
 

Copyright © 2008 The Open University. 
This document is made available under the Creative Commons Attribution - No Derivative 
Works 3.0 Unported Licence (http://creativecommons.org/licenses/by-nd/3.0/) WEB 00711 3 1.1 

T320 E-business technologies: 
foundations and practice 

Block 3 Part 2 Activity 2: Generating a 
client from WSDL 
Prepared for the course team by Neil Simpkins 

Introduction 1 

WSDL for client access 2 

Static versus dynamic WSDL 3 

OU demo services 3 

Creating a dynamic web project 4 

Adding a simple client 6 

More clients 12 
 

Introduction 
In this activity I shall illustrate how you can quickly and easily generate a client so that 
you can access a web service. 

You have in fact already completed this exercise, at least in the main part, when you 
created the 'Hello' web service and generated a client to test that web service at the 
same time. However, here there will be a couple of slight differences. Firstly, you will 
not be producing a web service and a client, just a client for a web service. Secondly, 
you will explicitly use a WSDL description of the web service on which to base the 
client. This was also the case 'behind the scenes' when you deployed and tested the 
'Hello' service. 

The client will be generated within Eclipse, which uses the WSDL description of a 
service to determine how a request to the service should be formulated and what 
response is expected. The client itself takes the form of a simple set of web pages, 
just as before when you tested the 'Hello' web service. 

It's important to recognise that the WSDL document that Eclipse uses to generate the 
client might be located in an Eclipse project locally on your machine, or it might be 
hosted on a machine somewhere on the Internet. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 2 

WSDL for client access 
A WSDL service description provides all the information that is required to use a web 
service. The T320 version of Eclipse incorporates the Web Tools Platform (WTP), 
which provides support for generating a client based on the information inside a 
WSDL. 

The WSDL that describes a service includes a range of crucial information, such as 
the required content of a request and also the location of the web service. This 
location, called the endpoint reference (EPR), is included in the service description. 
The endpoint reference is thus a key item in the service description. If we move the 
web service then the EPR in all descriptions of the web service needs to be changed. 

In Figure 1 I have depicted the realisation of the 'Hello' web service after completing 
the practical activity you carried out in Part 1. The WSDL is held locally in your 
workspace and will have a local EPR for the web service implementation, such as 
http://localhost:8080/Hello/services/Hello. 

Eclipse
WTP

1
parse description

and generate client

Eclipse
project

service deployed
and running on local

Tomcat by WTP
HelloService

2
request

WSDL

EPR = http://localhost/

services/HelloService

3
response

Eclipse IDE
 

Figure 1 Overview of local access to 'Hello' service with Eclipse 

When you used Eclipse to deploy the web service and generate a client, it performed 
a lot of work behind the scenes. It first deployed the web service to the server, started 
the service running and set up a proxy so that it could pass requests to the service 
and receive any response. Then it generated the WSDL description of the service and 
put this into the 'WebContent/wsdl' directory of the project. 

To generate the client web pages, Eclipse parses the WSDL document. Based on 
that, it can determine the input requirements for the web service that are used to 
create the 'Inputs' form etc. The WSDL also tells Eclipse to send requests to the local 
Tomcat server. This configuration is illustrated by the Eclipse WTP, project and local 
service depicted in Figure 1; this is, of course, exactly the setup you employed in 
completing the Part 1 practical activity. 

If the web service is deployed to a remote server then Eclipse has to be given the 
location and will download the WSDL for processing; in this respect the two scenarios 
are not much different. The web service itself can also be situated on a remote server, 
as specified by the EPR in the service WSDL. This configuration is illustrated in 
Figure 2. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 3 

Eclipse
IDE

1
download,

parse description
and generate client

some server
on Internet

service running on
somewhere.com server

HelloService

WSDL

EPR = http://somewhere.com/

services/HelloService

2
request

3
response

 

Figure 2 Overview of remote access to 'Hello' service with Eclipse 

It is, of course, equally possible for a WSDL document held in a local Eclipse project 
to specify a remote EPR. Also, rather obviously, the WSDL description of a service 
and the service itself may reside on a single remote server. The 'physical distribution' 
aspect has no real impact on the mode of operation of the web service. 

Static versus dynamic WSDL 
The WSDL file that was generated when you created the 'Hello' web service was 
produced by Axis software that is part of the WTP embedded in the T320 version of 
Eclipse. This software examines the Java code implementing the web service as a 
basis for determining the required input data, likely content returned, etc. and 
subsequently creating the WSDL document. 

There is also a server-side set of Axis software tools that have the same WSDL 
generation capability. So if a web service is hosted on a remote server that is running 
this Axis server-side software, the WSDL can be generated 'on demand' by Axis. (Of 
course, you have no control over any of the options that you selected when generating 
the 'Hello' web service – such as the encoding style, which will be investigated in 
Part 6.) This dynamic approach to describing a service is not a general principle 
behind web services, but it is useful to appreciate this possibility because it means we 
don't have to actually deploy an independent WSDL. 

There are various reasons that you might want to have a separate, static WSDL; for 
example, so that you can tailor the options you require or so that you can have more 
than one WSDL in different locations describing your service. 

In the following sections I am going to show you how to use Eclipse to generate just a 
simple client for your local 'Hello' web service if you wish, and how to do so for a 
remotely hosted version of the same service. In this second case the web service in 
question is running on top of the Axis server platform and has a WSDL document that 
is generated by an HTTP request. For Eclipse when generating a client there is no 
real difference between a local WSDL description, a remote static description or a 
remote dynamically generated description. 

OU demo services 
At the OU there is a small set of toy web services. These can be accessed using a 
client in the same way as you tested the 'Hello' web service using Eclipse. In fact, one 
of the web services hosted is a copy of the 'Hello' service. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 4 

Here you will use a copy of the 'Hello' web service that is hosted at the OU as the 
service to be accessed by the client. You can just as easily access other services on 
the Internet or your local implementation of the 'Hello' service in the same way. 

When you go to this location, if you do not already have a log-in session running then 
you will be redirected to a log-in page and asked to log in to the University network. 
Log in with the same username (OUCU) and password that you use to access the 
T320 course web site. 

Creating a dynamic web project 
Start your Block 3 Eclipse and make sure you have a Tomcat server configured for 
use (see the guide Configuring an Application Server in Eclipse if you are unsure how 
to do this). Then create a new dynamic project using File > New > Project… 
(Figure 3). 

 

Figure 3 Selecting a new project 

Then, in the New Project dialogue box, expand the 'Web' option and select 'Dynamic 
Web Project' (Figure 4) before clicking the 'Next' button. 

Then give your project a name, such as 'HelloServiceClient', and click 'Finish' 
(Figure 5). 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 5 

 

Figure 4 Dynamic web project selection 

 

Figure 5 Naming the new project 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 6 

As Eclipse builds the new project, you will most likely be asked if you wish to open the 
project in the Java EE perspective (Figure 6). You should click on 'Yes' when this is 
offered. 

 

Figure 6 Dialogue option to open Java EE perspective 

After a time, the newly created project will be displayed in Eclipse (Figure 7). 

 

Figure 7 Newly created project in the Project Explorer 

Adding a simple client 
Next you need to add a web service client to the project. To do this, select the project 
in the Project Explorer and right-click on it. Then select New > Other… as shown in 
Figure 8. 

You should then be presented with the dialogue box shown in Figure 9; here, you 
should open the 'Web Services' folder and select the 'Web Service Client' option 
before clicking on the 'Next' button. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 7 

 

Figure 8 Selecting New > Other… to add a client to the project 

 

Figure 9 Selecting a wizard to generate a web service client 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 8 

You will then be presented with the dialogue box shown in Figure 10. You may well 
recognise this as including much of the lower section of the dialogue box shown in 
Figure 16 of the Implementing a simple web service activity that you completed in 
Part 1 of the block. There are a few differences, the most significant being that here 
there is a need to specify a 'Service definition'. 

 

Figure 10 Initial client configuration dialogue 

Click on the 'Browse' button at the top of the box. This will take you to the dialogue 
box shown in Figure 11. Here the topmost text box has the label 'Enter a URI to a 
WSDL, WSIL1 or HTML document'. A URI can be entered, which might be the location 
of a file on your machine or, for example, an HTTP URL. So there is the flexibility to 
use a WSDL document that resides on your machine or one that can be acquired from 
the Internet over HTTP (or FTP etc.). 

When you created the 'Hello' web service, there was at this stage a slightly different 
text box to complete that requested a 'service implementation'. This you filled with the 
name of the Java class that implemented the web service logic. Eclipse (and the WTP) 
then used that code to create the WSDL, which it placed inside your project and then 
used to generate the client. If you have the 'Hello' project handy (and deployed to your 
local Tomcat server) then you could point this new client at that local 'Hello' web service. 

 

1 Web Services Inspection Language (WSIL), a joint effort by Microsoft and IBM, is a different approach to 

describing web services; see, for example, 

http://www.ibm.com/developerworks/library/specification/ws-wsilspec/. 

The chief difference between WSDL and WSIL appears to be that WSIL lists groups of web services and 

their endpoints in an XML format rather than describing a single service. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 9 

Instead of that, here I am going to create a client that uses a remote implementation of 
the 'Hello' web service over the Internet. 

 

Figure 11 Select Service Implementation dialogue box 

I shall look at the sample web service hosted at the University at the end of this 
booklet. For now, you should note that the URL for the EPR of the 'Hello' web service 
at the OU is: 

http://t320webservices.open.ac.uk/t320/services/HelloService 

Axis will generate the WSDL document describing a web service if we postfix the EPR 
with a parameter 'wsdl'. So using a '?' to append this to the URL, we can acquire the 
WSDL for the 'Hello' service using: 

http://t320webservices.open.ac.uk/t320/services/HelloService?wsdl 

You can view the WSDL document by copying this URL into a web browser 
(Figure 12). 

Now enter the URL for the WSDL in the Eclipse Select Service Implementation 
dialogue box. When you have done this, you should see the URL listed in the list of 
WSDLs under the text 'Select a WSDL' (Figure 13). 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 10 

 

Figure 12 Hello service WSDL listed in a web browser 

 

Figure 13 'Hello' service WSDL listed in dialogue box 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 11 

At this point it is possible that you will receive a message in a pop-up dialogue box 
telling you that the WSDL cannot be retrieved. This generally means that the web 
service is not available. If this is the case, you should raise the matter in the course 
forums so that the services can be fixed by University staff. 

If the WSDL is listed then click on the 'OK' button. This will take you back to the client 
configuration dialogue box (Figure 10). 

Next raise the slider on the left of the dialogue box so that 'Test client' is displayed (i.e. 
you want to create a test client), and tick the 'Monitor the Web service' box if you wish 
to observe messages sent to and received from the web service (Figure 14). Then 
click the 'Finish' button. 

 

Figure 14 Completed client configuration dialogue box 

After a time, the client will be generated and you will see that the now familiar web 
pages of the client are shown in Eclipse (Figure 15). 

As before, you can use the web service by first clicking on the 'HelloName' method in 
the Methods panel, then entering a name in the text box that appears in the Inputs 
panel, and finally clicking the 'Invoke' button (Figure 16). 

Everything in the client appears as it was when you created and tested the 'Hello' web 
service locally in Part 1. Of course, there is a real difference behind the scenes. The 
SOAP request to the web service is being sent across the Internet to the OU server 
't320webservices.open.ac.uk', and the response is being sent back in the same way 
from the remote machine. 



T320 E-business technologies: foundations and practice 

Block 3 Part 2 Activity 2 | 12 

 

Figure 15 Initial client web pages in Eclipse 

 

Figure 16 Client after invoking the 'Hello' service 

More clients 
You will find the 'Hello' service and others listed on the OU T320 Axis site at: 

http://t320webservices.open.ac.uk/t320/services/listServices 

You will find that you can access any of these services using the associated WSDL 
document that is generated by appending '?wsdl' to the EPR for the service. 

Try out at least one other service to see how this works. 


