
© 2006 Innoopract GmbH

eclipse rich ajax platform (rap)

Jochen Krause
CEO Innoopract
Member of the Board of Directors Eclipse Foundation
jkrause@innoopract.com

 winner

© 2006 Innoopract

outline

 rich ajax platform

 project status and background
 technology overview

© 2006 Innoopract

eclipse rich ajax platform project

rap aims to enable developers to build rich, AJAX-enabled web applications by using
the eclipse development model, plug-ins and a java-only api

eclipse plays a significant role in the rich client world
 provides advanced concepts and technologies that can be easily built upon
 „enforces“ solid architecture (e.g.: promotes creation of apis, loose coupling)

the goal of the project is to extend the reach of the eclipse platform to the web

project status: approved in June 2006, now in validation phase
 large part of code contribution from Innoopract has been approved (now in CVS)
 no builds yet, small code contribution still waiting for approval

© 2006 Innoopract

eclipse rich ajax platform project - continued

rap did not start from scratch, the code contribution brings:
 w4t, a widget toolkit that allows development of ajax web ui's in plain java
 technlology has proved to be stable, e.g. with the eclipse download configurator
 service http://yoxos.com/ondemand - handling 500 concurrent users easily
 the project has received the

 The award honours and recognises the most remarkable and outstanding
 european contributions in the world of Java and Eclipse.

 winner

http://yoxos.com/ondemand

© 2006 Innoopract

current trends in application development

 the most commonly applied technology for developing user interfaces in
the past decade, templating for (simple) HTML, is getting replaced by
two new major trends:
 rich client applications (with concepts for keeping the client up to date)
 rich internet application, with a strong focus on ajax technologies

 eclipse has succeeded in delivering a state of the art rich client framework, but
the rich client camp is getting pressure from ajax enabled webapps

 the ajax world to date is very colorful, with many very promising technologies and
projects. Most of the effort seems to be focused on providing client-side widget
toolkits and a communication layer to the server.

© 2006 Innoopract

why rap? ajax suffers from dev. complexity

 although ajax is a promising vision, the development complexity is very
high

 better tools can help
 e.g. eclipse atf http://eclipse.org/atf/
 better javascript editors are desperately needed (this can be an area for

collaboration)

 frameworks and toolkits can deal with the low level stuff
 qooxdoo js gui framework
 Kabuki Ajax Toolkit
 Dojo
 OpenRico

http://eclipse.org/atf/

© 2006 Innoopract

how does rap compare to google gwt?
google gwt is a cool technology
 provides a java api
 running on an emulated java

engine in the browser (needs
javascript to work)

 javascript is in charge of „drawing“
the user interface

 eventhandling in GWT is on the
client side (+ RPC calls to the
server to access data)

 GWT enables a "standalone
SWT" comparable approach

 can scale to 100 thousands of
concurrent users

rap is a cool technology, too
 provides a java api
 runs standard html and javascript in

the browser (can work with javascript
disabled)

 the browsers rendering engine „draws“
the ui, refreshes happen through
transfer of html snippets

 RAP relays most client-side events to
the server for processing (solely ui
related events can be processed on
the client).

 running mainly on the server it can
access the full java api enable the full
usage of the eclipse plugin model

 can scale to thousands of concurrent
users

© 2006 Innoopract

outline

 rich ajax platform

 project status and background
 an eclipse platform strategy

© 2006 Innoopract

rap leverages and extends the eclipse platform

 rap enables developers to employ the eclipse concepts for developing ajax
applications, leveraging the advanced eclipse programming model

 plugin concept – based on osgi, implemented by Eclipse Equinox
 workbench concept – a powerful UI metaphor that facilitates providing a

consistent user experience
 a widget toolkit encapsulates all ajax

technologies behind Java objects and
rendering kits

 only developers who want to create
their own widgets need to deal with
javascript and ajax

 eclipse as a platform becomes an
attractive alternative for ajax develop-
ment – not only for ajax tooling

© 2006 Innoopract

a brief example

 webworkbench – look & feel of the eclipse workbench in a browser
 adding type ahead search

 implementation is not yet based on the eclipse workbench model
 „hand-coded“ workbench, like creating the workbench look & feel directly in

swt
 showcasing feasibility, performance, look & feel

© 2006 Innoopract

DEMO
see http://yoxos.com/ondemand/

http://yoxos.com/ondemand/

© 2006 Innoopract

server side

client side

rap architecture overview

W4T, JFace ➔widget toolkit, mvc, handling of
distributed environment

© 2006 Innoopract

www widget toolkit explained

© 2006 Innoopract

wigdet toolkit – www windowing toolkit (w4t)

 OO – programming interface
 composition of wigets into a component tree
 event driven ui
 lifecycle management of the request
 AJAX engine
 rendering kits
 userdefined components

© 2006 Innoopract

extensible – user defined components

 extend WebComponent
 implement rendering kits for markup

generation
 reuse of existing js libraries

© 2006 Innoopract

life cycle (request management)

 4 phases of request handling
- access form

versioning of the WebForm
- read data

read request data,
apply data to model

- process action
process user action

- render
create markup, update ui components
that represent model data

© 2006 Innoopract

ajax engine for partial ui updates

 send request (client-side)
 collect form data and submit via XmlHttpRequest

 detect changed components (server-side)
 hash code based algorithm to trace component state
 renders only markup for widgets that need to be updated

 apply response (client-side)
 received HTML fragments are applied to document

 transparent for application developer

© 2006 Innoopract

rendering kits

 targeted output for a variety of browsers (ie, firefox, opera, safari)
 AJAX renderer for partial page updates
 script renderer for browsers with AJAX-functionality turned off
 noscript Render as fallback for browsers with strict security settings
 dynamic loading based on namespaces

© 2006 Innoopract

server side

client side

rap architecture overview

OSGi

runtime

W4T, JFace

➔extension points

➔modularity, dependency
management (bundles / plugins)
based on standard jee technology

© 2006 Innoopract

eclipse OSGi on the server side

 equinox is providing an „incubator“ for running eclipse inside a web app
and interacting with a servlet
 server side integration - main problems have been solved and are part of

Eclipse 3.2
 embedding in a servlet container

 war file to demo is available – starting an eclipse platform server side
http://www.eclipse.org/equinox/incubator/server/eclipse_serverside_integration.php

 rap is mainly reusing equinox technology and act as a client for this project

 a rap sample application using equinox is available for download
 can be launched with equinox launcher using a equinox http bundle
 shows reuse of a common core plugin between rcp and rap
 http://wiki.eclipse.org/index.php/RapExamples

http://www.eclipse.org/equinox/incubator/server/eclipse_serverside_integration.php
http://wiki.eclipse.org/index.php/RapExamples

© 2006 Innoopract

eclipse runtime - on the server side

 late bindings
 declarativ
 loose coupling
 contributing
 extending existing implementations

 ONCE per web application (alternatively running osgi as a server with http
service)

© 2006 Innoopract

taking plugins to web applications

 eclipse plugin concept is enabled on the server side inside a web app

 everything is a plugin (server side)

 core plugins can be reused if they are stateless

 ui is assembled by contributions (server side) providing a well thought out

development model

© 2006 Innoopract

DEMO
see http://wiki.eclipse.org/index.php/RapExamples

http://wiki.eclipse.org/index.php/RapExamples

© 2006 Innoopract

server side

client side

rap architecture overview

OSGi

runtime

W4T, JFace

web workbench ➔selection service, action sets, viewparts

➔widget toolkit, mvc, handling of
distributed environment

➔extension points

➔modularity, dependency
management (bundles / plugins)
based on standard jee technology

© 2006 Innoopract

workbench

 strong coupling between workbench, swt and jface in rcp
 need to reimplement core apis for rap to align with widget toolkit (swt api

under exploration)

challenges ahead:
 workbench

 session vs. application scope
 memory considerations
 multi user / logins

 layouts
 absolute positioning, formLayout

 integration with existing web applications

© 2006 Innoopract

the (right) balance of server and client side

 framework provides client-side handling for workbenchparts (open, close,
resize)

 widgets can provide client side event processing (e.g. expanding a tree)
 other event processing happens (mostly) server side

 implementation in java
 ui changes are calculated on the server side, client will get partial updates

 data binding happens on the server side (jface is the eclipse standard)

© 2006 Innoopract

collaboration with other ajax approaches is
important

rap benefits from simple integration of widgets based on common ajax
frameworks

 rap's widget toolkit is extensible
 server side java api (might be moving to swt)
 rendering kits provide implementation (html, css, js)
 a canvas can be filled with client side life
 server side needs info about client state

problems to avoid:
 possible incompatibilities between different libraries
 different versions of libraries

© 2006 Innoopract

rap plan

tentative planing:

2006-06 - 2006-09 initial code contribution: Java component library for UI
development
2006-09 M1: OSGi running exemplary inside web applications on selected open
source servers
2006-10 M2: Moving widget toolkit to org.eclipse packages, re(de)fine widget toolkit
api (get involved: https://bugs.eclipse.org/bugs/show_bug.cgi?id=158930)
2007-01 M3: Basic WebWorkbench implementation running on OSGi
2007-03 M4: Provide all API for Release 1.0
2007-05 RC1: Code freeze for 1.0

© 2006 Innoopract

conclusion

 ajax is here to stay, but it has yet to overcome some obstacles
 ajax does not need to be in contradiction with rich clients – the

technologies can complement each other
 shielding ajax complexities is one of the hottest topics today – a java api

(swt) has proved to work in rich ui development, but there is also a
strong movement to build javascript libraries

 give rap a try - http://eclipse.org/rap/

http://eclipse.org/rap/

© 2006 Innoopract

references

 Eclipse RAP project http://eclipse.org/rap/
 Eclipse Rich Client platform http://eclipse.org/rcp/
 Eclipse ATF project http://eclipse.org/atf
 Google Web Toolkit http://code.google.com/webtoolkit/
 qooxdoo – JavaScript GUI framework http://qooxdoo.org

http://eclipse.org/rap/
http://eclipse.org/rcp/
http://eclipse.org/atf
http://code.google.com/webtoolkit/
http://qooxdoo.org/

© 2006 Innoopract

Q&A
Contact info:
http://eclipse.org/rap/
Jochen Krause
jkrause@innoopract.com

http://eclipse.org/rap/
mailto:jkrause@innoopract.com

