
© 2006 by IBM; made available under the EPL v1.0 | March 20, 2006

Nick Boldt and Dave Steinberg
IBM Rational Software
Toronto, Canada
EMF Project

Introduction to the Eclipse Modeling Framework

http://eclipse.org/emf/docs/presentations/EclipseCon/

2 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

3 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

What is EMF?

§ A modeling & data integration framework
§ Exploits the facilities offered in Eclipse to...

§ Generate code without losing user customizations (merge)
§ Automate important tasks (such as registering the runtime

information)
§ Improve extensibility
§ Provide a UI layer

§ What is an EMF “model”?
§ Specification of your application’s data

§ Object attributes
§ Relationships (associations) between objects
§ Operations available on each object
§ Simple constraints (eg. cardinality) on objects and relationships

§ Essentially it represents the class diagram of the application

4 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

What does EMF Provide?

§ From a model specification, EMF can generate efficient, correct,
and easily customizable implementation code
§ Out of the box, EMF provides support for

§ Java™ interfaces
§ UML
§ XML Schema

§ EMF converts your models to Ecore (EMF metamodel)
§ Tooling support within the Eclipse framework (UI, headless

mode, Ant and standalone), including support for generating
Eclipse-based and RCP editors
§ Reflective API and dynamic model definition
§ Persistence API with out of box support for XML/XMI

(de)serialization of instances of a model
§ And much more….

5 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Why EMF?

§ EMF is middle ground in the modeling vs. programming worlds
§ Focus is on class diagram subset of UML modeling (object model)
§ Transforms models into Java code
§ Provides the infrastructure to use models effectively in your

application

§ Very low cost of entry
§ EMF is free and open source
§ Full scale graphical modeling tool not required
§ Reuses your knowledge of UML, XML Schema, or Java

§ It’s real, proven technology (since 2002)

6 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF History

§ First version was released in June, 2002
§ Originally based on MOF (Meta Object Facility)

§ From OMG (Object Management Group)
§ Abstract language and framework for specifying, constructing, and

managing technology neutral metamodels

§ EMF evolved based on experience supporting a large set of tools
§ Efficient Java implementation of a practical subset of the MOF API

§ 2003: EMOF defined (Essential MOF)
§ Part of OMG’s MOF 2 specification; UML2 based
§ EMF is approximately the same functionality

§ Significant contributor to the spec; adapting to it

7 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Who is Using EMF Today?

§ Eclipse projects
§ Tools Project: UML2 and Visual Editor (VE)
§ Web Tools Platform (WTP) Project
§ Test and Performance Tools Platform (TPTP) Project
§ Business Intelligence and Reporting Tools (BIRT) Project
§ Data Tools Platform (DTP) Project
§ Technology Project: Graphical Modeling Framework (GMF)

§ Commercial offerings
§ IBM, Borland, Oracle, Omondo, Versata, MetaMatrix, Bosch,

Ensemble...

§ Large open source community
§ Estimated 125,000 download requests in January

8 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF at IBM

§ Pervasive usage across product lines
§ IBM® Rational® Software Architect
§ IBM Rational Application Developer for WebSphere Software
§ IBM WebSphere® Integration Developer
§ IBM WebSphere Application Server
§ IBM Lotus® Workplace

§ Emerging technology projects: alphaWorks
§ Emfatic Language for EMF Development

(http://www.alphaworks.ibm.com/tech/emfatic)
§ Model Transformation Framework

(http://www.alphaworks.ibm.com/tech/mtf)
§ XML Forms Generator (http://www.alphaworks.ibm.com/tech/xfg)

9 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

What Have People Said About EMF?

§ EMF represents the core subset that's left when the non-essentials are
eliminated. It represents a rock solid foundation upon which the more
ambitious extensions of UML and MDA can be built.

– Vlad Varnica, OMONDO Business Development Director, 2002

§ EMF provides the glue between the modeling and programming worlds,
offering an infrastructure to use models effectively in code by integrating UML,
XML and Java. EMF thus fits well into [the] Model-Driven Development approach,
and is critically important for Model-Driven Architecture, which underpins
service-oriented architectures [SOA].

– Jason Bloomberg, Senior analyst for XML & Web services, ZapThink, 2003

§ The EMF […] with UML stuff is pretty cool in Eclipse. Maybe one day MDA will
make its way into the NetBeans GUI.

– posted to theserverside.com, November 2004 (circa NetBeans 4.1 EA)

§ [As] a consultant with fiduciary responsibility to my customers, [...] given the
enormous traction that Eclipse has gathered, we have to view the EMF
metadata management framework as the de facto standard.

– David Frankel, as seen in Business Process Trends, March 2005

10 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Creating the Ecore Model

§ Representing the modeled domain in Ecore is the first step in
using EMF
§ Ecore can be created

§ Directly using the EMF editors
§ Through a graphical UI provided by external contributions
§ By converting a model specification for which a Model Importer is

available

§ Model Importers available in EMF
§ Java Interfaces
§ UML models expressed in Rational Rose® files
§ XML Schema

§ Choose the one matching your perspective or skills

11 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Importers Available in EMF

§ Java Interfaces

public interface PurchaseOrder
{
String getShipTo();
void setShipTo(String value);
String getBillTo();
void setBillTo(String value);
List getItems(); // List of Item

}
public interface Item
{
String getProductName();
void setProductName(String value);
int getQuantity();
void setQuantity(int value)
float getPrice();
void setPrice(float value);

}

12 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Importers Available in EMF

§ UML Class Diagram

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

13 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Importers Available in EMF

§ XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/SimplePO"
xmlns:PO="http://www.example.com/SimplePO">

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
<xsd:element name="shipTo" type="xsd:string"/>
<xsd:element name="billTo" type="xsd:string"/>
<xsd:element name="items" type="PO:Item"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Item">
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="price" type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

14 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Unifying Java, XML and UML Technologies

§ The Model Importers available in EMF were carefully chosen to
integrate today’s most important technologies
§ All three forms provide the same information

§ Different visualization/representation
§ The application’s “model” of the structure

§ From a model definition, EMF can generate
§ Java implementation code, including UI
§ XML Schemas
§ Eclipse projects and plug-in

15 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Typical EMF Usage Scenario

§ Create an Ecore model that represents the domain you are working on
§ Import UML (e.g. Rose .mdl file)
§ Import XML Schema
§ Import annotated Java interfaces
§ Create Ecore model directly using EMF's Ecore editor or a graphical editor

§ Generate Java code for model
§ Prime the model with instance data using generated EMF model editor
§ Iteratively refine model (and regenerate code) and develop Java

application
§ You will use the EMF generated code to implement the use cases of your

application

§ Optionally, use EMF.Edit to build customized user interface

16 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

17 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF Components

§ EMF Core
§ Ecore metamodel
§ Model change notification & validation
§ Persistence and serialization
§ Reflection API
§ Runtime support for generated models

§ EMF Edit
§ Helps integrate models with a rich user interface
§ Used to build editors and viewers for your model
§ Includes default reflective model editor

§ EMF Codegen
§ Code generator for core and edit based components
§ Extensible model importer framework

18 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF Tools: Model Import and Generation

Generator Features:
§ Customizable

JSP-like
templates (JET)

§ JDT-integrated,
command-line, or
Ant

§ Fully supports
regeneration and
merge

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Java
editor* * Eclipse IDE-integrated

or RCP-based

Java
model

19 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF Model Importers

§ UML
§ Rational Rose .mdl file
§ Eclipse UML2 project provides importer for .uml2

§ Annotated Java
§ Java interfaces representing modeled classes
§ Javadoc annotations using @model tags to express model

properties not captured by method declarations
§ Lowest cost approach

§ XML Schema
§ Describes the data of the modeled domain
§ Provides richer description of the data, which EMF exploits

§ Ecore model (*.ecore file)
§ Just creates the generator model (discussed later)
§ Also handles EMOF (*.emof)

20 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Ecore Model Creation

§ An Ecore model is created within an Eclipse project via a wizard
§ Input: one of the model specifications from the previous slide
§ Output:

§ modelname.ecore
§ Ecore model file in XMI format
§ Canonical form of the model

§ modelname.genmodel
§ A “generator model” for specifying generator options
§ Decorates .ecore file
§ EMF code generator is an EMF .genmodel editor
§ Automatically kept in synch with .ecore file

21 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Ecore Model Editor

§ A generated (and customized)
EMF editor for the Ecore model
§ Create, delete, etc. model

elements (EClass, EAttribute,
EReference, etc.) using pop-up
actions in the editor's tree
§ Set names, etc. in the Properties

view

22 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Ecore Model Editor

§ A graphical editor is a better approach
§ GMF Ecore Diagram Example (http://www.eclipse.org/gmf/)
§ Omondo EclipseUML (http://www.omondo.com/)

23 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF Generator

§ Similar layout to Ecore model
editor

§ Automatically keeps in synch
with .ecore changes

§ Generate code with pop-up
menu actions
§ Generate Model Code
§ Generate Edit Code
§ Generate Editor Code
§ Generate Test Code
§ Generate All

§ Code generation options in
Properties view

§ Generator > Reload to reload
.genmodel and .ecore files
from original model form

24 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

25 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

The Ecore (Meta) Model

§ Ecore is EMF's model of a model
§ Also called a “metamodel”
§ Persistent representation is XMI

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

26 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

The Ecore Metamodel

§ EObject is the root of every model object – equivalent to java.lang.Object

27 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Partial List of Ecore Data Types

§ Ecore data types are serializable and custom data types are supported

java.lang.FloatEFloatObject

java.lang.ObjectEJavaObject

java.lang.BooleanEBooleanObject

byte[]EByteArray

java.lang.StringEString

floatEFloat

charEChar

booleanEBoolean

Java Primitive Type or
Class

Ecore Data Type

28 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Ecore Model for Purchase Orders

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

is represented in Ecore as

29 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Purchase Order Ecore XMI

§ Alternate serialization format is EMOF (Essential MOF) XMI
§ Part of OMG Meta Object Facility (MOF) 2.0 standard

(http://www.omg.org/docs/ptc/04-10-15.pdf)

<eClassifiers xsi:type="ecore:EClass"
name="PurchaseOrder">

<eReferences name="items" eType="#//Item"
upperBound="-1" containment="true"/>

<eAttributes name="shipTo"
eType="ecore:EDataType http:...Ecore#//EString"/>

<eAttributes name="billTo"
eType="ecore:EDataType http:...Ecore#//EString"/>

</eClassifiers>

30 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

UML Constructs Available in Ecore

§ Classes, Abstract Classes, and Interfaces

§ Attributes and Operations

ClassOrInterfaceName
attribute1 : type1
attribute2 : type2 = initval
<<0..*>> attribute3 : type3

operation1(arg1 : type1) : return1
operation2(arg1 : type1, arg2 : type2) : return2

31 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

UML Constructs Available in Ecore

§ References (Associations)
§ One-way

ClassBClassA

1

ClassA ClassB

0..1

roleB1

1

roleB2

0..1

ClassA ClassB

0..*0..*

roleB3

32 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

UML Constructs Available in Ecore

§ References (Associations)
§ Bidirectional

§ Containment

ClassBClassA

0..*0..*

ClassBClassA

0..*0..*

roleA roleB2

roleB1

ClassA ClassB

0..*1 0..*

roleBroleA

1

33 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

UML Constructs Available in Ecore

§ Class Inheritance

§ Enumerations and Data Types

ClassB

ClassA ClassC

ClassB

ClassA

<<extend>>

EnumName
literal1
literal2
literal3 = 5

<<enumeration>>

DataTypeName
<<javaclass>> JavaClass1

<<datatype>>

34 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

35 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Code Generation

§ EMF framework is lightweight
§ Generated code is clean, simple, efficient

§ EMF can generate
§ Model implementation
§ UI-independent edit support
§ Editor and views for Eclipse IDE-integrated or RCP application
§ JUnit test skeletons
§ Manifests, plug-in classes, properties, icons, etc.

36 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Generated Model Code

§ Interface and implementation for each modeled class
§ Includes get/set accessors for attributes and references

§ Usage example

public interface PurchaseOrder extends EObject
{
String getShipTo();
void setShipTo(String value);
String getBillTo();
void setBillTo(String value);
EList getItems();

}

order.getItems().add(item);

37 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Generated Model Code

§ Factory to create instances of model objects

§ Package class provides access to metadata

§ Also generated: switch utility, adapter factory base, validator,
custom resource, XML processor

POFactory factory = POFactory.eINSTANCE;
PurchaseOrder order = factory.createPurchaseOrder();

POPackage poPackage = POPackage.eINSTANCE;
EClass itemClass = poPackage.getItem();

EAttribute priceAttr = poPackage.getItem_Price();
//or itemClass.getEStructuralFeature(POPackage.ITEM__PRICE)

38 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Generated Edit/Editor Code

§ Viewing/editing code divided into two parts
§ UI-independent code

§ Item providers (adapters)
§ Item provider adapter factory

§ UI-dependent code
§ Model creation wizard
§ Editor
§ Action bar contributor
§ Advisor (RCP)

§ By default each part is placed in a separate Eclipse plug-in

39 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Summary of Generated Artifacts

§ Model
§ Interfaces and classes
§ Type-safe enumerations
§ Package (metadata)
§ Factory
§ Switch utility
§ Adapter factory base
§ Validator
§ Custom resource
§ XML Processor

§ Edit (UI independent)
§ Item providers
§ Item provider adapter factory

§ Editor
§ Model Wizard
§ Editor
§ Action bar contributor
§ Advisor (RCP)

§ Tests
§ Test cases
§ Test suite
§ Stand-alone example

§ Manifests, plug-in classes,
properties, icons...

40 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Regeneration and Merge

§ Hand-written code can be added to generated code and
preserved during regeneration
§ This merge capability has an Eclipse dependency, so is not

available standalone

§ All generated classes, interfaces, methods and fields include
@generated marker in their Javadoc
§ To replace generated code:

§ Remove @generated marker
§ Or include additional text, e.g.

@generated NOT

§ Methods without @generated marker are left alone during
regeneration

41 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Regeneration and Merge

§ Extend (vs. replace) generated method through redirection
§ Append “Gen” suffix to the generated method's name

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getNameGen()
{
return name;

}

public String getName()
{
return format(getNameGen());

}

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getName()
{
return name;

}

42 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Exercise 1:
Code Generation, Regeneration and Merge

43 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

44 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

EMF Runtime

§ Persistence and serialization of model data
§ Proxy resolution and demand load

§ Automatic notification of model changes
§ Bi-directional reference handshaking
§ Dynamic object access through a reflective API
§ Runtime environments

§ Eclipse
§ Full IDE
§ RCP

§ Standalone Java

45 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Persistence and Serialization

§ Serialized data is referred to as a resource
§ Data can be spread out among a number of resources in a

resource set
§ One resource is loaded at a time, even if it has references to

objects in other resources in the resource set
§ Proxies exist for objects in other resources
§ Lazy or demand loading of other resources as needed
§ A resource can be unloaded

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1 resource 1
uri 2 resource 2

46 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Resource Set

§ Context for multiple resources that may have references among
them
§ Usually just an instance of ResourceSetImpl, or a customized

subclass
§ Provides factory method for creating new resources in the set:

§ Also provides access to the registries, URI converter, and default
load options for the set

ResourceSet rs = new ResourceSetImpl();
URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);

47 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Resource Factory Registry

§ Returns a resource factory for a given type of resource
§ Based on the URI scheme or filename extension
§ Determines the type of resource, hence format for save/load

§ For models created from XML Schema, the generated custom resource
factory implementation should be registered to ensure schema-
conformant serialization
§ When running as a plug-in under Eclipse, EMF provides an extension point

for registering resource factories
§ Generated plugin.xml registers generated resource factory against a

package specific extension (e.g. “po”)

§ Global registry: Resource.Factory.Registry.INSTANCE
§ Consulted if no registered resource factory found locally

Resource.Factory.Registry reg = rs.getResourceFactoryRegistry();
reg.getExtensionToFactoryMap().put("xml", new XMLResourceFactoryImpl());

48 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Package Registry

§ Returns the package identified by a given namespace URI
§ Used during loading to access the factory for creating instances

§ Global registry: EPackage.Registry.INSTANCE
§ Consulted if no registered package found locally

§ Running in Eclipse, EMF provides an extension point for globally
registering generated packages
§ Even standalone, a package automatically registers itself when

accessed:

EPackage.Registry registry = rs.getPackageRegistry();
registry.put(POPackage.eNS_URI, POPackage.eINSTANCE);

POPackage poPackage = POPackage.eINSTANCE;

49 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Resource

§ Container for objects that are to be persisted together
§ Convert to and from persistent form via save() and load()
§ Access contents of resource via getContents()

§ EMF provides XMLResource implementation

§ Other, customized XML resource implementations, provided, too
(e.g. XMI, Ecore, EMOF)

URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);
resource.getContents().add(p1);
resource.save(null);

<PurchaseOrder>
<shipTo>John Doe</shipTo>
<next>p2.xml#p2</next>

</PurchaseOrder>

50 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Proxy Resolution and Demand Load

p1

p1.xml

next
p2

p2.xml

proxyURI=“p2.xml#p2”
next

proxyURI=“p2.xml#p2”
next

PurchaseOrder p2 = p1.getNext();

PurchaseOrder

0..1

next

0..1

<PurchaseOrder>
<shipTo>John Doe</shipTo>
<next>p2.xml#p2</next>

</PurchaseOrder>

p1.xml

51 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Change Notification

§ Every EMF object is also a Notifier
§ Send notification whenever an attribute or reference is changed
§ EMF objects can be “observed” in order to update views and

dependent objects

Adapter poObserver = ...
purchaseOrder.eAdapters().add(poObserver);

adapter.notifyChanged()

setBillTo()

PurchaseOrder

Adapter

52 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Change Notification

§ Observers or listeners in EMF are called adapters
§ An adapter can also extend class behavior without subclassing
§ For this reason they are typically added using an AdapterFactory

PurchaseOrder purchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...
Object poExtensionType = ...

if (somePOAdapterFactory.isFactoryForType(poExtensiontype))
{
Adapter poAdapter = somePOAdapterFactory.adapt(purchaseOrder,

poExtensionType);
...

}

53 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Model Change Notification

§ Efficient notification in “set” methods
§ Checks for listeners before creating and sending notification

public String getShipTo()
{
return shipTo;

}

public void setShipTo(String newShipTo)
{
String oldShipTo = shipTo;
shipTo = newShipTo;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, ...);

}

54 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Bidirectional Reference Handshaking

PurchaseOrder

0..1
0..1

next

0..1
previous 0..1

public interface PurchaseOrder
{

PurchaseOrder getNext();
void setNext(PurchaseOrder value);
PurchaseOrder getPrevious();
void setPrevious(PurchaseOrder value);

}

Invariant imposed by the bidirectional reference:

po.getNext().getPrevious() == po

55 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

previous

next

Bidirectional Reference Handshaking

p1.setNext(p3);

p2

next

previous

p1
next

p2
previous

next

p3
previous

change
notification

56 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Reflection

§ All EMF classes implement interface EObject
§ Provides an efficient API for manipulating objects reflectively

§ Used by the framework (e.g., serialization/deserialization, copy
utility, generic editing commands, etc.)

§ Also key to integrating tools and applications built using EMF

public interface EObject
{

EClass eClass();
Object eGet(EStructuralFeature sf);
void eSet(EStructuralFeature sf, Object val);
...

}

57 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Reflection Example

§ Setting an attribute using generated API:

§ Using reflective API:

PurchaseOrder po = ...
po.setBillTo("123 Elm St.");

EObject po = ...
EClass poClass = po.eClass();
po.eSet(poClass.getEStructuralFeature("billTo"),

"123 Elm St.");

58 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Reflective Performance

§ Efficient generated switch-based implementation of reflective
methods

public Object eGet(int featureID, ...)
{

switch (featureID)
{

case POPackage.PURCHASE_ORDER__SHIP_TO:
return getShipTo();

case POPackage.PURCHASE_ORDER__BILL_TO:
return getBillTo();

...
}

}

59 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Reflection Benefits

§ Reflection allows generic access to any EMF model
§ Similar to Java’s introspection capability
§ Every EObject (that is, every EMF object) implements the reflection

API

§ An integrator need only know your model!
§ A generic EMF model editor uses the reflection API

§ Can be used to edit any EMF model

60 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Dynamic EMF

§ Ecore models can be defined dynamically in memory
§ No generated code required
§ Dynamic implementation of reflective EObject API provides same

runtime behavior as generated code
§ Also supports dynamic subclasses of generated classes

§ All EMF model instances, whether generated or dynamic, are
treated the same by the framework
§ A dynamic Ecore model can be defined by

§ Instantiating model elements with the Ecore API
§ Loading from a .ecore file

61 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Dynamic EMF Example

§ Model definition using the Ecore API

EPackage poPackage = EcoreFactory.eINSTANCE.createEPackage();
poPackage.setName("po");
poPackage.setNsURI("http://www.example.com/PurchaseOrder");

EClass poClass = EcoreFactory.eINSTANCE.createEClass();
poClass.setName("PurchaseOrder");
poPackage.getEClassifiers().add(poClass);

EAttribute billTo = EcoreFactory.eINSTANCE.createEAttribute();
billTo.setName("billTo");
billTo.setEType(EcorePackage.eINSTANCE.getEString());
poClass.getEStructuralFeatures().add(billTo);
...

EObject po = EcoreUtil.create(poClass);
po.eSet(billTo,"123 Elm St.");

62 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Exercise 2:
EMF Runtime and Static Model APIs

63 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

64 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Recording Changes

§ EMF provides facilities for recording the changes made to
instances of an Ecore model

§ Change Model
§ An EMF model for representing changes to objects
§ Directly references affected objects
§ Includes “apply changes” capability

§ Change Recorder
§ EMF adapter
§ Monitors objects to produce a change description (an instance of

the change model)

65 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Change Model

66 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Change Recorder

§ Can be attached to EObjects, Resources, and ResourceSets
§ Monitors changes to the objects and their contents trees

§ Produces a description of the changes needed to return to the
original state (a reverse delta)

§ Result: a change description with one change, setting billTo to
“123 Elm St.”

PurchaseOrder order = ...
order.setBillTo("123 Elm St.");

ChangeRecorder recorder = new ChangeRecorder();
recorder.beginRecording(Collections.singleton(order));
order.setBillTo("456 Cherry St.");
ChangeDescription change = recorder.endRecording();

67 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Applying Changes

§ Given a change description, the change can be applied:
§ ChangeDescription.apply()

§ consumes the changes, leaving the description empty
§ ChangeDescription.applyAndReverse()

§ reverses the changes, leaving a description of the changes
originally made (the forward delta)

§ The model is always left in an appropriate state for applying the
resulting change description

68 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Example: Transaction Capability

§ If any part of the transaction fails, undo the changes

ChangeRecorder changeRecorder =
new ChangeRecorder(resourceSet);

try
{

// modifications within resource set
}
catch (Exception e)
{

changeRecorder.endRecording().apply();
}

69 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Exercise 3:
Recording Changes

70 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

71 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Validation Framework

§ Model objects validated by external EValidator

§ Detailed results accumulated as Diagnostics
§ Essentially a non-Eclipse equivalent to IStatus
§ Records severity, source plug-in ID, status code, message, other

arbitrary data, and nested children

public interface Evalidator
{
boolean validate(EObject eObject,

DiagnosticChain diagnostics, Map Context);
boolean validate(EClass eClass, EOjbect eObject,

DiagnosticChain, diagnostics, Map context);
boolean validate(EDataType eDataType, Object value,

DiagnosticChain diagnostics, Map context);
...

}

72 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Invariants and Constraints

§ Invariant
§ Defined directly on the class,

as an operation with <<inv>>
stereotype

§ Stronger statement about
validity than a constraint

§ Constraint
§ Externally defined for the

class via a method on the
validator

PurchaseOrder
shipTo : String
billTo : String

<<inv>> validAddresses()

73 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Generated EValidator Implementations

§ Generated for each package that defines invariants or
constraints
§ Dispatches validation to type-specific methods
§ For classes, a validate method is called for each invariant and

constraint
§ Method body must be hand coded for invariants and named

constraints

74 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Schema-Based Constraints

§ In XML Schema, named constraints are defined via annotations:

§ Also, constraints can be defined as facets on simple types, and
no additional coding is required
§ Constraint method implementation generated

<xsd:annotation>
<xsd:appinfo source="http://www.eclipse.org/emf/2002/Ecore"
ecore:key="constraints">VolumeDiscount</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

75 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Framework EValidator Implementations

§ EObjectValidator validates basic EObject constraints:
§ Multiplicities are respected
§ Proxies resolve
§ All referenced objects are contained in a resource
§ Data type values are valid

§ Used as base of generated validators and directly for packages
without additional constraints defined

76 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Framework EValidator Implementations

§ Diagnostician walks a containment tree of model objects,
dispatching to package-specific validators
§ Diagnostician.validate() is the usual entry point
§ Obtains validators from its EValidator.Registry

Diagnostician validator = Diagnostician.INSTANCE;
Diagnostic diagnostic = validator.validate(order);

if (diagnostic.getSeverity() == Diagnostic.ERROR)
{
// handle error

}

for (Iterator i = diagnostic.getChildren().iterator(); i.hasNext();)
{
Diagnostic child = (Diagnostic)i.next();
// handle child diagnostic

}

77 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Exercise 4:
Validation

78 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

79 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

XML Processor

§ New in EMF 2.2 (from M2)
§ Simplified API for loading and saving XML

§ Handles resource set, registries, etc. under the covers

§ Can automatically create a dynamic Ecore representation of a
schema
§ Load/save instance documents without generating code
§ Manipulate the objects using reflective EObject API

URI schemaURI = ...
String instanceFileName = ...

XMLProcessor processor = new XMLProcessor(schemaURI);
Resource resource = processor.load(instanceFileName);

EObject documentRoot = (EObject)resource.getContents.get(0);

80 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Exercise 5:
Reflection, Dynamic EMF and XML Processor

81 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

82 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

What’s New in EMF 2.2

§ Plan items [Bugzilla]:
§ XMLProcessor utilities to improve ease-of-use [104718]
§ EMF.Edit enhancements [105964]
§ Content adapter for managing reverse of 1-way references [75922]
§ Cross-resource containment [105937]
§ XMI 2.1 support [76538]
§ Improve XML Schema generation [104893]
§ Model exporter [109300]
§ Decouple JMerger implementation from JDOM [78076]
§ Performance optimizations [116307]
§ Make code generator more extensible [75925]
§ Improve code generation error reporting and handling [104727]

§ For more, see http://www.eclipse.org/emf/docs.php#plandocs

83 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

What’s New in EMF 2.2

§ Community Involvement
§ EMFT: incubating new EMF Technology projects:

§ Object Constraint Language (OCL)
§ Query
§ Transaction
§ Validation
§ EMF Ontolgy Definition Metamodel (EODM)
§ Java Emitter Templates (JET)

§ See http://www.eclipse.org/emft/

84 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ Introduction
§ EMF in a Nutshell
§ EMF Components
§ The Ecore Metamodel

§ Exercise 1: Code Generation, Regeneration and Merge
§ Exercise 2: EMF Runtime
§ Exercise 3: Recording Changes
§ Exercise 4: Validation
§ Exercise 5: Reflection, Dynamic EMF and XML Processor

§ What’s New in EMF 2.2
§ Summary

85 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Summary

§ EMF is low-cost modeling for the Java mainstream

§ Boosts productivity and facilitates integration

§ Mixes modeling with programming to maximize the effectiveness
of both

86 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Summary

§ EMF provides…
§ A metamodel (Ecore) with which your domain model can be

specified
§ Your model can be created from UML, XML Schema or

annotated Java interfaces
§ Generated Java code

§ Efficient and straightforward
§ Code customization preserved

§ Persistence and Serialization
§ Resource-based serialization
§ Proxy resolution and demand loading
§ Default resource implementation is XMI (XML metadata

interchange), but can be overridden

87 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Summary

§ EMF provides…
§ Model change notification is built in

§ Just add adapters (observers) where needed
§ Reflection and dynamic EMF

§ Full introspection capability
§ Simple change recording and roll-back
§ Extensible validation framework
§ Standalone runtime support
§ A UI-independent layer for viewing and editing modeled data

(EMF.Edit)

88 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Resources

§ EMF documentation in Eclipse Help
§ Overviews, tutorials, API reference

§ EMF Project Web Site
§ http://www.eclipse.org/emf/
§ Overviews, tutorials, newsgroup,

Bugzilla

§ Eclipse Modeling Framework
by Frank Budinsky et al.
§ Addison-Wesley; 1st edition

(August 13, 2003)
§ ISBN: 0131425420.

89 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0

Legal Notices

IBM, Rational, WebSphere, Lotus, and Rational Rose are
registered trademarks of International Business Machines Corp. in
the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

