
	Example 15–28 customer.xsd
	Example 15–29 address.xsd

	15.6.1.4 Implementing and Passing an EntityResolver
	1. To resolve the locations of the imported schemas, you need to implement an entityResolver by supplying the code shown in Example 15–30.
	Example 15–30 Implementing an EntityResolver
	2. After you implement your DynamicJAXBContext, pass the EntityResolver, as shown in Example 15–31.

	Example 15–31 Passing in the Entityresolver

	15.6.1.5 Error Handling
	15.6.1.6 Specifying a ClassLoader

	15.6.2 Task 2: Create Dynamic Entities and Marshal Them to XML
	15.6.2.1 Creating the Dynamic Entities
	Example 15–32 Creating the Dynamic Entity

	15.6.2.2 Marshalling the Dynamic Entities to XML
	Example 15–33 Standard Dynamic JAXB Marshaller
	Example 15–34 Updated XML Document Showing <address> Element and Its Attributes

	15.6.3 Task 3: Unmarshal the Dynamic Entities from XML
	15.6.3.1 Unmarshal DynamicEntities from XML
	Example 15–35 Standard Dynamic JAXB Unmarshaller

	15.6.3.2 Get Data from the Dynamic Entity
	15.6.3.3 Use DynamicType to Introspect Dynamic Entity
	Example 15–36

	15.7 Additional Resources
	16 Converting Objects to and from JSON Documents
	Use Case
	Solution
	Components
	Sample

	16.1 Introduction to the Solution
	16.2 Implementing the Solution
	16.2.1 Task 1: Marshalling and Unmarshalling JSON Documents
	Example 16–1 Marshalling and Unmarshalling
	Example 16–2 Using a Map
	Example 16–3 Using MarshallerProperties and UnarshallerProperties

	16.2.2 Task 2: Specifying JSON Bindings
	Example 16–4 Using Basic JSON Binding
	Example 16–5 Using External Bindings
	Example 16–6 Using JSON to Bootstrap a JAXBContext

	16.2.3 Task 3: Specifying JSON Data Types
	Example 16–7 Using JSON Data Types

	16.2.4 Task 4: Supporting Attributes
	Example 16–8 Using a Prefix
	Example 16–9 Setting a Prefix in a Map

	16.2.5 Task 5: Supporting no Root Element
	Example 16–10 Marshalling no Root Element Documents
	Example 16–11 Unmarshalling no Root Element Documents
	Note

	16.2.6 Task 5 Using Namespaces
	Example 16–12 Using Namesapces

	16.2.7 Task 6: Using Collections
	Example 16–13 Marshalling Empty Collections

	16.2.8 Task 7: Mapping Root-Level Collections
	16.2.9 Task 8: Wrapping Text Values
	Example 16–14 Using @XmlAttributes
	Example 16–15 Using a value Wrapper
	Example 16–16 Customizing the Name of the Value Wrapper
	Example 16–17 Using a Map

	16.3 Additional Resources
	17 Testing JPA Outside a Container
	Use Case
	Solution
	Components

	17.1 Understanding JPA Deployment
	Tip
	17.1.1 Using EntityManager
	Example 17–1 Changing transaction type and defining connection information

	17.2 Configuring the persistence.xml File
	17.2.1 Main Tasks
	17.2.1.1 Task 1: Use the persistence.xml File
	Example 17–2 A persistence.xml File Specifying the Java SE Platform Configuration

	17.2.1.2 Task 2: Instantiate EntityManagerFactory

	17.3 Using a Property Map
	17.3.1 Main Tasks
	17.3.1.1 Task 1: Configure the persistence.xml File
	Example 17–3 A persistence.xml File Specifying the Java SE Platform Configuration, for use with a Property Map
	Note

	17.3.1.2 Task 2: Configure the Bootstrapping API
	Example 17–4 Sample Configuration

	17.3.1.3 Task 3: Instantiate the EntityManagerFactory

	17.4 Using Weaving
	17.4.1 How to Disable or Enable Weaving in a Java SE Environment
	17.4.2 How to Disable or Enable Weaving in a Java EE Environment

	17.5 Additional Resources
	17.5.1 Related Javadoc
	18 Enhancing Performance
	Use Case
	Solution
	Components
	Sample

	18.1 Performance Features
	18.1.1 Object Caching
	18.1.1.1 Caching Annotations
	18.1.1.2 Using the @Cache Annotation
	Example 18–1 Using the @Cache Annotation

	18.1.2 Querying
	18.1.2.1 Read-only Queries
	18.1.2.2 Join Fetching
	Example 18–2 Enabling JoinFetching

	18.1.2.3 Batch Reading
	18.1.2.4 Fetch Size
	18.1.2.5 Pagination
	18.1.2.6 Cache Usage

	18.1.3 Mapping
	18.1.3.1 Read-Only Objects
	18.1.3.2 Weaving

	18.1.4 Transactions
	Example 18–3 Enabling Change Tracking

	18.1.5 Database
	18.1.5.1 Connection Pooling
	18.1.5.2 Parameterized SQL and Statement Caching
	18.1.5.3 Batch Writing
	18.1.5.4 Serialized Object Policy
	Serialized Object Policy Configuration
	Note
	Example 18–4 Enabling Serialized Object Policy Using Annotations
	Example 18–5 Enabling Serialized Object Policy Using eclipselink-orm.xml
	Example 18–6 Enabling Serialized Object Policy in a Customizer

	A Simple Serialized Object Policy Example

	18.1.6 Automated Tuning
	18.1.7 Tools

	18.2 Monitoring and Optimizing EclipseLink-Enabled Applications
	18.2.1 Performance Optimization Recommendations and Tips
	18.2.2 Task 1: Measure EclipseLink Performance with the EclipseLink Profiler
	Table 18–1 Information Logged by the EclipseLink Performance Profiler
	18.2.2.1 Enabling the EclipseLink Profiler
	Table 18–2 Additional PerformanceProfiler Functionality

	18.2.2.2 Accessing and Interpreting Profiler Results
	Example 18–7 Performance Profiler Output

	18.2.3 Task 2: Measure EclipseLink Performance in the Server Environment
	Note

	18.2.4 Task 3: Measure Fetch Group Field Usage
	18.2.5 Task 4: Identify Sources of Application Performance Problems
	18.2.6 Task 5: Modify Poorly-Performing Application Components
	18.2.6.1 Identifying General Performance Optimizations
	18.2.6.2 Schema
	18.2.6.3 Mappings and Descriptors
	18.2.6.4 Cache
	18.2.6.5 Data Access
	18.2.6.6 Queries
	18.2.6.7 Application Server and Database Optimization

	18.2.7 Task 6: Measure Performance Again
	19 Exposing JPA Entities Through RESTful Data Services
	Use Case
	Solution
	Components

	19.1 Introduction to the Solution
	Note

	19.2 Implementing the Solution
	19.2.1 Step 1: Prerequisites
	Note

	19.2.2 Step 2: Create and Configure the Application
	1. Develop an application using one or more standard JPA persistence units, package it in a Web ARchive (WAR) file, and deploy it normally.
	Note
	Note

	2. Include the RESTful Data Services servlet in the WAR containing the application. (For instructions on downloading, see.Step 1: Prerequisites)
	Note

	19.2.3 Step 3: Understand RESTful Data Services URI Basics
	Note

	19.2.4 Step 4: Represent Entities Using JPA, JAXB, or JSON
	19.2.4.1 Relationships
	Bidirectional Relationships and Cycles
	Passing By Value vs. Passing By Reference
	Pass By Value
	Pass By Reference

	19.2.5 Step 5: Issue Client Calls for Operations on the Persistence Unit
	19.2.5.1 Specify Media Format in the Header
	Note

	19.2.5.2 About Logging

	19.2.6 Step 6: Implement Security
	19.2.7 Step 7: Understand the Structure of RESTful Data Services Responses
	19.2.7.1 Basic Data Types
	19.2.7.2 Links and Relationships

	19.3 Additional Resources
	19.4 RESTful Data Services API Reference

	Entity Operations
	FIND
	HTTP Request Syntax
	Example
	Produces
	Response
	Usage
	19 Composite Keys
	19 Result Caching
	19 Refresh
	19 Attributes

	PERSIST
	HTTP Request Syntax
	Example
	Consumes
	Payload
	Produces
	Response
	Usage

	MERGE
	HTTP Request Syntax
	Example
	Consumes
	Payload
	Produces
	Response

	DELETE
	HTTP Request Syntax
	Example
	Response

	Entity Operations on Relationships
	READ
	HTTP Request Syntax
	Example
	Produces
	Response

	ADD
	HTTP Request Syntax
	Note

	Examples
	Consumes
	Payload
	Note

	Produces
	Response

	REMOVE
	HTTP Request Syntax
	Example
	Consumes
	Note

	Produces
	Response

	Query Operations
	Query Returning List of Results
	HTTP Request Syntax
	Examples
	Produces
	Response

	Update/Delete Query
	HTTP Request Syntax
	Examples
	Produces
	Response

	Single Result Queries
	HTTP Request Syntax
	Example
	Produces
	Response

	Base Operations
	List Existing Persistence Units
	HTTP Request Syntax
	Example
	Produces
	Response

	Metadata Operations
	List Types in a Persistence Unit
	HTTP Request Syntax
	Example
	Produces
	Response

	List Queries in a Persistence Unit
	HTTP Request Syntax
	Example
	Produces
	Response

	Describe a Specific Entity
	HTTP Request Syntax
	Example
	Produces
	Response
	20 Using Database Events to Invalidate the Cache
	Use Case
	Solution
	Components
	Sample

	20.1 Introduction to the Solution
	Note

	20.2 Implementing the Solution
	20.2.1 Task 1: Set up the Database and Tables
	20.2.2 Task 2: Grant User Permissions
	20.2.3 Task 3: Set the Classpath
	20.2.4 Task 4: Identify Classes that will Participate in Change Notification
	Note

	20.2.5 Task 5: Add the Database Event Listener
	Note
	Example 20–1 Sample persistence.xml File

	20.2.6 Task 6: Edit the Java Files
	20.2.6.1 Set Optimistic Locking
	Example 20–2 Defining the @Version Annotation

	20.2.6.2 Exclude Classes from Change Notification (Optional)
	20.2.6.3 Track Changes in Secondary Tables (Optional)

	20.3 Limitations on the Solution
	20.4 Additional Resources
	21 Using EclipseLink with NoSQL Databases
	Use Case
	Solution
	Components
	Sample

	21.1 Introduction to the Solution
	21.2 Implementing the Solution
	21.2.1 Task 1: Prerequisites
	21.2.2 Task 2: Mapping the Data
	Example 21–1 Using @NoSql Annotation with JSON

	21.2.3 Task 3: Defining IDs
	Note

	21.2.4 Task 4: Defining Mappings
	Basic Mappings
	Note

	Embedded Values
	Note

	Relationships
	Note
	Example 21–2 Sample Mappings

	21.2.5 Task 5: Using Locking
	Note
	Example 21–3 Using @Version

	21.2.6 Task 6: Defining Queries
	21.2.6.1 JPQL Queries
	Example 21–4 Oracle NoSQL JPQL Examples
	Example 21–5 MongoDB JPQL Examples

	21.2.6.2 Native Queries
	Example 21–6 Oracle NoSQL Native Query
	Example 21–7 MongoDB Native Query

	21.2.7 Task 7: Connecting to the Database
	Note
	Example 21–8 Oracle NoSQL persistence.xml Example
	Example 21–9 MongoDB persistence.xml Example

	21.3 Additional Resources
	22 Using EclipseLink with the Oracle Database
	Use Case
	Solution
	Components

	22.1 Introduction to the Solution
	22.2 Implementing the Solution
	22.2.1 Using Oracle Platform-Specific APIs
	Note

	22.2.2 Using Oracle PL/SQL With EclipseLink
	22.2.2.1 Executing an Oracle PL/SQL Stored Function
	22.2.2.1.1 Main Tasks
	22.2.2.1.2 Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type
	22.2.2.1.3 Task 2: Define an Object Type Mirror
	22.2.2.1.4 Task 3: Define a Java Class Mapping The OBJECT Type
	22.2.2.1.5 Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager
	22.2.2.1.6 Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery
	22.2.2.1.7 Task 6: Use the Stored Function in a Query

	22.2.2.2 Handling PL/SQL arguments for Oracle Stored Procedures
	Note
	22.2.2.2.1 Using the PLSQLStoredProcedureCall Class
	Example of Using the PLSQLStoredProcedureCall Class
	Note

	22.2.2.2.2 Mixing JDBC Arguments With Non JDBC Arguments
	Example of Mixing JDBC Arguments With NonJDBC Arguments

	22.2.2.2.3 Handling IN and OUT Arguments
	Example of Handling IN and OUT Arguments
	Note

	22.2.2.2.4 Handling IN OUT Arguments
	Example of Handling IN OUT Arguments
	Note

	22.2.3 Using Oracle Virtual Private Database
	Oracle VPD with Oracle Database Proxy Authentication
	Oracle VPD Without Oracle Database Proxy Authentication

	22.2.4 Using Oracle Proxy Authentication
	Note
	22.2.4.1 Main Tasks:
	Task: Audit Only Writes
	Task: Audit Reads and Writes
	Task: Configure Proxy Authentication in Java EE Applications

	22.2.4.2 Caching and security
	22.2.4.3 Using Oracle Virtual Private Database for Row-Level Security

	22.2.5 Using EclipseLink with Oracle RAC
	22.2.5.1 Accessing a RAC-Enabled database from Java EE Applications
	22.2.5.1.1 Task 1: Configure a Multi Data Source or GridLink Data Source
	22.2.5.1.2 Task 2: Configure the Persistence Unit
	22.2.5.1.3 Task 3: Include the Required JARs

	22.2.5.2 Accessing a RAC-Enabled Database from Standalone Applications
	22.2.5.2.1 Task 1: Create a UCP Data Source
	22.2.5.2.2 Task 2: Use the UCP Data Source
	22.2.5.2.3 Task 3: Include the Required JARs

	22.2.6 Using Oracle Spatial and Graph

	22.3 Additional Resources

