@p CON 2006

Introduction to the Eclipse Modeling Framework

http://eclipse.org/emf/docs/presentations/EclipseCon/

Nick Boldt and Dave Steinberg
IBM Rational Software
Toronto, Canada

EMF Project

© 2006 by IBM; made available under the EPL v1.0 | March 20, 2006 —

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

2 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[) S5&CON 2006

What is EMF?

= A modeling & data integration framework
= Exploits the facilities offered in Eclipse to...

» (Generate code without losing user customizations (merge)

Automate important tasks (such as registering the runtime
information)

» Improve extensibility
= Provide a Ul layer

= What is an EMF “model”?

= Specification of your application’s data
= Object attributes

» Relationships (associations) between objects
= Operations available on each object

= Simple constraints (eg. cardinality) on objects and relationships
Essentially it represents the class diagram of the application

| Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@E) S5&CON 2006

What does EMF Provide?

= From a model specification, EMF can generate efficient, correct,
and easily customizable implementation code

= Out of the box, EMF provides support for
= Java™ interfaces
= UML
= XML Schema
= EMF converts your models to Ecore (EMF metamodel)

» Tooling support within the Eclipse framework (Ul, headless
mode, Ant and standalone), including support for generating
Eclipse-based and RCP editors

» Reflective API and dynamic model definition

= Persistence API with out of box support for XML/XMI
(de)serialization of instances of a model

= And much more....

4 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 5= CON 2006

Why EMF?

= EMF is middle ground in the modeling vs. programming worlds
» Focus is on class diagram subset of UML modeling (object model)
» Transforms models into Java code
* Provides the infrastructure to use models effectively in your
application
= Very low cost of entry
= EMF is free and open source
» Full scale graphical modeling tool not required
» Reuses your knowledge of UML, XML Schema, or Java

= |t’s real, proven technology (since 2002)

5 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[} S5&CON 2006

EMF History

= First version was released in June, 2002
Originally based on MOF (Meta Object Facility)
* From OMG (Object Management Group)

= Abstract language and framework for specifying, constructing, and
managing technology neutral metamodels

EMF evolved based on experience supporting a large set of tools
= Efficient Java implementation of a practical subset of the MOF API
2003: EMOF defined (Essential MOF)
= Part of OMG’s MOF 2 specification; UML2 based

= EMF is approximately the same functionality
= Significant contributor to the spec; adapting to it

6 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Who is Using EMF Today?

= Eclipse projects
» Tools Project: UML2 and Visual Editor (VE)
= Web Tools Platform (WTP) Project
» Test and Performance Tools Platform (TPTP) Project

» Business Intelligence and Reporting Tools (BIRT) Project
» Data Tools Platform (DTP) Project

» Technology Project: Graphical Modeling Framework (GMF)
= Commercial offerings

= |BM, Borland, Oracle, Omondo, Versata, MetaMatrix, Bosch,
Ensemble...

= Large open source community
= Estimated 125,000 download requests in January

7 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

EMF at IBM

» Pervasive usage across product lines
= |BM® Rational® Software Architect
= |BM Rational Application Developer for WebSphere Software
= |BM WebSphere® Integration Developer
= |IBM WebSphere Application Server
= |BM Lotus® Workplace

* Emerging technology projects: alphaWorks

= Emfatic Language for EMF Development
(http://lwww.alphaworks.ibm.com/tech/emfatic)

= Model Transformation Framework
(http://lwww.alphaworks.ibm.com/tech/mtf)

» XML Forms Generator (http://www.alphaworks.ibm.com/tech/xfg)

8 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p $2CON 2006

What Have People Said About EMF?

= EMF represents the core subset that's left when the non-essentials are
eliminated. It represents a rock solid foundation upon which the more
ambitious extensions of UML and MDA can be built.

— Vlad Varnica, OMONDO Business Development Director, 2002

» EMF provides the glue between the modeling and programming worlds,
offering an infrastructure to use models effectively in code by integrating UML,
XML and Java. EMF thus fits well into [the] Model-Driven Development approach
and is critically important for Model-Driven Architecture, which underpins
service-oriented architectures [SOA].

— Jason Bloomberg, Senior analyst for XML & Web services, ZapThink, 2003

» The EMF [...] with UML stuff is pretty cool in Eclipse. Maybe one day MDA will
make its way into the NetBeans GUI.

— posted to theserverside.com, November 2004 (circa NetBeans 4.1 EA)

= [As] a consultant with fiduciary responsibility to my customers, [...] given the
enormous traction that Eclipse has gathered, we have to view the EMF
metadata management framework as the de facto standard.

— David Frankel, as seen in Business Process Trends, March 2005

9 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; ma
,.
il

@p 5= CON 2006

Creating the Ecore Model

» Representing the modeled domain in Ecore is the first step in
using EMF
= Ecore can be created
» Directly using the EMF editors
» Through a graphical Ul provided by external contributions

» By converting a model specification for which a Model Importer is
available

Model Importers available in EMF
= Java Interfaces
= UML models expressed in Rational Rose® files
= XML Schema

» Choose the one matching your perspective or skills

10 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@pa: CON 2006

Model Importers Available in EMF

= Java Interfaces

public interface PurchaseOrder

{
String getshipTo(Q);
void setShipTo(String value);
String getBillToQ;
void setBillTo(String value);
List getlitems(); // List of Item

public interface I[tem
{
String getProductName();
void setProductName(String value);
int getQuantity(Q;
void setQuantity(int value)
float getPrice();
void setPrice(float value);

}

11 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@pa 2CON 2006

Model Importers Available in EMF

= UML Class Diagram

PurchaseQrder d Ctl\lltem Stri

| _ - roductName : Strin
shipTo : String P tems guantity - int Y
bilTo : String 0.* | price : fioat

12 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 5= CON 2006

Model Importers Available in EMF

= XML Schema

<?xml version="1.0" encoding=""UTF-8"7?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace=""http://www.example.com/SimplePO""
xmIns:PO=""http://www.example.com/SimpleP0"">
<xsd:complexType name=""PurchaseOrder">
<xsd:sequence>
<xsd:element name="'shipTo" type="'xsd:string'/>
<xsd:element name="billTo" type="xsd:string'/>
<xsd:element name=""items"™ type="PO:Iltem"
minOccurs="0" maxOccurs=""unbounded'/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="1tem">
<xsd:sequence>
<xsd:element name=""productName"™ type="'xsd:string'/>
<xsd:element name="‘quantity" type="'xsd:int'/>
<xsd:element name=""price" type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

13 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Unifying Java, XML and UML Technologies

= The Model Importers available in EMF were carefully chosen to
integrate today’s most important technologies
= All three forms provide the same information
» Different visualization/representation
= The application’s “model” of the structure
* From a model definition, EMF can generate
» Java implementation code, including Ul
= XML Schemas
= Eclipse projects and plug-in

14 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Typical EMF Usage Scenario

Create an Ecore model that represents the domain you are working on
* |mport UML (e.g. Rose .mdl file)
» Import XML Schema
» Import annotated Java interfaces
» Create Ecore model directly using EMF's Ecore editor or a graphical editor
Generate Java code for model

Prime the model with instance data using generated EMF model editor

Iteratively refine model (and regenerate code) and develop Java
application

* You will use the EMF generated code to implement the use cases of your
application

Optionally, use EMF.Edit to build customized user interface

15 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

16 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

EMF Components

= EMF Core
= Ecore metamodel
= Model change notification & validation
» Persistence and serialization
» Reflection API
» Runtime support for generated models

= EMF Edit
» Helps integrate models with a rich user interface
= Used to build editors and viewers for your model
* [ncludes default reflective model editor
= EMF Codegen
= Code generator for core and edit based components
» Extensible model importer framework

17 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@pj 2CON 2006

EMF Tools: Model Import and Generation

Generator Features:

= Customizable
JSP-like
templates (JET)

= JDT-integrated,
command-line, or
Ant

» Fully supports
regeneration and
merge

ava
ditor*

Java Java N
model edit e * Eclipse IDE-integrated
or RCP-based

18 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@p 52 CON 2006

EMF Model Importers

= UML

= Rational Rose .mdl file

= Eclipse UML2 project provides importer for .uml2
Annotated Java

» Java interfaces representing modeled classes

» Javadoc annotations using @model tags to express model
properties not captured by method declarations

= Lowest cost approach
XML Schema

» Describes the data of the modeled domain

» Provides richer description of the data, which EMF exploits
Ecore model (*.ecore file)

= Just creates the generator model (discussed later)

= Also handles EMOF (*.emof)

19 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Ecore Model Creation

= An Ecore model is created within an Eclipse project via a wizard

» [nput: one of the model specifications from the previous slide
= QOutput:
» modelname.ecore
= Ecore model file in XMI format
= Canonical form of the model
» modelname.genmodel
A “generator model” for specifying generator options
Decorates .ecore file
EMF code generator is an EMF .genmodel editor
Automatically kept in synch with .ecore file

20 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p X ‘: O N 2 00 6 E, Fesource Set

EIHID platfarm: fresource)com, example. pofmodel/po, ecore
E|" po

7 [DocumentRoot

~H Item

~H PurchaseCrder

- QuantityTyvpe <ink=

- Quantity TwpeObject <java.lang.Inkeger =

3k <java.lang.sString=

Jsaddress

~flm ExtendedMetabata

name ; Skring

street ;| akring

ciky 1 Skring

v akring

zip + Ink

counkey s MMTOREM

Ecore Model Editor

= A generated (and customized)
EMF editor for the Ecore model

= Create, delete, etc. model
elements (EClass, EAttribute,
EReference, etc.) using pop-up
actions in the editor's tree

= Set names, etc. in the Properties

o

sCake

0 =0 =0 ~0 =0 0

&3

-
=] Properties

i Property | Yalue

view i_hangeable st brue
Default value L=
Default Value Literal L=
Derived v False
EAttribute Twpe B Skring <java.lang.Skring =
ECankaining Class H Usaddress
ETvpe B Skring <java.lang.Skring =
(] U+ False
Lower Bound |
Marry U+ Falze
Marne 1= skake

21 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pﬁ 2 CON 2006

Ecore Model Editor

= A graphical editor is a better approach
» GMF Ecore Diagram Example (http://www.eclipse.org/gmf/)
= Omondo EclipseUML (http://www.omondo.com/)

| @ P Besrlopmment - che moore_dlagram - Trllpss T =g
O Cdt Gegeln Sagch Bohct [egen aeghl B edos Bep
Flril e e O o [o | g |3 |
H resam Do [el B e a
S| Fanttn
= S Calery t;smun:
| e oo - g o
e BTV by S
T -+ bt L
| yhballnsancld L2
| & Camparmrmident ket i bgmied Tor Erfiein
| e B
asbain i il
T n
TomponeniTioe lrﬁ\rr i Eamae
;mndd’u = Kb g P AT
| | emeutionEny :
warncl mp i B
kecamon .
kanan has H Cordmstiintasiernent ::m S Mack
kel e o BATHIRAZ
rwadd panteatwE ¢ Eorwuioe
iaTe [AR e e
L = Wrariisrs
Lebinks
—]
H SrociiriBen E EsteradedCoia e 5] ozt
[ETLE = T ke W | e koo
gk T [P—
o o
yahis s [Carmsaleadsn
L P
. — I Fropertms [Prablens R
St ks X] 0
— -] EEREAE | Beben. |
¥ = = [
- - Sdiroat il o
Tl [S it Vo a
S R ER Troes H mersiimbe 9 Koo
= W0 Sl e i
s = s
maram)

22 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@p 52 CON 2006

EMF Generator

B PurchaseCrder.genmadel %

= Similar layout to Ecore model 5 DorumentRoot e e ot
. B Item Generake Edit Code
ed ItOI’ H PurchaseOrder Generake Editar Cdcu:le
. . = dd Generate Test Code
= Automatically keeps in synch T s I
Wlth eCOre ChangeS z E::tr:natSt:I:;ng Generate Schema
» Generate code with pop-up Bpwval 00
menu actions L5 country : NMTOKEN %”E HSH .
----- 2 QuantityType <ink= SR .
= Generate Model Code | - £ QuantityTypeObject < 122
R (. # SKU <java.lang.Strings COmpare Wit ’
» Generate Edit Code - = Replace With b
. Properties Colorer HTMLGenerakar F
» Generate Editor Code Frepety [voe o
n Generate Test COde Funtime Compatibility b4 False e
Funkime Jar Gk false | WP Redo
[= Edit
- Generate A” . . | Creation Commands Dk true og‘ UL
= Code generation options in CreationlIcons (Strue | L= Copy
)) Edit: Directary I= fcom.e g Baste
Edit Plug-in Class I= com,e: erEditPlugin
Properties view
= Editor X Delets
= Generator > Reload to reload Edtor Drsctary [P feomad
. Editor Plug-in Class = com.e: Refresh eOrderEdiborPlugin
.genmodel and .ecore files ot e
from original model form El
Generate Schema Mk false

23 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

24 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

The Ecore (Meta) Model

= Ecore is EMF's model of a model
= Also called a “metamodel”
= Persistent representation is XMl

eSuperTypes
0" EAttrlbut'e eAttribute Type EDataType
eAttributes |name : String 1 name : String
EClass 0 *
name : String i
eReferences EReference

0 * ~|name: String
containment : boolean

1 | eReferenceType lowerBound : int
upperBound : int

eOpposite | 0..1

25 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

=-@f)§ < CON 2006

The Ecore Metamode

EChject
ElodelElement
EFactory ENarmedElement
| | | |
EPackage EClassifier EEnumLiteral ETvpedErment
Ellass EDataType EStucturaFe ature ECperation EFarameter
% | |
EEnum EAttribute EReference

= EObject is the root of every model object — equivalent to java.lang.Object

26 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made

@[} S5&CON 2006

Partial List of Ecore Data Types

Ecore Data Type Java Primitive Type or
Class

EBoolean boolean

EChar char

EFloat float

EString java.lang.String

EByteArray byte[|

EBooleanObject java.lang.Boolean

EFloatObject java.lang.Float

EJavaObiject java.lang.Object

= Ecore data types are serializable and custom data types are supported

27 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@ya 2 CON 2006

Ecore Model for Purchase Orders

PurchaseOrder Item - ; ted in E
shioTo : Strin items productName : Stnng |S represen e |n Core aS
blll-?o] Strlngg N quant'ty : |nt ------------------------ :
i 0.. price : float
EClass EClass
(name="PurchaseOrder") (name="Item")

i \ eReferenceType

EAttribute EAttribute EReference EAttribute
(name="shipTo") (name="billTo") (name="items") (name="productName")

28 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Purchase Order Ecore XMl

<eClassifiers xsi:type="ecore:EClass"
name=""PurchaseOrder">
<eReferences name="i1tems" eType="#//1tem"
upperBound="-1" containment=""true'/>
<eAttributes name="'shipTo"
eType="ecore:EDataType http:...Ecore#//EString"/>
<eAttributes name="billTo"
eType="‘ecore:EDataType http:...Ecore#//EString'/>
</eClassifiers>

= Alternate serialization format is EMOF (Essential MOF) XMl

» Part of OMG Meta Object Facility (MOF) 2.0 standard
(http://www.omg.org/docs/ptc/04-10-15.pdf)

29 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

UML Constructs Available in Ecore

= Classes, Abstract Classes, and Interfaces

ClassName AbstractClassName <<interface==
InterfaceName

= Attributes and Operations

ClassOrinterfaceName

attributel : typel
attribute2 : type2 = initval
<<0..*>> attribute3 : type3

operationl(argl : typel) : returnl
operation2(argl : typel, arg2 : type2) : return2

30 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pﬁ 2 CON 2006

UML Constructs Available in Ecore

» References (Associations)

= One-way
ClassA roleBl_| classB
1
ClassA roleB2_ | ClassB
0..1
ClassA roleB3 | classB
0.*

31 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pa 2 CON 2006

UML Constructs Available in Ecore

» References (Associations)
= Bidirectional

ClassA | ToleA roleB | classB
1 0.*
= Containment
ClassA roleBl | classB
0.*
ClassA roleA roleB2 | classB
0.*

32 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@pa 2CON 2006

UML Constructs Available in Ecore

= Class Inheritance

ClassA ClassA ClassC
<<extend>>
ClassB ClassB

= Enumerations and Data Types

<<enumeration>> <<datatype>>

| EnumName DataTypeName
I!terall <<javaclass>> JavaClassl
literal2

literal3 = 5

33 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

34 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Code Generation

= EMF framework is lightweight
» Generated code is clean, simple, efficient
= EMF can generate
= Model implementation
» Ul-independent edit support
= Editor and views for Eclipse IDE-integrated or RCP application
= JUnit test skeletons
» Manifests, plug-in classes, properties, icons, etc.

35 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Generated Model Code

» Interface and implementation for each modeled class
» Includes get/set accessors for attributes and references

public Interface PurchaseOrder extends EObject

{
String getshipToQ;

void setShipTo(String value);
String getBillToQ;

void setBillTo(String value);
EList getltems(Q);

» Usage example

order.getltems().add(item);

36 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p:;: CON 2006

Generated Model Code

» Factory to create instances of model objects

POFactory factory = POFactory.elNSTANCE;
PurchaseOrder order = factory.createPurchaseOrder();

» Package class provides access to metadata

POPackage poPackage = POPackage.elNSTANCE;
EClass 1temClass = poPackage.getlitem();

EAttribute priceAttr = poPackage.getltem Price();
//0or i1temClass.getEStructuralFeature(POPackage. ITEM PRICE)

= Also generated: switch utility, adapter factory base, validator,
custom resource, XML processor

37 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Generated Edit/Editor Code

» Viewing/editing code divided into two parts

» Ul-independent code
= |tem providers (adapters)
= |tem provider adapter factory

» Ul-dependent code
» Model creation wizard
= Editor
= Action bar contributor
= Advisor (RCP)

» By default each part is placed in a separate Eclipse plug-in

38 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Summary of Generated Artifacts

= Model = Editor
» [Interfaces and classes » Model Wizard
» Type-safe enumerations = Editor
» Package (metadata) = Action bar contributor
= Factory » Advisor (RCP)

= Switch utility

= Adapter factory base " Tests
= Validator " Test ca§es
= Test sulte

= Custom resource
= XML Processor

= Edit (Ul independent) . Manifests, plug-in classes,

» [tem provider adapter factory

39 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

= Stand-alone example

@p 52 CON 2006

Regeneration and Merge

» Hand-written code can be added to generated code and
preserved during regeneration

» This merge capability has an Eclipse dependency, so is not
available standalone

= All generated classes, interfaces, methods and fields include
@generated marker in their Javadoc
* To replace generated code:
» Remove @generated marker
= Orinclude additional text, e.g.
@generated NOT

* Methods without @generated marker are left alone during
regeneration

40 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

41

@p CON 2006

Regeneration and Merge

= Extend (vs. replace) generated method through redirection
= Append “Gen” suffix to the generated method's name

/ *x

* <l-- begin-user-doc -->
* <I-- end-user-doc -->
* @generated

*/

public String getName()

{

}

return name;

/**

* <l-- begin-user-doc -->
* <I-- end-user-doc -->
* @generated

*/

public String getNameGen()
{

return name;

}

public String gethName()

{
return format(getNameGen());

}

Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pg 2 CON 2006

Exercise 1.
Code Generation, Regeneration and Merge

42 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

43 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

EMF Runtime

= Persistence and serialization of model data
» Proxy resolution and demand load

Automatic notification of model changes
Bi-directional reference handshaking
Dynamic object access through a reflective API

Runtime environments
» Eclipse
= Full IDE
= RCP
= Standalone Java

44 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[) 5 CON 2006

Persistence and Serialization

load ResourceSet

resource 1

Client ——— 9 uril | resource 1
uri 2 resource 2
%'emand load
Resource 1 resource 2 Resource 2
}
VAR \
< 0O O/ 0
O 0

= Serialized data is referred to as a resource

» Data can be spread out among a number of resources in a
resource set

= One resource is loaded at a time, even if it has references to
objects in other resources in the resource set
» Proxies exist for objects in other resources
= Lazy or demand loading of other resources as needed
= A resource can be unloaded

45 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Resource Set

= Context for multiple resources that may have references among
them

» Usually just an instance of ResourceSetimpl, or a customized
subclass

Provides factory method for creating new resources in the set:

ResourceSet rs = new ResourceSetimpl();
URI uri = URI.createFileURI ("'C:/data/po.xml'");
Resource resource = rs.createResource(uri);

Also provides access to the registries, URI converter, and default
load options for the set

46 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Resource Factory Reqistry

» Returns a resource factory for a given type of resource
» Based on the URI scheme or filename extension
» Determines the type of resource, hence format for save/load

Resource.Factory.Registry reg = rs.getResourceFactoryRegistry();
reg.getbExtensionToFactoryMapQ.put('xml*, new XMLResourceFactorylmplQ);

» For models created from XML Schema, the generated custom resource
factory implementation should be registered to ensure schema-
conformant serialization

» When running as a plug-in under Eclipse, EMF provides an extension point
for registering resource factories

» Generated plugin.xml registers generated resource factory against a
package specific extension (e.g. “po”)
» Global registry: Resource.Factory.Registry.INSTANCE
» Consulted if no registered resource factory found locally

47 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Package Registry

Returns the package identified by a given namespace URI
» Used during loading to access the factory for creating instances

EPackage._Registry registry = rs.getPackageRegistry();
registry.put(POPackage.eNS URI, POPackage.elNSTANCE);

Global reqistry: EPackage.Reqistry.INSTANCE
= Consulted if no registered package found locally

* Running in Eclipse, EMF provides an extension point for globally
registering generated packages

* Even standalone, a package automatically registers itself when
accessed:

POPackage poPackage = POPackage.elNSTANCE;

48 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[) S5&CON 2006

Resource

= Container for objects that are to be persisted together
= Convert to and from persistent form via save() and load()
= Access contents of resource via getContents()

URI urit = URI._createFileURI ('C:/data/po.xml"");
Resource resource = rs.createResource(uri);
resource.getContents().add(pl);
resource.save(null);

= EMF provides XMLResource implementation

<PurchaseOrder>
<shipTo>John Doe</shipTo>
<next>p2.xml#p2</next>

</PurchaseOrder>

= Other, customized XML resource implementations, provided, too
(e.g. XMI, Ecore, EMOF)

49 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p =CON 2006

Proxy Resolution and Demand Load

50

1.xml
next
PurchaseOrder <PurchaseOrder>
0.1 <shipTo>John Doe</shipTo>
N <next>p2 . xml#p2</next>
</PurchaseOrder>
pl.xml p2.xml

next
P—proxyoRi =“p2xmi#p >

PurchaseOrder p2 = pl.getNext();

| Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Model Change Notification

» Every EMF object is also a Notifier
= Send notification whenever an attribute or reference is changed

= EMF objects can be “observed” in order to update views and
dependent objects

Adapter poObserver = .. Adapter
purchaseOrder. eAdapters() add(poObserver); SN
L

s

adapter.notifyChanged()T

setBillTo() > N
N

PurchaseOrder

51 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Model Change Notification

= Observers or listeners in EMF are called adapters
= An adapter can also extend class behavior without subclassing
= For this reason they are typically added using an AdapterFactory

PurchaseOrder purchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...

Object poExtensionType = ...

1T (somePOAdapterFactory. isFactoryForType(poExtensiontype))

{
Adapter poAdapter = somePOAdapterFactory.adapt(purchaseOrder,

poExtensionType);

52 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@E)?ﬁ < CON 2006

Model Change Notification

= Efficient notification in “set” methods
» Checks for listeners before creating and sending notification

public String getShipTo()
{

return shipTo;

}

public void setShipTo(String newShipTo)
{
String oldShipTo = shipTo;
shipTo = newShipTo;
1T (eNotificationRequired())
eNotify(new ENotificationlmpl (this, ...);

53 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@pa 2CON 2006

Bidirectional Reference Handshaking

PurchaseOrder next

0..1

Invariant imposed by the bidirectional reference:
po.getNext().getPrevious() == po

previous | 0..1

public interface PurchaseOrder

{
PurchaseOrder getNext();

void setNext(PurchaseOrder value);

PurchaseOrder getPrevious();
voild setPrevious(PurchaseOrder value);

54 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pﬁ 2 CON 2006

Bidirectional Reference Handshaking

55

pl.setNext(p3);

Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@prgz CON 2006

Reflection

= All EMF classes implement interface EObject

* Provides an efficient API for manipulating objects reflectively

» Used by the framework (e.g., serialization/deserialization, copy
utility, generic editing commands, etc.)

= Also key to integrating tools and applications built using EMF

public interface EObject
{
EClass eClass(Q);
Object eGet(EStructuralFeature sfT);
void eSet(EStructuralFeature sf, Object val);

56 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Reflection Example

= Setting an attribute using generated API.

PurchaseOrder po = ..
po.setBillTo('123 Elm St.'");

= Using reflective API:

EObject po = ...

EClass poClass = po.eClass();

po.eSet(poClass.getEStructuralFeature(C'billTo"),
123 EIm St.");

57 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Reflective Performance

= Efficient generated switch-based implementation of reflective
methods

public Object eGet(int featurelD, ...)

{
switch (featurelD)

{
case POPackage.PURCHASE ORDER _SHIP_TO:
return getShipToQ);
case POPackage.PURCHASE ORDER __BILL_TO:
return getBillToQ);

58 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@pt_:: CON 2006

Reflection Benefits

» Reflection allows generic access to any EMF model
= Similar to Java’s introspection capability

= Every EObject (that is, every EMF object) implements the reflection
API

= An integrator need only know your model!

= A generic EMF model editor uses the reflection API
» Can be used to edit any EMF model

59 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Dynamic EMF

» Ecore models can be defined dynamically in memory
= No generated code required

= Dynamic implementation of reflective EObject API provides same
runtime behavior as generated code

» Also supports dynamic subclasses of generated classes
= All EMF model instances, whether generated or dynamic, are
treated the same by the framework

= A dynamic Ecore model can be defined by
» [nstantiating model elements with the Ecore API
» Loading from a .ecore file

60 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Dynamic EMF Example

61

= Model definition using the Ecore API

EPackage poPackage = EcoreFactory.elINSTANCE.createEPackage();
poPackage .setName("'po™) ;
poPackage .setNsURI (""http://www.example.com/PurchaseOrder™) ;

EClass poClass = EcoreFactory.eINSTANCE.createEClass(Q);
poClass.setName (""PurchaseOrder™);
poPackage .getEClassiTiers().add(poClass);

EAttribute billTo = EcoreFactory.elINSTANCE.createEAttribute();
billTo.setName("b1ll1To");
billTo.setEType(EcorePackage.eINSTANCE.getEString(Q));
poClass.getEStructuralFeatures().add(billTo);

EObject po = EcoreUtil.create(poClass);
po.eSet(billTo,"123 EIm St.");

| Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pﬁ 2 CON 2006

Exercise 2:
EMF Runtime and Static Model APIs

62 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

63 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Recording Changes

= EMF provides facilities for recording the changes made to
instances of an Ecore model

= Change Model
» An EMF model for representing changes to objects
= Directly references affected objects
» Includes “apply changes” capability

= Change Recorder
= EMF adapter

= Monitors objects to produce a change description (an instance of
the change model)

64 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

p

-

=}

< CON 2006

Change Model

65

¢! value - EEList

¢/ resource - EResource

ChangeDescription
+objectsToDetach
-, A b
apply() - 2
%applyAndReverse() :
+objectsToAttach
0.+
0. 0
+resourceChanges +objectChanges
ResourceChange ~ ==MapEntry=> +hey EObject
oresourceUR! - String EObjectToChangesMapEntry 4 {from ecore)

ChangeKind

<<gnumeration==

&ADD
$REMOVE
$MOVE

“apply()
$applyAndReverse()
+value | 0.7
0.1
FeatureChange +referenceValue
gfeatureMame : String 0.1
¢dataValue : String -
gset - boolean = true +referencel/alue
&/ value - EJavaObject 1
+feature
®apply(originalObject - EObject) rif*‘;”:’:’aﬁe*‘"'e
®applyAndReverse(originalObject - EObject)
+feature +feature
0.1 4
0.+
0. +listChanges
+listChanges ListChange
kind : ChangeKind
$<=0._">> dataValues : String
gindex - int = -1 FeatureMapEntry

wmoveTolndex : int
<=0 *>> fvalues : EJavaObject

‘apply(originaIList : EEList)
PapplyAndReverse(originallist - EEList)

e

featureMame : String
@dataValue - String —
@/ value : EJavaObject

+featureMapEntryValues

+referenceValues
0+

Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made

@[) S5&CON 2006

Change Recorder

» Can be attached to EObjects, Resources, and ResourceSets
= Monitors changes to the objects and their contents trees

* Produces a description of the changes needed to return to the
original state (a reverse delta)

PurchaseOrder order = .._.
order.setBillTo(""123 EIm St.");

ChangeRecorder recorder = new ChangeRecorder();
recorder.beginRecording(Collections.singleton(order));
order.setBillTo(*'456 Cherry St.');

ChangeDescription change = recorder.endRecording(Q;

» Result: a change description with one change, setting billTo to
“123 Elm St.”

66 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p:;: CON 2006

Applying Changes

= Given a change description, the change can be applied:
= ChangeDescription.apply()
= consumes the changes, leaving the description empty
= ChangeDescription.applyAndReverse()

= reverses the changes, leaving a description of the changes
originally made (the forward delta)

= The model is always left in an appropriate state for applying the
resulting change description

67 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Example: Transaction Capability

= |[f any part of the transaction fails, undo the changes

ChangeRecorder changeRecorder =
new ChangeRecorder(resourceSet);

try
{

// modifications within resource set

}

catch (Exception e)

{
changeRecorder.endRecordingQ.-applivQ;

}

68 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p:’i =2CON 2006

Exercise 3:
Recording Changes

69 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

» Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

70 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

Validation Framework

= Model objects validated by external EValidator

public interface Evalidator

boolean validate(EObject eObject,
DiagnosticChain diragnostics, Map Context);
boolean validate(EClass eClass, EOjbect eObject,
DiagnosticChain, diagnostics, Map context);
boolean validate(EDataType eDataType, Object value,
DiagnosticChain diagnostics, Map context);

» Detailed results accumulated as Diagnostics
» Essentially a non-Eclipse equivalent to IStatus

» Records severity, source plug-in ID, status code, message, other
arbitrary data, and nested children

71 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Invariants and Constraints

= |nvariant = Constraint

= Defined directly on the class, = Externally defined for the
as an operation with <<inv>> class via a method on the
stereotype validator
= Stronger statement about 2l
. g . General I Detail I Operations I Attributes I Relations |
validity than a constraint Componerts | Nesied | Fles | DL Ecor
Set: |slEEN - Edit Set... |
* Model Properties
= | Namfa_ |‘u"ah.|e |Sourc::le |
PurchaseOrder 'Il'f”m v -
billTo : String

<<inv>> validAddresses()

Dvenidel Defautt | Revert |

[ok | concel | ook | Browse~| Hep |

72 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Generated EValidator Implementations

» Generated for each package that defines invariants or
constraints

= Dispatches validation to type-specific methods

= For classes, a validate method is called for each invariant and
constraint

» Method body must be hand coded for invariants and named
constraints

73 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[) S5&CON 2006

Schema-Based Constraints

= |[n XML Schema, hamed constraints are defined via annotations:

<xsd:annotation>
<xsd:appinfo source="http://www.eclipse.org/emf/2002/Ecore"’
ecore :key=""constraints'>VolumeDiscount</xsd:appinfo>
</xsd:annotation>

= Also, constraints can be defined as facets on simple types, and
no additional coding is required

» Constraint method implementation generated

<xsd:simpleType name="'SKU"">
<xsd:restriction base=''xsd:string'>
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

74 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@pt_:: CON 2006

Framework EValidator Implementations

» EODbjectValidator validates basic EObject constraints:
= Multiplicities are respected
= Proxies resolve
= All referenced objects are contained in a resource
» Data type values are valid

» Used as base of generated validators and directly for packages
without additional constraints defined

75 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 5= CON 2006

Framework EValidator Implementations

= Diagnostician walks a containment tree of model objects,
dispatching to package-specific validators
= Diagnostician.validate() is the usual entry point
= Obtains validators from its EValidator.Registry

Diagnostician validator = Diagnostician. INSTANCE;
Diagnostic diagnostic = validator.validate(order);

iIT (diagnostic.getSeverity() == Diagnostic.ERROR)

// handle error

}

for (lterator i = diagnostic.getChildren().iterator(); i.hasNext();)

{
Diagnostic child = (Diagnostic)i.next();
// handle child diagnostic

}

76 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

<2 8)si2 CON 2006

Exercise 4:
Validation

7 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

78 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 52 CON 2006

XML Processor

= New in EMF 2.2 (from M2)

= Simplified API for loading and saving XML
» Handles resource set, registries, etc. under the covers
= Can automatically create a dynamic Ecore representation of a

schema
» Load/save instance documents without generating code

= Manipulate the objects using reflective EObject API

URI schemaURI = ...
String instanceFileName = ...

XMLProcessor processor = new XMLProcessor(schemaURl);
Resource resource = processor. load(instanceFileName);

EObject documentRoot = (EObject)resource.getContents.get(0);

79 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

a@pg 2 CON 2006

Exercise 5:
Reflection, Dynamic EMF and XML Processor

80 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; r_

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What's New in EMF 2.2
= Summary

81 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@[} S5&CON 2006

What's New in EMF 2.2

* Plan items [Bugzilla]:
= XMLProcessor utilities to improve ease-of-use [104718]
» EMF.Edit enhancements [105964]
= Content adapter for managing reverse of 1-way references [75922]
» Cross-resource containment [105937]
= XMI 2.1 support [76538]
» Improve XML Schema generation [104893]
= Model exporter [109300]
» Decouple JMerger implementation from JDOM [78076]
» Performance optimizations [116307]
» Make code generator more extensible [75925]
= Improve code generation error reporting and handling [104727]

» For more, see http://www.eclipse.org/emf/docs.php#plandocs

82 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

What's New in EMF 2.2

= Community Involvement
= EMFT: incubating new EMF Technology projects:
= Object Constraint Language (OCL)
= Query
Transaction
Validation
EMF Ontolgy Definition Metamodel (EODM)
Java Emitter Templates (JET)

= See http://www.eclipse.org/emft/

83 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p%: CON 2006

Agenda

Introduction
= EMF in a Nutshell
= EMF Components
= The Ecore Metamodel

Exercise 1. Code Generation, Regeneration and Merge
Exercise 2: EMF Runtime

Exercise 3: Recording Changes

= Exercise 4: Validation

Exercise 5: Reflection, Dynamic EMF and XML Processor

What’s New in EMF 2.2
= Summary

84 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

.@pa 2CON 2006

Summary

= EMF is low-cost modeling for the Java mainstream
= Boosts productivity and facilitates integration

* Mixes modeling with programming to maximize the effectiveness
of both

85 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@prgz CON 2006

Summary

= EMF provides...

= A metamodel (Ecore) with which your domain model can be
specified
= Your model can be created from UML, XML Schema or
annotated Java interfaces

= Generated Java code
= Efficient and straightforward
» Code customization preserved
» Persistence and Serialization
» Resource-based serialization
» Proxy resolution and demand loading

» Default resource implementation is XMI (XML metadata
interchange), but can be overridden

86 | Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p CON 2006

Summary

= EMF provides...
= Model change naotification is built in
= Just add adapters (observers) where needed
= Reflection and dynamic EMF
» Full introspection capability
= Simple change recording and roll-back
= Extensible validation framework
= Standalone runtime support

» A Ul-independent layer for viewing and editing modeled data
(EMF.Edit)

87 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@pt_:: CON 2006

Resources

» EMF documentation in Eclipse Help
= Qverviews, tutorials, API reference

= EMF Project Web Site
= http://www.eclipse.org/emf/
= Qverviews, tutorials, newsgroup,
Bugzilla
» Eclipse Modeling Framework
by Frank Budinsky et al.

» Addison-Wesley; 1st edition
(August 13, 2003)

= [SBN: 0131425420.

feclipse

Farewond by Sridhar yengar

echi

Frank Budinsky « David Steinbery

Edl Merks - Ray Ellersick - Timothy J. Girunss

ToRs + Erich Gamma - Lee Mackman - John Wiegand

88 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

@p 5= CON 2006

Legal Notices

IBM, Rational, WebSphere, Lotus, and Rational Rose are
registered trademarks of International Business Machines Corp. in
the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

89 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; _

