Integration of IEC 61131-3 and IEC 61499 control logic using FORTE and ProConOS

Stefano Campanelli, Pierfrancesco Foglia, Cosimo Antonio Prete
Dipartimento di Ingegneria dell'Informazione, Università di Pisa
Via Diotisalvi 2, 56126 Pisa, Italy
{stefano.campanelli, foglia, prete}@iet.unipi.it

4DIAC Users’ Workshop ETFA September 21, 2012, Krakow, Poland
Introduction

- IEC 61131-3 widely adopted by PLC producers
 - Used in many existing control systems
 - Large base of software libraries, know-how and personnel competences
- IEC 61131-3 has very little support for distributed control
 - IEC 61131-5 communication function blocks
 - Engineering approach device centered
 - No support for distribution of control logic
- IEC 61499 is more suitable for designing distributed control applications
Proposed Architecture (1/2)

Problems

- realization of distributed control between existing IEC 61131-3 systems
- reuse of existing IEC 61131-3 software in an IEC 61499 system
- reuse of existing know-how and personnel competences about IEC 61131-3

Proposed approach: Coexistence

- IEC 61131-3 and IEC 61499 are complementary standards
- Each device has both IEC 61131-3 and IEC 61499 execution environments
- A communication interface is provided in order to allow data exchanges between the two standards
Proposed Architecture (2/2)

PI: PLC Interface
PDE: PLC Data Exchange
PLC Interfaces

- PLC Data Exchange
 - Data Transfer PDE
 - Procedure Call PDE
- PLC Interface
 - A group of PDEs

- IEC 61499
 - PI as a SIFB
 - Each PDE has its own events and data in/outs
- IEC 61131-3
 - Each PDE as an IEC 61131-5 FB
Data Transfer PDEs

Data Transfer from IEC 61131-3 to IEC 61499

Data Transfer from IEC 61499 to IEC 61131-3
Tools Used for Implementation

- Operating System
 - Microsoft Windows
- IEC 61499
 - 4DIAC IDE 1.0
 - FORTE 1.0
 - Custom SIFBs implemented as a C++ class
- IEC 61131-3
 - KW-Software MULTIPROG 4.8
 - ProConOS 4.0
 - Custom FBs implemented as a C function
A Simple Application (1/3)

- Sample application:
 - Periodically reads a digital input
 - Applies a logical not operation on the read value
 - Updates a digital output with the new value

- The IEC 61131-3 program reads the input value and updates the output value
- The IEC 61499 application implements the not logic

- Definition of the PLC interface:
 - 1 Data Transfer PDE from IEC 61131-3 to IEC 61499 to send the input boolean value
 - 1 Data Transfer PDE from IEC 61499 to IEC 61131-3 to send the output boolean value
A Simple Application (2/3)
A Simple Application (3/3)
Implementation of the PI (1/3)

- Communication via IPC
 - Shared memory
 - Semaphores
Implementation of the PI (2/3)

- IEC 61499
 - PI implemented as an Event Source SIFB
 - `executeEvent` handles input events and the external event
 - External Event Handler Thread
 - Waits on semaphores for events such as data reception
 - Sends the external event to the SIFB

ProConOS

- USEND
- URCV

FORTE

- External Event Handler
- SIFB

Windows IPC
Implementation of the PI (3/3)

- IEC 61131-3
 - IEC 6131-5 FBs implemented as C functions
 - Parameters: input/output variables and internal state
 - Realize state machines
 - Non-blocking waits
Implementation of Data Transfer PDEs
IEC 61131-3 to IEC 61499

- IEC 61131-5 USEND:
 LOOP {
 idle_until_req_detected
 copy_SD_to_shared_mem
 release_SendSem1
 wait_RcvSem1
 pulse_done
 }

- External Event Handler:
 LOOP {
 wait_SendSem1
 startEventChain
 }

- executeEvent:
 CASE ExternalEvent:
 copy_shared_mem_to_RD
 release_RcvSem1
 send_IND
Implementation of Data Transfer PDEs
IEC 61499 to IEC 61131-3

IEC 61131-5 URCV:
LOOP {
 wait_SendSem2
 copy_shared_mem_to_RD
 pulse_NDR
 release_RcvSem2
}

External Event Handler:
LOOP {
 wait_RcvSem2
 startEventChain
}
executeEvent:
CASE REQ:
 copy_SD_to_shared_mem
 release_SendSem2
CASE ExternalEvent :
 send_CNF
Conclusion

- We proposed an architecture to integrate IEC 61499 and IEC 61131-3 control logic
- Architecture based on coexistence of both standards
- Future works:
 - Test the architecture with a reference case study derived from literature and industrial applications
 - Implement a tool for automatic generation of the PLC Interface code modules.
Thanks for the Attention

Contact:

Stefano Campanelli
Università di Pisa
stefano.campanelli@iet.unipi.it

This work is partially supported by ISAC srl, Italy