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Abstract

Modern IDE’s for languages such as Java exploit the static type system of the language to provide
shortcuts and hints to aid programmers with common programming tasks. An example of this help
is auto-completion of field and method names when a programmer types a “.” operator. In dynamic
languages, such as scripting languages like JavaScript[1] and programming languages like Scheme[3], there
is no such static type system that can be exploited in this manner. However, a deeper analysis of the
source program may be able to provide equivalent information that allows similar levels of functionality
in an IDE for dynamic languages. To enable this, we discuss various uses to which analysis data could be
put, and we argue for a layered approach that exploits the same analysis infrastructure across multiple
languages

Modern IDE’s provide a range of shortcuts and wizards to ease, and to some extent automate, many
tedious aspects of programming. While some of these shortcuts are straightforward insertion of boilerplate
text— such as a “new class” operation for Java that simply inserts some syntax—there are many that
are context-sensitive in some manner—such as auto-completion of field and method names. In statically-
types languages such as Java and C++, much of this context information can be derived from declared
type information in a relatively straightforward manner. For instance, the explicit type information for the
left-hand side expression of a “.” or “->” operator can be used to generate a fairly good list of possible
completions for constants on the right hand side. Similarly, IDEs often indicate visually when some method
declaration is overriding a parent declaration. In a class-based language, this information can be derived by
examining the declarations of methods and inheritance in each class. Another common feature is to provide
a list of possible called functions at a particular call site. Once again, the type of the receiver object can
often be used to provide a good list. Overall, with myriad helpers such as these, modern IDEs provide a
range of popular shortcuts that are, at least conceptually, simple to implement.

The situation is rather different for dynamic and scripting languages: there is, in general, little or no
static type information to exploit, making context-dependent shortcuts a much more challenging proposition.
Consider JavaScript as an example; it is dynamically-typed and has a prototype-based object model which
makes inheritance potentially dynamic too. If one were to attempt auto-completion of the “.’ operator in
JavaScript, it is unclear how a plausible list of completions could be derived. In general, properties could
be set and deleted anywhere in the script and one would need precise alias analysis to determine which
properties might have been assigned to the left-hand side expression of the “.”. Similarly, deciding whether
one property definition overrides a parent one would require alias analysis to work out which objects may
inherit from which others in the dynamic prototype-based model that JavaScript has.

One solution implicit in the foregoing paragraph is to use some kind of alias analysis on the program being
edited. How practical this may be depends to some extent on the language, and what kinds of assumptions
one is willing to make about the completeness of the program being edited. On the other hand, a system
that employs inter-procedural alias analysis does not need to make more assumptions about completeness
than the type-system-based shortcuts of current IDE’s already do. Those already assume a closed world to
some extent, since it can hardly suggest things that do not exist. However, even if assumptions sufficient for
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non-trivial inter-procedural analysis are reasonable, there is still the issue that a static analysis infrastructure
is a major undertaking. This difficulty is multiplied by the fact there are so many different popular scripting
languages; it hardly seems practical to write inter-procedural analysis for all of them.

Our solution comes from the observation that the diverse collection of popular dynamic and scripting
languages mostly share a common core and fundamental approach. This approach has been called languages
for managed runtimes and sometimes called type safe languages in the sense of not allowing low-level misuse
of memory. They also tend to share a range of common structures, such as common types of loops. Features
such as a class-based object model, proper lexical scoping and first-class functions are by no means universal,
but they tend to share some fundamental basics when they do appear.

Thus, we believe that we can build an analysis framework that comprises a large shared core that
understands how to analyze many of these basic structures, and a collections of relatively thin layers that
adapt from the various scripting languages to the shared core. On top of this analysis layer, IDE’s for the
various languages can exploit sophisticated analysis components such as whole-program, context-sensitive
alias analysis to provide the same kinds of context-dependent help as do current IDE’s for more static
languages.

So far, we have built the beginnings of this approach, with an Abstract Syntax Tree based intermediate
layer feeding into the DOMO[2] analysis infrastructure developed at Watson. So far, we handle JavaScript
from two front-end parsers, the Rhino parser from Mozilla and an internal IBM parser. We also have
support for a substantial and increasing portion of the Java language. Further planned work includes PHP
and possibly other scripting languages popular in open-source web community.

In this document, we will first motivate some of the ways in which program analysis can be used to
enhance IDE’s for dynamic and scripting languages in Section 1. We will then outline our approach for
supporting program analysis across our targeted range of programming languages in Section 2. In Section 3,
we illustrate our approach by briefly describing some issues in analyzing JavaScript.

1 Uses of Program Analysis

In this brief paper, we will restrict our attention to what we see as two of the most pressing concerns for
enabling IDE’s for dynamic and scripting languages: the notion of types and the notion of a call graph.

1.1 Approximating Types

The most obvious use of program analysis in IDE’s for dynamic languages is to substitute for the static type
information exploited by IDE’s for Java and C++. There are really two distinct aspects of this use. The
first is to approximate the possible types of variables in the program being edited, which substitutes for the
required type declarations for such variables in Java or C++. The other use is to approximate the notion of
“type” itself for languages such as JavaScript, which have no static notion at all of classes or types.

Approximating Type Declarations The simpler notion is to analyze to determine what types of objects
a particular value could hold at runtime. Traditional pointer analysis essentially computes this sort of
information, if one uses a pointer analysis that distinguishes heap objects at least on a per-class basis. That
means that the pointer analysis approximates all possible heap-allocated objects using one abstract object to
represent all objects of a given concrete type. A concrete type is one that may actually be allocated by the
program. The results of this pointer analysis for a particular variable will be the set of concrete types that
variable could possibly hold at runtime. This information could either be used directly, or could be used to
compute a “most general type”, i.e. the least superclass of all the concrete types that pointer analysis finds.

Consider the example PHP program in Figure 1. This is a trivial example, but it serves to illustrate
the analysis of types. It would require some analysis to infer that the type of $arg 1 is always a User; this
information would typically be declared by the programmer in Java, but would need to be inferred here.
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<?php

function printIt($arg_1) {

echo $art_1;

}

class User {

var $test;

var $test2;

}

$user1 = new User();

$user2 = new User();

$user1->test = "user1’s test";

$user1->test2 = "user1’s test2";

$user2->test = "user2’s test";

$user2->test2 = "user2’s test2";

printIt($user1)

printIt($user2)

?>

Figure 1: Simple PHP Example

Approximating Types Themselves Some dynamic languages do not have any declarative notion of
types at all; such languages are no longer only weird niche players, but include popular Web scripting
languages such as JavaScript. In this situation, analysis can be used to synthesize a notion of “type” by
statically differentiating possible runtime objects into groups that must have similar behavior. In JavaScript,
this would mean associating “types” with sets of possible objects that have the same set of properties,
especially the same set of properties that hold function values. This approach can extend to “sub-typing’
using a behavioral idiom in which a “sub-type” has all the function properties of a “super-type” and some
additional ones. This notion actually conforms to the “inheritance” mechanisms that JavaScript supports.

function User(test, test2) {

this.test = test;

this.test2 = test2;

}

var user1 = new User("x", "y");

var user2 = new User("xx", "yy");

user2.test3 = "whatever";

Figure 2: Simple JavaScript Example For Types

Consider the contrived JavaScript code in Figure 2. While JavaScript does not have class declarations,
it allows functions to be used as constructors, which can often have a similar result. In this case, it might
be helpful to say that user1 is of the type User, even though that is not really a type in JavaScript. And
consider user2; it might be plausible to say this is a subtype of User, since it has more properties. And since
these objects could be given additional properties elsewhere, it would require some form of pointer analysis
to decide what reasonable types might be in general.
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This notion of approximating types also fits directly with the traditional notions of pointer analysis. In
this case, the pointer analysis would need some fairly fine-grained approximation of possible runtime objects,
for example using one abstract object per allocation site in the program. Then, one could look at the possible
property values of the abstract objects, and group them into “types” based on the set of properties they
might contain.

This approach actually has a long history, based on program analysis work done on prior prototype-based
languages, most notably the Self system.

1.2 Approximating Call Targets

IDE’s for Java reply on two related facts to provide an often quite reasonable approximation of the possible
callee methods at a given call site; the first of these is that Java lacks any notion of first-class functions, and
the second is that the receiver of any method call has a statically-declared type. Thus, the set of possible
callee methods is simply the set of methods with appropriate names and signatures declared in the receiver
type and its subtypes. For dynamic languages the situation is more complex: they typically do have first-
class functions of various kinds and do not have static type declarations. The type issue can be addressed
as we discussed above in Section 1.1, but that does not help much with first-class functions. However, alias
analysis can again provide an approximation of the needed information.

In a language with first-class functions, functions are objects like any others and can be tracked with
pointer analysis just as other objects can. Thus, the set of possible callee methods at a call site for a first-
class function is simply the set of functions to which that variable can refer. Furthermore, the number of
function allocation sites (usually function declarations and function expressions) is typically limited, since
each such site is a distinct piece of code. Hence, aggressive pointer analysis techniques can be employed to
distinguish the various functions created in the program and to track their flow to call sites.

var whatever;

var foo = function(x) { return x + 5; };

var bar = function(x) { return x - 5; };

var dead = function(x) { return x * 5; };

some_other_function();

if (...) {

whatever = foo;

whatever(6);

} else

whatever = bar;

whatever(7);

Figure 3: Simple JavaScript Example For Call Targets

Consider the snippet of JavaScript code in Figure 3. If an IDE is providing a list of callees at the call sites
of whatever, one might expect the result to be the function assigned to foo for the first site and that plus the
function assigned to bar at the second site. However, providing this list and being sure it is right is rather
complex. First of all, pointer analysis needs to discover that foo and bar get assigned to whatever, and that
only foo reaches the first call site. Furthermore, analysis must ensure that some other function cannot
modify the whatever variable using lexical scoping. All in all, this requires some form of inter-procedural
alias analysis once again.
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2 Analysis Infrastructure

Given that we believe that program analysis—particularly traditional pointer analysis—is a good way to
enable IDE’s of dynamic languages with the kinds of features found in IDE’s for static ones, the immediate
question becomes how to provide such analysis. One unavoidable feature of the world of dynamic languages
is the diversity of such languages. Even restricting our attention to the world of Web scripting, there are
still several popular languages: JavaScript, PHP, Python[4], Perl. Expanding our view slightly, we could
consider UNIX tools such as Awk and embedded macro languages in office suites. It is not feasible to build
independent program analysis infrastructures for all such languages, and yet these languages all have their
individual quirks that make it impossible to simply use a single unmodified infrastructure for them all.

Our approach starts with a core program analysis infrastructure that understands basic notions of objects,
method calls, control flow and the like; on top of this basic infrastructure, for each language of interest, we
build an adaptation layer that has two purposes. The first purpose is to generate our analysis internal forms
given the source code of the given language. The second purpose is implement semantic quirks of the given
language in terms of our analysis internal forms.

In this section, we present our approach by describing the adaptation layer in Section 2.1 and then how
the core solver is designed for multiple languages in Section 2.2.

2.1 Analysis Adaptation Layer

The core idea behind our adaptation layer is the notion of an Abstract Syntax Tree (AST); we define a
stylized AST that encompasses the kinds of statements support by our analysis IR, such as function calls,
object creation and the like. Given that AST form, our IR generation has two steps: the first is a front-end-
dependent step that generates our AST form from program source, and the second is a language-influenced
step that handles translation of the AST into IR. The first step takes whatever data structures the front end
provides, such as a parse tree, and generates our AST from them. The second step converts the AST into IR.
The second step is language influenced in that there is a common core of translation that understands things
like generating Control Flow Graphs (CFGs) from the AST and converting to Static Single Assignment
(SSA) form, but the common core calls out to a language-dependent portion to handle details like the exact
semantics of a field access.

Figure 4: Overall IR Generation Mechanism

This process is illustrated in Figure 4. The red box represents a pre-existing front end for the language
to be analyzed; the purpose of this box is to provide some kind of parse tree and any needed semantics
such as name resolution. We have used the Mozilla Rhino JavaScript engine and also an internal IBM
JavaScript engine for this purpose when analyzing JavaScript. The green box represents the language-
independent portion of IR generation, such as forming CFGs from well-understood control constructs. The
orange portion is what needs to be written to analyze a new language with our mechanism: the generation
of our stylized ASTs from the parse trees on the left, and the handling of language specific details of IR
generation on the right hand side. This setup minimizes the work to generate IR for a new language in
our system: front end parsers that perform necessary type checking and the like can be reused, requiring
only a layer transforming whatever parse tree it generates into our stylized AST format. Similarly, the AST
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translator can be reused, and what needs to be implemented is certain hooks for generating IR details for
the language.

2.2 Core Analysis Engine

Our core analysis engine comprises the usual collection of tools for inter-procedural program analysis: we
have an SSA-based IR, and, on top of that, a range of algorithms for call graph construction, pointer analysis
and more specialized solvers. We will not present the implementation details and optimizations embodied
in our engine here, since that is not the focus of this paper. Instead, we will focus on how the system is
suited for extensibility and reuse across multiple languages. The basic structure of the system is as a set of
analyses that operate over a common IR structure; we will discuss how the IR structure is extensible and
then talk about how extended forms of IR can be integrated into some of the more common algorithms.

2.2.1 IR

The core IR represents values in SSA form and contains instructions for the usual operations, such as
conditionals for control flow, binary and unary primitive operations, φ nodes for SSA form, a primitive
allocation operation and so on. However, operations such as object field access and function call—which
share a general flavor across languages but can differ significantly in details—are broken into an abstract class
that captures the general operation and language-specific subclasses that are implemented as new languages
are added.

2.2.2 Analysis Components

The core analysis components such as call graph construction and pointer analysis are adapted to work with
the extensible IR. The common pattern is for the analysis component to be implemented using a factory-
constructed visitor across the IR of a method, and to provide a visitor implementation that covers the core
of the IR. This is illustrated in Figure 5. For new languages, a derived visitor class that also handles the
any new IR forms for that language must be created. This seems unavoidable in that someone has to figure
out what the any new language semantics should be handled in existing analyses, but it at least minimizes
the effort to handle a new language by allowing reuse of the handling of the existing IR.

Figure 5: Common IR-Based Analysis Structure

3 Analyzing JavaScript

We illustrate our approach by describing how the system currently works for JavaScript. While we will use
JavaScript as our example, we currently have significant portions of Java analyzed for source code in the
same infrastructure, and we believe the same design can be used for other languages. We have plans to
analyze PHP and possibly other Web scripting languages in the same manner.

JavaScript is a good representative of the many dynamic languages that are popular in the Web server
community; it has a fairly simple, reference model core but on top of that is a range of features that complicate
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analysis. We shall not discuss exhaustively how we analyze this language, but shall focus on a representative
feature—function calls—that illustrate how we can adapt this language to our simpler analysis core.

3.1 Function Calls

Function calls in JavaScript are a good illustration of how our mechanism works for analyzing idiosyncratic
constructs in a language. Function calls in JavaScript come in a variety of flavors, but there two features that
exercise our analysis mechanism: one is how it handles argument passing, and the second is a distinction
that is perhaps unique to JavaScript: its notion of method calls versus function calls.

function foo(x) {

if (x < 7)

return arguments[1] + 5;

else

return this.bar;

};

var obj = {

bar: 8,

fooMethod: foo

};

var x = foo(3, 6);

var y = obj.fooMethod(10, 7);

Figure 6: Simple JavaScript Example of Issues With Calls

First, we discuss method calls versus function calls. Functions are first-class objects in JavaScript, and
there is no such thing as a method per se. However, functions can be assigned as properties of objects, so there
is a type of call that looks a lot like a method call in Java or C++. For such calls, the JavaScript specification
defines that the containing object be used as the receiver object, and passed as the this argument to the
function. In other calls, the this parameter is simply null (or rather Undefined). Thus, the same function
instance can be called as a method in one case and a function at some other site, and the notion of the this

object can vary for call to call for the same function. This is illustrated in Figure 6. The call foo(3, 6) is
an ordinary function call, in which there is no this object, whereas the obj.fooMethod(10,7) call has obj
as the this object. But they both call the same actual function.

In order to analyze a model such as this, we need to adapt it to the underlying analysis framework
that has a more traditional notion of function and method calls. Our approach is to give every function
an extra formal parameter that represents this, and to generate function calls that supply the appropriate
extra argument. Since the rules for determining what object to use as this are idiosyncratic, we make the
JavaScript adaptation layer hide them by handing the core analysis call statements with the appropriate
this argument computed. That is, we generate ASTs that have any required this parameters as explicit
arguments in call expressions. This shows up during the IR construction phases (see Figure 7) in two places:
the first is that this parameters are added during AST generation, and the second is that special call IR
instructions are generated for calls seen in the AST.

The other distinctive JavaScript feature of calls is how it handles argument passing. Functions in
JavaScript do have named arguments in their declarations, but call sites can pass fewer or more argu-
ments than are declared. And all arguments get stored in an array called arguments that is scoped in
the function. Once again, this is illustrated in Figure 6, with the use of arguments[1], which references
the second argument passed at each call. Thus, we needed to create a customized call IR instruction and
customized logic in the call graph builders to process them. This customized instruction and logic is added
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Figure 7: IR Generation for Calls in JavaScript

to our analysis engine using subclasses of various analysis implementation classes. This logic shows up in
the IR generation step (see figure 7) with the generation of a customized call IR instruction, and during call
graph construction (see Figure 8) with special handling of calls to update the extra arguments object.

Figure 8: Call Graph Construction for JavaScript

4 Summary

We have argued that IDE’s for dynamic languages can benefit from static analysis to provide functionality
equivalent to many of the features provided by IDE’s for Java. We have also described our approach to
providing an implementation of a static analysis engine that can handle the range of dynamic and scripting
languages out there.
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