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What is EMF?

§ A modeling & data integration framework
§ Exploits the facilities offered in Eclipse to...

§ Generate code without losing user customizations (merge)
§ Automate important tasks (such as registering the runtime 

information)
§ Improve extensibility
§ Provide a UI layer

§ What is an EMF “model”?
§ Specification of your application’s data

§ Object attributes
§ Relationships (associations) between objects
§ Operations available on each object
§ Simple constraints (eg. cardinality) on objects and relationships

§ Essentially it represents the class diagram of the application
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What does EMF Provide?

§ From a model specification, EMF can generate efficient, correct,
and easily customizable implementation code
§ Out of the box, EMF provides support for

§ Java™ interfaces
§ UML
§ XML Schema

§ EMF converts your models to Ecore (EMF metamodel)
§ Tooling support within the Eclipse framework (UI, headless 

mode, Ant and standalone), including support for generating 
Eclipse-based and RCP editors
§ Reflective API and dynamic model definition
§ Persistence API with out of box support for XML/XMI 

(de)serialization of instances of a model
§ And much more….
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Why EMF?

§ EMF is middle ground in the modeling vs. programming worlds
§ Focus is on class diagram subset of UML modeling (object model)
§ Transforms models into Java code
§ Provides the infrastructure to use models effectively in your 

application

§ Very low cost of entry 
§ EMF is free and open source
§ Full scale graphical modeling tool not required
§ Reuses your knowledge of UML, XML Schema, or Java

§ It’s real, proven technology (since 2002)
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EMF History

§ First version was released in June, 2002
§ Originally based on MOF (Meta Object Facility)

§ From OMG (Object Management Group)
§ Abstract language and framework for specifying, constructing, and 

managing technology neutral metamodels

§ EMF evolved based on experience supporting a large set of tools
§ Efficient Java implementation of a practical subset of the MOF API

§ 2003: EMOF defined (Essential MOF)
§ Part of OMG’s MOF 2 specification; UML2 based
§ EMF is approximately the same functionality

§ Significant contributor to the spec; adapting to it



7 Introduction to the Eclipse Modeling Framework  |  © 2006 by IBM; made available under the EPL v1.0

Who is Using EMF Today?

§ Eclipse projects
§ Tools Project: UML2 and Visual Editor (VE)
§ Web Tools Platform (WTP) Project
§ Test and Performance Tools Platform (TPTP) Project
§ Business Intelligence and Reporting Tools (BIRT) Project
§ Data Tools Platform (DTP) Project
§ Technology Project: Graphical Modeling Framework (GMF)

§ Commercial offerings
§ IBM, Borland, Oracle, Omondo, Versata, MetaMatrix, Bosch, 

Ensemble...

§ Large open source community
§ Estimated 125,000 download requests in January
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EMF at IBM

§ Pervasive usage across product lines
§ IBM® Rational® Software Architect
§ IBM Rational Application Developer for WebSphere Software
§ IBM WebSphere® Integration Developer
§ IBM WebSphere Application Server
§ IBM Lotus® Workplace

§ Emerging technology projects: alphaWorks
§ Emfatic Language for EMF Development 

(http://www.alphaworks.ibm.com/tech/emfatic)
§ Model Transformation Framework 

(http://www.alphaworks.ibm.com/tech/mtf)
§ XML Forms Generator (http://www.alphaworks.ibm.com/tech/xfg)
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What Have People Said About EMF?

§ EMF represents the core subset that's left when the non-essentials are 
eliminated. It represents a rock solid foundation upon which the more 
ambitious extensions of UML and MDA can be built.

– Vlad Varnica, OMONDO Business Development Director, 2002

§ EMF provides the glue between the modeling and programming worlds, 
offering an infrastructure to use models effectively in code by integrating UML, 
XML and Java. EMF thus fits well into [the] Model-Driven Development approach, 
and is critically important for Model-Driven Architecture, which underpins 
service-oriented architectures [SOA]. 

– Jason Bloomberg, Senior analyst for XML & Web services, ZapThink, 2003

§ The EMF […] with UML stuff is pretty cool in Eclipse. Maybe one day MDA will 
make its way into the NetBeans GUI. 

– posted to theserverside.com, November 2004 (circa NetBeans 4.1 EA)

§ [As] a consultant with fiduciary responsibility to my customers, [...] given the 
enormous traction that Eclipse has gathered, we have to view the EMF 
metadata management framework as the de facto standard.

– David Frankel, as seen in Business Process Trends, March 2005
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Creating the Ecore Model

§ Representing the modeled domain in Ecore is the first step in 
using EMF
§ Ecore can be created 

§ Directly using the EMF editors
§ Through a graphical UI provided by external contributions
§ By converting a model specification for which a Model Importer is 

available

§ Model Importers available in EMF
§ Java Interfaces
§ UML models expressed in Rational Rose® files
§ XML Schema

§ Choose the one matching your perspective or skills
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Model Importers Available in EMF

§ Java Interfaces

public interface PurchaseOrder
{
String getShipTo();
void setShipTo(String value);
String getBillTo();
void setBillTo(String value);
List getItems(); // List of Item

}
public interface Item
{
String getProductName();
void setProductName(String value);
int getQuantity();
void setQuantity(int value)
float getPrice();
void setPrice(float value);

}
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Model Importers Available in EMF

§ UML Class Diagram

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*
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Model Importers Available in EMF

§ XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/SimplePO"
xmlns:PO="http://www.example.com/SimplePO">

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
<xsd:element name="shipTo" type="xsd:string"/>
<xsd:element name="billTo" type="xsd:string"/>
<xsd:element name="items"  type="PO:Item" 

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Item">
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="price" type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
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Unifying Java, XML and UML Technologies

§ The Model Importers available in EMF were carefully chosen to 
integrate today’s most important technologies
§ All three forms provide the same information

§ Different visualization/representation
§ The application’s “model” of the structure

§ From a model definition, EMF can generate
§ Java implementation code, including UI
§ XML Schemas
§ Eclipse projects and plug-in
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Typical EMF Usage Scenario

§ Create an Ecore model that represents the domain you are working on
§ Import UML (e.g. Rose .mdl file)
§ Import XML Schema
§ Import annotated Java interfaces
§ Create Ecore model directly using EMF's Ecore editor or a graphical editor

§ Generate Java code for model
§ Prime the model with instance data using generated EMF model editor
§ Iteratively refine model (and regenerate code) and develop Java 

application
§ You will use the EMF generated code to implement the use cases of your 

application

§ Optionally, use EMF.Edit to build customized user interface



16 Introduction to the Eclipse Modeling Framework  |  © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell 
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary



17 Introduction to the Eclipse Modeling Framework  |  © 2006 by IBM; made available under the EPL v1.0

EMF Components

§ EMF Core
§ Ecore metamodel
§ Model change notification & validation
§ Persistence and serialization 
§ Reflection API 
§ Runtime support for generated models

§ EMF Edit
§ Helps integrate models with a rich user interface
§ Used to build editors and viewers for your model
§ Includes default reflective model editor

§ EMF Codegen
§ Code generator for core and edit based components
§ Extensible model importer framework
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EMF Tools: Model Import and Generation

Generator Features:
§ Customizable

JSP-like 
templates (JET)

§ JDT-integrated, 
command-line, or 
Ant

§ Fully supports 
regeneration and 
merge

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Java
editor* * Eclipse IDE-integrated 

or RCP-based

Java
model
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EMF Model Importers

§ UML
§ Rational Rose .mdl file
§ Eclipse UML2 project provides importer for .uml2

§ Annotated Java
§ Java interfaces representing modeled classes
§ Javadoc annotations using @model tags to express model 

properties not captured by method declarations
§ Lowest cost approach

§ XML Schema
§ Describes the data of the modeled domain
§ Provides richer description of the data, which EMF exploits

§ Ecore model  (*.ecore file)
§ Just creates the generator model (discussed later)
§ Also handles EMOF (*.emof)
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Ecore Model Creation

§ An Ecore model is created within an Eclipse project via a wizard
§ Input: one of the model specifications from the previous slide
§ Output:

§ modelname.ecore
§ Ecore model file in XMI format
§ Canonical form of the model

§ modelname.genmodel
§ A “generator model” for specifying generator options
§ Decorates .ecore file
§ EMF code generator is an EMF .genmodel editor
§ Automatically kept in synch with .ecore file
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Ecore Model Editor

§ A generated (and customized) 
EMF editor for the Ecore model
§ Create, delete, etc. model 

elements (EClass, EAttribute, 
EReference, etc.) using pop-up 
actions in the editor's tree
§ Set names, etc. in the Properties 

view
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Ecore Model Editor

§ A graphical editor is a better approach
§ GMF Ecore Diagram Example (http://www.eclipse.org/gmf/)
§ Omondo EclipseUML (http://www.omondo.com/)
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EMF Generator

§ Similar layout to Ecore model 
editor

§ Automatically keeps in synch 
with .ecore changes

§ Generate code with pop-up 
menu actions
§ Generate Model Code
§ Generate Edit Code
§ Generate Editor Code
§ Generate Test Code
§ Generate All

§ Code generation options in 
Properties view

§ Generator > Reload to reload 
.genmodel and .ecore files 
from original model form
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The Ecore (Meta) Model

§ Ecore is EMF's model of a model
§ Also called a “metamodel”
§ Persistent representation is XMI

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1
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The Ecore Metamodel

§ EObject is the root of every model object – equivalent to java.lang.Object
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Partial List of Ecore Data Types

§ Ecore data types are serializable and custom data types are supported

java.lang.FloatEFloatObject

java.lang.ObjectEJavaObject

java.lang.BooleanEBooleanObject

byte[ ]EByteArray

java.lang.StringEString

floatEFloat

charEChar

booleanEBoolean

Java Primitive Type or 
Class

Ecore Data Type
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Ecore Model for Purchase Orders

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

is represented in Ecore as
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Purchase Order Ecore XMI

§ Alternate serialization format is EMOF (Essential MOF) XMI
§ Part of OMG Meta Object Facility (MOF) 2.0 standard 

(http://www.omg.org/docs/ptc/04-10-15.pdf)

<eClassifiers xsi:type="ecore:EClass"
name="PurchaseOrder">

<eReferences name="items" eType="#//Item" 
upperBound="-1" containment="true"/>

<eAttributes name="shipTo" 
eType="ecore:EDataType http:...Ecore#//EString"/>

<eAttributes name="billTo" 
eType="ecore:EDataType http:...Ecore#//EString"/>

</eClassifiers>
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UML Constructs Available in Ecore

§ Classes, Abstract Classes, and Interfaces

§ Attributes and Operations

ClassOrInterfaceName
attribute1 : type1
attribute2 : type2 = initval
<<0..*>> attribute3 : type3

operation1(arg1 : type1) : return1
operation2(arg1 : type1, arg2 : type2) : return2
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UML Constructs Available in Ecore

§ References (Associations)
§ One-way

ClassBClassA

1

ClassA ClassB

0..1

roleB1

1

roleB2

0..1

ClassA ClassB

0..*0..*

roleB3
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UML Constructs Available in Ecore

§ References (Associations)
§ Bidirectional

§ Containment

ClassBClassA

0..*0..*

ClassBClassA

0..*0..*

roleA roleB2

roleB1

ClassA ClassB

0..*1 0..*

roleBroleA

1
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UML Constructs Available in Ecore

§ Class Inheritance

§ Enumerations and Data Types

ClassB

ClassA ClassC

ClassB

ClassA

<<extend>>

EnumName
literal1
literal2
literal3 = 5

<<enumeration>>

DataTypeName
<<javaclass>> JavaClass1

<<datatype>>
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Code Generation

§ EMF framework is lightweight
§ Generated code is clean, simple, efficient

§ EMF can generate
§ Model implementation
§ UI-independent edit support
§ Editor and views for Eclipse IDE-integrated or RCP application
§ JUnit test skeletons
§ Manifests, plug-in classes, properties, icons, etc.
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Generated Model Code

§ Interface and implementation for each modeled class
§ Includes get/set accessors for attributes and references

§ Usage example

public interface PurchaseOrder extends EObject
{
String getShipTo();
void setShipTo(String value);
String getBillTo();
void setBillTo(String value);
EList getItems();

}

order.getItems().add(item);
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Generated Model Code

§ Factory to create instances of model objects

§ Package class provides access to metadata

§ Also generated: switch utility, adapter factory base, validator,
custom resource, XML processor

POFactory factory = POFactory.eINSTANCE;
PurchaseOrder order = factory.createPurchaseOrder();

POPackage poPackage = POPackage.eINSTANCE;
EClass itemClass = poPackage.getItem();

EAttribute priceAttr = poPackage.getItem_Price();
//or itemClass.getEStructuralFeature(POPackage.ITEM__PRICE)
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Generated Edit/Editor Code

§ Viewing/editing code divided into two parts
§ UI-independent code 

§ Item providers (adapters)
§ Item provider adapter factory

§ UI-dependent code
§ Model creation wizard
§ Editor
§ Action bar contributor
§ Advisor (RCP)

§ By default each part is placed in a separate Eclipse plug-in
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Summary of Generated Artifacts

§ Model
§ Interfaces and classes
§ Type-safe enumerations
§ Package (metadata)
§ Factory
§ Switch utility
§ Adapter factory base
§ Validator
§ Custom resource
§ XML Processor

§ Edit (UI independent)
§ Item providers
§ Item provider adapter factory

§ Editor
§ Model Wizard
§ Editor
§ Action bar contributor
§ Advisor (RCP)

§ Tests
§ Test cases
§ Test suite
§ Stand-alone example

§ Manifests, plug-in classes, 
properties, icons...
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Regeneration and Merge

§ Hand-written code can be added to generated code and 
preserved during regeneration
§ This merge capability has an Eclipse dependency, so is not 

available standalone

§ All generated classes, interfaces, methods and fields include 
@generated marker in their Javadoc
§ To replace generated code:

§ Remove @generated marker
§ Or include additional text, e.g.

@generated NOT

§ Methods without @generated marker are left alone during 
regeneration
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Regeneration and Merge

§ Extend (vs. replace) generated method through redirection
§ Append “Gen” suffix to the generated method's name

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getNameGen()
{
return name;

}

public String getName()
{
return format(getNameGen());

}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getName()
{
return name;

}
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Exercise 1:
Code Generation, Regeneration and Merge
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EMF Runtime

§ Persistence and serialization of model data
§ Proxy resolution and demand load

§ Automatic notification of model changes
§ Bi-directional reference handshaking
§ Dynamic object access through a reflective API
§ Runtime environments

§ Eclipse
§ Full IDE
§ RCP

§ Standalone Java
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Persistence and Serialization

§ Serialized data is referred to as a resource
§ Data can be spread out among a number of resources in a 

resource set
§ One resource is loaded at a time, even if it has references to 

objects in other resources in the resource set
§ Proxies exist for objects in other resources
§ Lazy or demand loading of other resources as needed
§ A resource can be unloaded

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1       resource 1
uri 2       resource 2
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Resource Set

§ Context for multiple resources that may have references among 
them
§ Usually just an instance of ResourceSetImpl, or a customized 

subclass
§ Provides factory method for creating new resources in the set:

§ Also provides access to the registries, URI converter, and default 
load options for the set

ResourceSet rs = new ResourceSetImpl();
URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);
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Resource Factory Registry

§ Returns a resource factory for a given type of resource
§ Based on the URI scheme or filename extension
§ Determines the type of resource, hence format for save/load

§ For models created from XML Schema, the generated custom resource 
factory implementation should be registered to ensure schema-
conformant serialization
§ When running as a plug-in under Eclipse, EMF provides an extension point 

for registering resource factories
§ Generated plugin.xml registers generated resource factory against a 

package specific extension (e.g. “po”)

§ Global registry: Resource.Factory.Registry.INSTANCE
§ Consulted if no registered resource factory found locally

Resource.Factory.Registry reg = rs.getResourceFactoryRegistry();
reg.getExtensionToFactoryMap().put("xml", new XMLResourceFactoryImpl());
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Package Registry

§ Returns the package identified by a given namespace URI
§ Used during loading to access the factory for creating instances

§ Global registry: EPackage.Registry.INSTANCE
§ Consulted if no registered package found locally

§ Running in Eclipse, EMF provides an extension point for globally
registering generated packages
§ Even standalone, a package automatically registers itself when 

accessed:

EPackage.Registry registry = rs.getPackageRegistry();
registry.put(POPackage.eNS_URI, POPackage.eINSTANCE);

POPackage poPackage = POPackage.eINSTANCE;
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Resource

§ Container for objects that are to be persisted together
§ Convert to and from persistent form via save() and load()
§ Access contents of resource via getContents()

§ EMF provides XMLResource implementation

§ Other, customized XML resource implementations, provided, too 
(e.g. XMI, Ecore, EMOF)

URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);
resource.getContents().add(p1);
resource.save(null);

<PurchaseOrder>
<shipTo>John Doe</shipTo>
<next>p2.xml#p2</next>

</PurchaseOrder>
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Proxy Resolution and Demand Load

p1

p1.xml

next
p2

p2.xml

proxyURI=“p2.xml#p2”
next

proxyURI=“p2.xml#p2”
next

PurchaseOrder p2 = p1.getNext();

PurchaseOrder

0..1

next

0..1

<PurchaseOrder>
<shipTo>John Doe</shipTo>
<next>p2.xml#p2</next>

</PurchaseOrder>

p1.xml
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Model Change Notification

§ Every EMF object is also a Notifier
§ Send notification whenever an attribute or reference is changed
§ EMF objects can be “observed” in order to update views and 

dependent objects

Adapter poObserver = ...
purchaseOrder.eAdapters().add(poObserver);

adapter.notifyChanged()

setBillTo()

PurchaseOrder

Adapter
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Model Change Notification

§ Observers or listeners in EMF are called adapters
§ An adapter can also extend class behavior without subclassing
§ For this reason they are typically added using an AdapterFactory

PurchaseOrder purchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...
Object poExtensionType = ...

if (somePOAdapterFactory.isFactoryForType(poExtensiontype))
{
Adapter poAdapter = somePOAdapterFactory.adapt(purchaseOrder,

poExtensionType);
...

}
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Model Change Notification

§ Efficient notification in “set” methods
§ Checks for listeners before creating and sending notification

public String getShipTo()
{
return shipTo;

}

public void setShipTo(String newShipTo)
{
String oldShipTo = shipTo;
shipTo = newShipTo;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, ... );

}
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Bidirectional Reference Handshaking

PurchaseOrder

0..1
0..1

next

0..1
previous 0..1

public interface PurchaseOrder
{

PurchaseOrder getNext();
void setNext(PurchaseOrder value);
PurchaseOrder getPrevious();
void setPrevious(PurchaseOrder value);

}

Invariant imposed by the bidirectional reference: 

po.getNext().getPrevious() == po
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previous

next

Bidirectional Reference Handshaking

p1.setNext(p3);

p2

next

previous

p1
next

p2
previous

next

p3
previous

change
notification
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Reflection

§ All EMF classes implement interface EObject
§ Provides an efficient API for manipulating objects reflectively

§ Used by the framework (e.g., serialization/deserialization, copy 
utility, generic editing commands, etc.)

§ Also key to integrating tools and applications built using EMF

public interface EObject
{

EClass eClass();
Object eGet(EStructuralFeature sf);
void eSet(EStructuralFeature sf, Object val);
...

}
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Reflection Example

§ Setting an attribute using generated API:

§ Using reflective API:

PurchaseOrder po = ...
po.setBillTo("123 Elm St.");

EObject po = ...
EClass poClass = po.eClass();
po.eSet(poClass.getEStructuralFeature("billTo"),

"123 Elm St.");
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Reflective Performance

§ Efficient generated switch-based implementation of reflective 
methods

public Object eGet(int featureID, ...)
{

switch (featureID)
{

case POPackage.PURCHASE_ORDER__SHIP_TO:
return getShipTo();

case POPackage.PURCHASE_ORDER__BILL_TO:
return getBillTo();

...
}

}
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Reflection Benefits

§ Reflection allows generic access to any EMF model
§ Similar to Java’s introspection capability
§ Every EObject (that is, every EMF object) implements the reflection 

API

§ An integrator need only know your model!
§ A generic EMF model editor uses the reflection API

§ Can be used to edit any EMF model
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Dynamic EMF

§ Ecore models can be defined dynamically in memory
§ No generated code required
§ Dynamic implementation of reflective EObject API provides same 

runtime behavior as generated code
§ Also supports dynamic subclasses of generated classes

§ All EMF model instances, whether generated or dynamic, are 
treated the same by the framework
§ A dynamic Ecore model can be defined by

§ Instantiating model elements with the Ecore API
§ Loading from a .ecore file
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Dynamic EMF Example

§ Model definition using the Ecore API

EPackage poPackage = EcoreFactory.eINSTANCE.createEPackage();
poPackage.setName("po");
poPackage.setNsURI("http://www.example.com/PurchaseOrder");

EClass poClass = EcoreFactory.eINSTANCE.createEClass();
poClass.setName("PurchaseOrder");
poPackage.getEClassifiers().add(poClass); 

EAttribute billTo = EcoreFactory.eINSTANCE.createEAttribute();
billTo.setName("billTo");
billTo.setEType(EcorePackage.eINSTANCE.getEString());
poClass.getEStructuralFeatures().add(billTo);
...

EObject po = EcoreUtil.create(poClass);
po.eSet(billTo,"123 Elm St.");
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Exercise 2:
EMF Runtime and Static Model APIs
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Recording Changes

§ EMF provides facilities for recording the changes made to 
instances of an Ecore model

§ Change Model
§ An EMF model for representing changes to objects
§ Directly references affected objects
§ Includes “apply changes” capability

§ Change Recorder
§ EMF adapter
§ Monitors objects to produce a change description (an instance of

the change model)
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Change Model
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Change Recorder

§ Can be attached to EObjects, Resources, and ResourceSets
§ Monitors changes to the objects and their contents trees

§ Produces a description of the changes needed to return to the 
original state (a reverse delta)

§ Result: a change description with one change, setting billTo to 
“123 Elm St.”

PurchaseOrder order = ...
order.setBillTo("123 Elm St.");

ChangeRecorder recorder = new ChangeRecorder();
recorder.beginRecording(Collections.singleton(order));
order.setBillTo("456 Cherry St.");
ChangeDescription change = recorder.endRecording();
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Applying Changes

§ Given a change description, the change can be applied:
§ ChangeDescription.apply()

§ consumes the changes, leaving the description empty
§ ChangeDescription.applyAndReverse()

§ reverses the changes, leaving a description of the changes 
originally made (the forward delta)

§ The model is always left in an appropriate state for applying the 
resulting change description
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Example: Transaction Capability

§ If any part of the transaction fails, undo the changes

ChangeRecorder changeRecorder =
new ChangeRecorder(resourceSet);

try
{

// modifications within resource set
}
catch (Exception e)
{

changeRecorder.endRecording().apply();
}
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Exercise 3:
Recording Changes
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Validation Framework

§ Model objects validated by external EValidator

§ Detailed results accumulated as Diagnostics
§ Essentially a non-Eclipse equivalent to IStatus
§ Records severity, source plug-in ID, status code, message, other 

arbitrary data, and nested children 

public interface Evalidator
{
boolean validate(EObject eObject,

DiagnosticChain diagnostics, Map Context);
boolean validate(EClass eClass, EOjbect eObject,

DiagnosticChain, diagnostics, Map context);
boolean validate(EDataType eDataType, Object value,

DiagnosticChain diagnostics, Map context);
...

}
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Invariants and Constraints

§ Invariant
§ Defined directly on the class, 

as an operation with <<inv>> 
stereotype

§ Stronger statement about 
validity than a constraint

§ Constraint
§ Externally defined for the 

class via a method on the 
validator

PurchaseOrder
shipTo : String
billTo : String

<<inv>> validAddresses()
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Generated EValidator Implementations

§ Generated for each package that defines invariants or 
constraints
§ Dispatches validation to type-specific methods
§ For classes, a validate method is called for each invariant and 

constraint
§ Method body must be hand coded for invariants and named 

constraints
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Schema-Based Constraints

§ In XML Schema, named constraints are defined via annotations:

§ Also, constraints can be defined as facets on simple types, and 
no additional coding is required
§ Constraint method implementation generated

<xsd:annotation>
<xsd:appinfo source="http://www.eclipse.org/emf/2002/Ecore" 
ecore:key="constraints">VolumeDiscount</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>
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Framework EValidator Implementations

§ EObjectValidator validates basic EObject constraints:
§ Multiplicities are respected
§ Proxies resolve
§ All referenced objects are contained in a resource
§ Data type values are valid

§ Used as base of generated validators and directly for packages 
without additional constraints defined
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Framework EValidator Implementations

§ Diagnostician walks a containment tree of model objects, 
dispatching to package-specific validators
§ Diagnostician.validate() is the usual entry point
§ Obtains validators from its EValidator.Registry

Diagnostician validator = Diagnostician.INSTANCE;
Diagnostic diagnostic = validator.validate(order);

if (diagnostic.getSeverity() == Diagnostic.ERROR)
{
// handle error

}

for (Iterator i = diagnostic.getChildren().iterator(); i.hasNext();)
{
Diagnostic child = (Diagnostic)i.next();
// handle child diagnostic

}



77 Introduction to the Eclipse Modeling Framework  |  © 2006 by IBM; made available under the EPL v1.0

Exercise 4:
Validation
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XML Processor

§ New in EMF 2.2 (from M2)
§ Simplified API for loading and saving XML

§ Handles resource set, registries, etc. under the covers

§ Can automatically create a dynamic Ecore representation of a 
schema
§ Load/save instance documents without generating code
§ Manipulate the objects using reflective EObject API 

URI schemaURI = ...
String instanceFileName = ...

XMLProcessor processor = new XMLProcessor(schemaURI);
Resource resource = processor.load(instanceFileName);

EObject documentRoot = (EObject)resource.getContents.get(0);
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Exercise 5:
Reflection, Dynamic EMF and XML Processor
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What’s New in EMF 2.2

§ Plan items [Bugzilla]:
§ XMLProcessor utilities to improve ease-of-use [104718]
§ EMF.Edit enhancements [105964]
§ Content adapter for managing reverse of 1-way references [75922]
§ Cross-resource containment [105937]
§ XMI 2.1 support [76538]
§ Improve XML Schema generation [104893]
§ Model exporter [109300]
§ Decouple JMerger implementation from JDOM [78076]
§ Performance optimizations [116307]
§ Make code generator more extensible [75925]
§ Improve code generation error reporting and handling [104727]

§ For more, see http://www.eclipse.org/emf/docs.php#plandocs
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What’s New in EMF 2.2

§ Community Involvement
§ EMFT: incubating new EMF Technology projects:

§ Object Constraint Language (OCL)
§ Query
§ Transaction
§ Validation
§ EMF Ontolgy Definition Metamodel (EODM)
§ Java Emitter Templates (JET)

§ See http://www.eclipse.org/emft/
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Summary

§ EMF is low-cost modeling for the Java mainstream

§ Boosts productivity and facilitates integration

§ Mixes modeling with programming to maximize the effectiveness 
of both
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Summary

§ EMF provides…
§ A metamodel (Ecore) with which your domain model can be 

specified
§ Your model can be created from UML, XML Schema or 

annotated Java interfaces
§ Generated Java code

§ Efficient and straightforward 
§ Code customization preserved

§ Persistence and Serialization
§ Resource-based serialization
§ Proxy resolution and demand loading
§ Default resource implementation is XMI (XML metadata 

interchange), but can be overridden
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Summary

§ EMF provides…
§ Model change notification is built in

§ Just add adapters (observers) where needed
§ Reflection and dynamic EMF

§ Full introspection capability
§ Simple change recording and roll-back
§ Extensible validation framework
§ Standalone runtime support
§ A UI-independent layer for viewing and editing modeled data 

(EMF.Edit)
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Resources

§ EMF documentation in Eclipse Help
§ Overviews, tutorials, API reference

§ EMF Project Web Site
§ http://www.eclipse.org/emf/
§ Overviews, tutorials, newsgroup, 

Bugzilla

§ Eclipse Modeling Framework 
by Frank Budinsky et al.
§ Addison-Wesley; 1st edition 

(August 13, 2003)
§ ISBN: 0131425420.
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Legal Notices
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