
Xpand Documentation

Xpand Documentation

iii

1. Xpand / Xtend / Check Reference ... 1
1. Introduction .. 1
2. Type System ... 1

2.1. Types ... 1
2.2. Built-In Types .. 2
2.3. Metamodel Implementations (also known as Meta-Metamodels) 3
2.4. Using different Metamodel implementations (also known as Meta-Metamodels) 4

3. Expressions .. 4
3.1. Literals and special operators for built-in types ... 5
3.2. Special Collection operations .. 6
3.3. if expression .. 8
3.4. switch expression .. 8
3.5. Chain expression .. 9
3.6. create expression .. 9
3.7. let expression .. 9
3.8. 'GLOBALVAR' expression ... 9
3.9. Multi methods (multiple dispatch) .. 10
3.10. Casting .. 10

4. Check .. 10
4.1. Guard Conditions .. 11

5. Xtend ... 11
5.1. Extend files .. 11
5.2. Comments .. 12
5.3. Import Statements ... 12
5.4. Extension Import Statement .. 12
5.5. Extensions ... 12
5.6. Java Extensions .. 14
5.7. Create Extensions (Model Transformation) .. 14
5.8. Calling Extensions From Java ... 16
5.9. WorkflowComponent ... 17
5.10. Aspect-Oriented Programming in Xtend (since 4.2) .. 17

6. Xpand2 .. 19
6.1. Template files and encoding .. 19
6.2. General structure of template files .. 20
6.3. Statements of the Xpand language .. 20
6.4. Aspect-Oriented Programming in Xpand .. 25
6.5. Generator Workflow Component .. 26
6.6. Example for using Aspect-Oriented Programming in Xpand .. 29
6.7. The Problem .. 29
6.8. Example .. 29
6.9. More Aspect Orientation .. 31

2. Built-in types API documentation .. 32
1. Object .. 32
2. String .. 32
3. Integer .. 33
4. Boolean .. 34
5. Real .. 34
6. Collection ... 35
7. List .. 36
8. Set .. 36
9. xpand2::Type ... 36
10. xpand2::Feature ... 37
11. xpand2::Property ... 37
12. xpand2::Operation ... 37
13. xpand2::StaticProperty ... 37
14. Void ... 38
15. xtend::AdviceContext ... 38
16. xpand2::Definition ... 38

Xpand Documentation

iv

17. xpand2::Iterator ... 38
3. XSD Tutorial ... 40

1. Setup ... 40
2. Overview ... 40
3. Step 1: Create a Project .. 40
4. Step 2: Define a Meta Model using XML Schema ... 41
5. Step 3: Create a Model using XML .. 41
6. Step 4: Create a Template using Xpand ... 42
7. Step 5: Create a Workflow .. 42
8. Step 6: Execute Workflow aka Generate Code .. 43

4. XSD Adapter ... 44
1. Prerequisites ... 44
2. Overview ... 44
3. Workflow Components ... 44

3.1. XSDMetaModel ... 44
3.2. XMLReader ... 45
3.3. XMLWriter ... 45
3.4. XMLBeautifier ... 46

4. Behind the scenes: Transforming XSD to Ecore .. 46
5. How to declare XML Schemas .. 46

1

Chapter 1. Xpand / Xtend / Check
Reference
1. Introduction

The Xpand generator framework provides textual languages, that are useful in different contexts in the MDSD
process (e.g. checks, extensions, code generation, model transformation). Each language (Check, Xtend, and
Xpand) is built up on a common expression language and type system. Therefore, they can operate on the same
models, metamodels and meta-metamodels and you do not need to learn the syntax again and again, because it
is always the same.

The expressions framework provides a uniform abstraction layer over different meta-meta-models (e.g. EMF
Ecore, Eclipse UML, JavaBeans, XML Schema etc.). Additionally, it offers a powerful, statically typed
expressions language, which is used in the various textual languages.

2. Type System
The abstraction layer on API basis is called a type system. It provides access to built-in types and different
registered metamodel implementations. These registered metamodel implementations offer access to the types they
provide. The first part of this documentation describes the type system. The expression sub-language is described
afterwards in the second part of this documentation. This differentiation is necessary because the type system and
the expression language are two different things. The type system is a kind of reflection layer, that can be extended
with metamodel implementations. The expression language defines a concrete syntax for executable expressions,
using the type system.

The Java API described here is located in the org.eclipse.xpand.type package and is a part of the subproject
core.expressions.

2.1. Types
Every object (e.g. model elements, values, etc.) has a type. A type contains properties and operations. In addition
it might inherit from other types (multiple inheritance).

2.1.1. Type Names
Types have a simple name (e.g. String) and an optional namespace used to distingish between two types with
the same name (e.g. my::metamodel). The delimiter for name space fragments is a double colon "::". A fully
qualified name looks like this:

my::fully::qualified::MetaType

The namespace and name used by a specific type is defined by the corresponding MetaModel implementation.
The EmfMetaModel, for instance, maps EPackages to namespace and EClassifiers to names. Therefore,
the name of the Ecore element EClassifier is called:

ecore::EClassifier

If you do not want to use namespaces (for whatever reason), you can always implement your own metamodel and
map the names accordingly.

2.1.2. Collection Type Names
The built-in type system also contains the following collection types: Collection, List and Set. Because
the expressions language is statically type checked and we do not like casts and ClassCastExceptions, we
introduced the concept of parameterized types. The type system does not support full featured generics, because
we do not need them.

The syntax is:

Collection[my::Type]
List[my::Type]

Xpand / Xtend / Check Reference

2

Set[my::Type]

2.1.3. Features
Each type offers features. The type (resp. the metamodel) is responsible for mapping the features. There are three
different kinds of features:

• Properties

• Operations

• Static properties

Properties are straight forward: They have a name and a type. They can be invoked on instances of the
corresponding type. The same is true for Operations. But in contrast to properties, they can have parameters.
Static properties are the equivalent to enums or constants. They must be invoked statically and they do not have
parameters.

2.2. Built-In Types
As mentioned before, the expressions framework has several built-in types that define operations and properties.
In the following, we will give a rough overview of the types and their features. We will not document all of the
operations here, because the built-in types will evolve over time and we want to derive the documentation from
the implementation (model-driven, of course). For a complete reference, consult the generated API documentation
(http://www.openarchitectureware.org/api/built-ins/).

2.2.1. Object
Object defines a couple of basic operations, like equals(). Every type has to extend Object.

2.2.2. Void
The Void type can be specified as the return type for operations, although it is not recommended, because
whenever possible expressions should be free of side effects whenever possible.

2.2.3. Simple types (Data types)
The type system doesn't have a concept data type. Data types are just types. As in OCL, we support the following
types: String, Boolean, Integer, Real.

• String: A rich and convenient String library is especially important for code generation. The type system
supports the '+' operator for concatenation, the usual java.lang.String operations (length(), etc.) and
some special operations (like toFirstUpper(), toFirstLower(), regular expressions, etc. often needed
in code generation templates).

• Boolean: Boolean offers the usual operators (Java syntax): &&, ||, !, etc.

• Integer and Real: Integer and Real offer the usual compare operators (<,>,<=,>=) and simple
arithmetics (+,-,*,/). Note that Integer extends Real!

2.2.4. Collection types
The type system has three different Collection types. Collection is the base type, it provides several operations
known from java.util.Collection. The other two types (List, Set) correspond to their java.util
equivalents, too.

2.2.5. Type system types
The type system describes itself, hence, there are types for the different concepts. These types are needed for
reflective programming. To avoid confusion with metatypes with the same name (it is not unusual to have a
metatype called Operation, for instance) we have prefixed all of the types with the namespace xpand. We have:

• xpand2::Type

• xpand2::Feature

• xpand2::Property

• xpand2::StaticProperty

http://www.openarchitectureware.org/api/built-ins/

Xpand / Xtend / Check Reference

3

• xpand2::Operation

2.3. Metamodel Implementations (also known as Meta-Metamodels)
By default, the type system only knows the built-in types. In order to register your own metatypes (e.g. Entity or
State), you need to register a respective metamodel implementation with the type system. Within a metamodel
implementation the Xpand type system elements (Type, Property, Operation) are mapped to an arbitrary other
type system (Java reflections, Ecore or XML Schema).

2.3.1. Example JavaMetaModel
For instance, if you want to have the following JavaBean act as a metatype (i.e. your model contains instances
of the type):

public class Attribute {
 private String name;
 private String type;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getType() {
 return type;
 }
 public void setType(String type) {
 this.type = type;
 }
}

You need to use the JavaMetaModel implementation which uses the ordinary Java reflection layer in order
to map access to the model.

So, if you have the following expression in e.g. Xpand:

myattr.name.toFirstUpper()

and myattr is the name of a local variable pointing to an instance of Attribute. The Xpand type system
asks the metamodel implementations, if they 'know' a type for the instance of Attribute. If you have the
JavaMetaModel registered it will return an xpand2::Type which maps to the underlying Java class. When
the type is asked if it knows a property 'name', it will inspect the Java class using the Java reflection API.

The JavaMetaModel implementation shipped with Xpand can be configured with a strategy [GOF95-Pattern] in
order to control or change the mapping. For instance, the JavaBeansStrategy maps getter and setter methods to
simple properties, so we would use this strategy for the example above.

2.3.2. Eclipse IDE MetaModelContributors
You should know that for each Metamodel implementation you use at runtime, you need to have a so
called MetamodelContributor extension for the plugins to work with. If you just use one of the standard
metamodel implementations (EMF, UML2 or Java) you don't have to worry about it, since Xpand is shipped with
respective MetamodelContributors (see the corresponding docs for details). If you need to implement your own
MetamodelContributor you should have a look at the Eclipse plug-in reference doc.

2.3.3. Configuring Metamodel implementations with the workflow
You need to configure your Xpand language components with the respective metamodel implementations.

A possible configuration of the Xpand2 generator component looks like this:

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.type.emf.EmfMetaModel">
 <metaModelPackage value="my.generated.MetaModel1Package"/>
 </metaModel>
 <metaModel class="org.eclipse.type.emf.EmfMetaModel">
 <metaModelFile value="my/java/package/metamodel2.ecore"/>
 </metaModel>
 ...

Xpand / Xtend / Check Reference

4

</component>

In this example the EmfMetaModel implementation is configured two times. This means that we want to use two
metamodels at the same time, both based on EMF. The metaModelPackage property is a property that is specific to
the EmfMetaModel (located in the core.emftools project). It points to the generated EPackages interface.
The second meta model is configured using the Ecore file. You do no need to have a generated Ecore model for
Xpand in order to work. The EmfMetaModel works with dynamic EMF models just as it works with generated
EMF models.

2.4. Using different Metamodel implementations (also known as Meta-
Metamodels)

With Xpad you can work on different kinds of Model representations at the same time in a transparent manner.
One can work with EMF models, XML DOM models, and simple JavaBeans in the same Xpand template. You
just need to configure the respective MetaModel implementations.

If you want to do so you need to know how the type lookup works. Let us assume that we have an EMF metamodel
 and a model based on some Java classes. Then the following would be a possible configuration:

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.internal.xtend.type.impl.java.JavaMetaModel"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="my/java/package/metamodel.ecore"/>
 </metaModel>

 ...
</component>

When the runtime needs to access a property of a given object, it asks the metamodels in the configured order.
Let us assume that our model element is an instance of the Java type org.eclipse.emf.ecore.EObject
and it is a dynamic instance of an EMF EClass MyType.

We have three Metamodels:

1. Built-Ins (always the first one)

2. JavaMetaModel

3. EMFMetaModel - metamodel.ecore

The first one will return the type Object (not java.lang.Object but Object of Xpand). At this point the
type Object best fits the request, so it will act as the desired type.

The second metamodel returns a type called org::eclipse::emf::ecore::EObject The type system
will check if the returned type is a specialization of the current 'best-fit' type (Object). It is, because
it extends Object (Every metatype has to extend Object). At this time the type system assumes
org::eclipse::emf::ecore::EObject to be the desired type.

The third metamodel will return metamodel::MyType which is the desired type. But unfortunately it doesn't
extend org::eclipse::emf::ecore::EObject as it has nothing to do with those Java types. Instead it
extends emf::EObject which extends Object.

We need to swap the configuration of the two metamodels to get the desired type.

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="my/java/package/metamodel.ecore"/>
 </metaModel>
 <metaModel class="org.eclipse.internal.xtend.type.impl.java.JavaMetaModel"/>

 ...
</component>

3. Expressions
The expression sub-language is a syntactical mixture of Java and OCL. This documentation provides a detailed
description of each available expression. Let us start with some simple examples.

Accessing a property:

Xpand / Xtend / Check Reference

5

myModelElement.name

Accessing an operation:

myModelElement.doStuff()

simple arithmetic:

1 + 1 * 2

boolean expressions (just an example:-)):

!('text'.startsWith('t') && ! false)

3.1. Literals and special operators for built-in types
There are several literals for built-in types:

3.1.1. Object
There are naturally no literals for object, but we have two operators:

equals:

obj1 == obj2

not equals:

obj1 != obj2

3.1.2. Void
The only possible instance of Void is the null reference. Therefore, we have one literal:

null

3.1.3. Type literals
The literal for types is just the name of the type (no '.class' suffix, etc.). Example:

String // the type string
my::special::Type // evaluates to the type 'my::special::Type'

3.1.4. StaticProperty literals
The literal for static properties (aka enum literals) is correlative to type literals:

my::Color::RED

3.1.5. String
There are two different literal syntaxes (with the same semantics):

'a String literal'
"a String literal" // both are okay

For Strings the expression sub-language supports the plus operator that is overloaded with concatenation:

'my element '+ ele.name +' is really cool!'

Note, that multi-line Strings are supported.

3.1.6. Boolean
The boolean literals are:

true
false

Xpand / Xtend / Check Reference

6

Operators are:

true && false // AND
true || false // OR
! true // NOT

3.1.7. Integer and Real
The syntax for integer literals is as expected:

// integer literals
3
57278
// real literals
3.0
0.75

Additionally, we have the common arithmetic operators:

3 + 4 // addition
4 - 5 // subtraction
2 * 6 // multiplication
3 / 64 // divide
// Unary minus operator
- 42
- 47.11

Furthermore, the well known compare operators are defined:

4 > 5 // greater than
4 < 5 // smaller than
4 >= 23 // greater equals than
4 <= 12 // smaller equals than

3.1.8. Collections
There is a literal for lists:

{1,2,3,4} // a list with four integers

There is no other special concrete syntax for collections. If you need a set, you have to call the toSet() operation
on the list literal:

{1,2,4,4}.toSet() // a set with 3(!) integers

3.2. Special Collection operations
Like OCL, the Xpand expression sub-language defines several special operations on collections. However, those
operations are not members of the type system, therefore you cannot use them in a reflective manner.

3.2.1. select
Sometimes, an expression yields a large collection, but one is only interested in a special subset of the collection.
The expression sub-language has special constructs to specify a selection out of a specific collection. These are
the select and reject operations. The select specifies a subset of a collection. A select is an operation on
a collection and is specified as follows:

collection.select(v | boolean-expression-with-v)

select returns a sublist of the specified collection. The list contains all elements for which the evaluation of
boolean-expression-with-v results is true. Example:

{1,2,3,4}.select(i | i >= 3) // returns {3,4}

3.2.2. typeSelect
A special version of a select expression is typeSelect. Rather than providing a boolean expression a class
name is here provided.

Xpand / Xtend / Check Reference

7

collection.typeSelect(classname)

typeSelect returns that sublist of the specified collection, that contains only objects which are an instance of
the specified class (also inherited).

3.2.3. reject
The reject operation is similar to the select operation, but with reject we get the subset of all the elements
of the collection for which the expression evaluates to false. The reject syntax is identical to the select
syntax:

collection.reject(v | boolean-expression-with-v)

Example:

{1,2,3,4}.reject(i | i >= 3) // returns {1,2}

3.2.4. collect
As shown in the previous section, the select and reject operations always result in a sub-collection of the
original collection. Sometimes one wants to specify a collection which is derived from another collection, but
which contains objects that are not in the original collection (it is not a sub-collection). In such cases, we can
use a collect operation. The collect operation uses the same syntax as the select and reject and is
written like this:

collection.collect(v | expression-with-v)

collect again iterates over the target collection and evaluates the given expression on each element. In contrast
to select, the evaluation result is collected in a list. When an iteration is finished the list with all results is
returned. Example:

namedElements.collect(ne | ne.name) // returns a list of strings

3.2.5. Shorthand for collect (and more than that)
As navigation through many objects is very common, there is a shorthand notation for collect that makes the
expressions more readable. Instead of

self.employee.collect(e | e.birthdate)

one can also write:

self.employee.birthdate

In general, when a property is applied to a collection of Objects, it will automatically be interpreted as a collect
over the members of the collection with the specified property.

The syntax is a shorthand for collect, if the feature does not return a collection itself. But sometimes we have
the following:

self.buildings.rooms.windows // returns a list of windows

This syntax works, but one cannot express it using the collect operation in an easy way.

3.2.6. forAll
Often a boolean expression has to be evaluated for all elements in a collection. The forAll operation allows
specifying a Boolean expression, which must be truefor all objects in a collection in order for the forAll
operation to return true:

collection.forAll(v | boolean-expression-with-v)

The result of forAll is true if boolean-expression-with-v is true for all the elements contained in
a collection. If boolean-expression-with-v is false for one or more of the elements in the collection,
then the forAll expression evaluates to false.

Xpand / Xtend / Check Reference

8

Example:

{3,4,500}.forAll(i | i < 10) // evaluates to false (500 < 10 is false)

3.2.7. exists
Often you will need to know whether there is at least one element in a collection for which a boolean is true.
The exists operation allows you to specify a Boolean expression which must be true for at least one object in
a collection:

collection.exists(v | boolean-expression-with-v)

The result of the exists operation is true if boolean-expression-with-v is true for at least one
element of collection. If the boolean-expression-with-v is false for all elements in collection, then
the complete expression evaluates to false.

Example:

{3,4,500}.exists(i | i < 10) // evaluates to true (e.g. 3 < 10 is true)

3.2.8. sortBy1

If you want to sort a list of elements, you can use the higher order function sortBy . The list you invoke the
sortBy operation on, is sorted by the results of the given expression.

Example:

myListOfEntity.sortBy(entity | entity.name)

In the example the list of entities is sorted by the name of the entities. Note that there is no such Comparable
type in Xpand. If the values returned from the expression are instances of java.util.Comparable the
compareTo method is used, otherwise toString() is invoked and the the result is used.

More Examples â## all the following expressions return true:

{'C','B','A'}.sortBy(e | e) == {'A','B','C'}
{'AAA','BB','C'}.sortBy(e | e.length) == {'C','BB','AAA'}
{5,3,1,2}.sortBy(e | e) == {1,2,3,5}
{5,3,1,2}.sortBy(e | e - 2 * e) == {5,3,2,1}
...

3.3. if expression
There are two different forms of conditional expressions. The first one is the so-called if expression. Syntax:

condition ? thenExpression : elseExpression

Example:

name != null ? name : 'unknown'

3.4. switch expression
The other one is called switch expression. Syntax:

switch (expression) {
 (case expression : thenExpression)*
 default : catchAllExpression
}

The default part is mandatory, because switch is an expression, therefore it needs to evaluate to something in
any case. Example:

switch (person.name) {
 case 'Hansen' : 'Du kanns platt schnacken'
 default : 'Du kanns mi nech verstohn!'

1since 4.1.2

Xpand / Xtend / Check Reference

9

}

There is an abbreviation for Boolean expressions:

switch {
 case booleanExpression : thenExpression
 default : catchAllExpression
}

3.5. Chain expression
Expressions and functional languages should be free of side effects as far as possible. But sometimes there you
need invocations that do have side effects. In some cases expressions even don not have a return type (i.e. the
return type is Void). If you need to call such operations, you can use the chain expression. Syntax:

anExpr ->
anotherExpr ->
lastExpr

Each expression is evaluated in sequence, but only the result of the last expression is returned. Example:

pers.setName('test') ->
pers

This chain expression will set the name of the person first, before it returns the person object itself.

3.6. create expression
The create expression is used to instantiate new objects of a given type:

new TypeName

3.7. let expression
The let expression lets you define local variables. Syntax is as follows:

let v = expression : expression-with-v

This is especially useful together with a chain- and a create expressions. Example:

let p = new Person :
 p.name('John Doe') ->
 p.age(42) ->
 p.city('New York') ->
 p

3.8. 'GLOBALVAR' expression
Sometimes you don't want to pass everything down the call stack by parameter. Therefore, we have the
GLOBALVAR expression. There are two things you need to do, to use global variables.

3.8.1. Using GLOBALVARS to configure workflows
Each workflow component using the expression framework (Xpand, Check and Xtend) can be configured with
global variables. Here is an example:

<workflow>
 stuff
 <component class="org.eclipse.xpand2.Generator">
 ... usual stuff (see ref doc)
 <globalVarDef name="MyPSM" value="slotNameOfPSM"/>
 <globalVarDef name="ImplClassSuffix" value="'Impl'"/>
 </component>
</workflow>

If you have injected global variables into the respective component, you can call them using the following syntax:

GLOBALVAR ImplClassSuffix

Xpand / Xtend / Check Reference

10

Note, we don't have any static type information. Therefore Object is assumed. So, you have to down cast the
global variable to the intended type:

((String) GLOBALVAR ImplClassSuffix)

It is good practice to type it once, using an Extension and then always refer to that extension:

String implClassSuffix() : GLOBALVAR ImplClassSuffix;
// usage of the typed global var extension
ImplName(Class c) :
 name+implClassSuffix();

3.9. Multi methods (multiple dispatch)
The expressions language supports multiple dispatching . This means that when there is a bunch of overloaded
operations, the decision which operation has to be resolved is based on the dynamic type of all parameters (the
implicit 'this' included).

In Java only the dynamic type of the 'this' element is considered, for parameters the static type is used. (this
is called single dispatch)

Here is a Java example:

class MyClass {
 boolean equals(Object o) {
 if (o instanceof MyClass) {
 return equals((MyClass)o);
 }
 return super.equals(o);
 }
 boolean equals(MyType mt) {
 //implementation...
 }
}

The method equals(Object o) would not have to be overwritten, if Java would support multiple dispatch.

3.10. Casting
The expression language is statically type checked. Although there are many concepts that help the programmer
to have really good static type information, sometimes. one knows more about the real type than the system. To
explicitly give the system such an information casts are available. Casts are 100% static, so you do not need them,
if you never statically typecheck your expressions!

The syntax for casts is very Java-like:

((String)unTypedList.get(0)).toUpperCase()

4. Check
Xpand also provides a language to specify constraints that the model has to fulfill in order to be correct. This
language is very easy to understand and use. Basically, it is built around the expression syntax that has been
discussed in detail in the previous section. Constraints specified in the Check language have to be stored in files
with the file extension .chk . Furthermore, these files have to be on the Java classpath, of course, in order to be
found. Let us look at an example, in order to understand, what these constraints look like and what they do:

import data;
context Attribute ERROR
 "Names have to be more than one character long." :
 name.length > 1;

Now, let us look at the example line by line:

1. First, the metamodel has to be imported.

2. Then, the context is specified for which the constraint applies. In other words, after the context keyword, we
put the name of the metaclass that is going to be checked by the constraint. Then, there follows either ERROR
or WARNING, These keywords specify what kind of action will be taken in case the constraint fails:

Xpand / Xtend / Check Reference

11

Table 1.1. Types of action for Check constraints

WARNING If the constraint fails, the specified message is printed, but the workflow execution is not stopped.

ERROR If the constraint fails, the specified message is printed and all further processing is stopped.

3. Now, the message that is put in case that the constraint fails is specified as a string. It is possible to include the
value of attributes or the return value of functions into the message in order to make the message more clear.
For example, it would be possible to improve the above example by rewriting it like this:

import data;
context Attribute ERROR
 "Name of '" + name + "too short. Names have to be more than one character long." :
 name.length > 1;

4. Finally, there is the condition itself, which is specified by an expression, which has been discussed in detail in
the previous section. If this expression is true, the constraint is fulfilled.

Please always keep in mind that the message that is associated with the constraint is printed, if the
condition of the constraint is false! Thus, if the specified constraint condition is true, nothing
will be printed out and the constraint will be fulfilled.

4.1. Guard Conditions
The Check language of Xpand also provides so called . These conditions allow to apply a check constraint only to
model elements that meet certain criteria. Specifying such a guard condition is done by adding an if clause to the
check constraint. The if clause has to be added after the context clause as demonstrated by the following example:

import data;
context Attribute if name.length > 1 ERROR
 "Attribute names have to start with an 'a'" :
 name.startsWith("a");

5. Xtend
Like the expressions sublanguage that summarizes the syntax of expressions for all the other textual languages
delivered with the Xpand framework, there is another commonly used language called Xtend.

This language provides the possibility to define rich libraries of independent operations and non-invasive
metamodel extensions based on either Java methods orXtend expressions. Those libraries can be referenced from
all other textual languages, that are based on the expressions framework.

5.1. Extend files
An extend file must reside in the Java class path of the used execution context. Additionally it is file extension
must be *.ext. Let us have a look at an extend file.

import my::metamodel;extension other::ExtensionFile;

/**
 * Documentation
 */
anExpressionExtension(String stringParam) :
 doingStuff(with(stringParam))
;

/**
 * java extensions are just mappings
 */
String aJavaExtension(String param) : JAVA
 my.JavaClass.staticMethod(java.lang.String)
;

The example shows the following statements:

1. import statements

Xpand / Xtend / Check Reference

12

2. extension import statements

3. expression or java extensions

5.2. Comments
We have single- and multi-line comments. The syntax for single line comments is:

// my comment

Multi line comments are written like this:

/* My multi line comment */

5.3. Import Statements
Using the import statement one can import name spaces of different types.(see expressions framework reference
documentation).

Syntax is:

import my::imported::namespace;

Extend does not support static imports or any similar concept. Therefore, the following is incorrect syntax:

import my::imported::namespace::*; // WRONG! import my::Type; // WRONG!

5.4. Extension Import Statement
You can import another extend file using the extension statement. The syntax is:

extension fully::qualified::ExtensionFileName;

Note, that no file extension (*.ext) is specified.

5.4.1. Reexporting Extensions
If you want to export extensions from another extension file together with your local extensions, you can add the
keyword 'reexport' to the end of the respective extension import statement.

extension fully::qualified::ExtensionFileName reexport;

5.5. Extensions
The syntax of a simple expression extension is as follows:

ReturnType extensionName(ParamType1 paramName1, ParamType2...): expression-using-params;

Example:

String getterName(NamedElement ele) : 'get'+ele.name.firstUpper();

5.5.1. Extension Invocation
There are two different ways of how to invoke an extension. It can be invoked like a function:

getterName(myNamedElement)

The other way to invoke an extension is through the "member syntax":

myNamedElement.getterName()

For any invocation in member syntax, the target expression (the member) is mapped to the first parameter.
Therefore, both syntactical forms do the same thing.

It is important to understand that extensions are not members of the type system, hence, they are not accessible
through reflection and you cannot specialize or overwrite operations using them.

Xpand / Xtend / Check Reference

13

The expression evaluation engine first looks for an appropriate operation before looking for an extension, in other
words operations have higher precedence.

5.5.2. Type Inference
For most extensions, you do not need to specify the return type, because it can be derived from the specified
expression. The special thing is, that the static return type of such an extension depends on the context of use.

For instance, if you have the following extension

asList(Object o): {o};

the invocation of

asList('text')

has the static type List[String]. This means you can call

asList('text').get(0).toUpperCase()

The expression is statically type safe, because its return type is derived automatically.

There is always a return value, whether you specify it or not, even if you specify explicitly 'Void'.

See the following example.

modelTarget.ownedElements.addAllNotNull(modelSource.contents.duplicate())

In this example duplicate() dispatches polymorphically. Two of the extensions might look like:

Void duplicate(Realization realization):
 realization.Specifier().duplicate()->
 realization.Realizer().duplicate()
;

create target::Class duplicate(source::Class):
 ...
;

If a 'Realization' is contained in the 'contents' list of 'modelSource', the 'Realizer' of the
'Realization' will be added to the 'ownedElements' list of the 'modelTarget'. If you do not want to add
in the case that the contained element is a 'Realization' you might change the extension to:

Void duplicate(Realization realization):
 realization.Specifier().duplicate()->
 realization.Realizer().duplicate() ->
 {}
;

5.5.3. Recursion
There is only one exception: For recursive extensions the return type cannot be inferred, therefore you need to
specify it explicitly:

String fullyQualifiedName(NamedElement n) : n.parent == null ? n.name :
 fullyQualifiedName(n.parent)+'::'+n.name
;

Recursive extensions are non-deterministic in a static context, therefore, it is necessary to specify a return type.

5.5.4. Cached Extensions
If you call an extension without side effects very often, you would like to cache the result for each set of parameters,
in order improve the performance. You can just add the keyword 'cached' to the extension in order to achieve this:

cached String getterName(NamedElement ele) :
 'get'+ele.name.firstUpper()
;

The getterName will be computed only once for each NamedElement.

Xpand / Xtend / Check Reference

14

5.5.5. Private Extensions
By default all extensions are public, i.e. they are visible from outside the extension file. If you want to hide
extensions you can add the keyword 'private' in front of them:

private internalHelper(NamedElement ele) :
 // implementation....
;

5.6. Java Extensions
In some rare cases one does want to call a Java method from inside an expression. This can be done by providing
a Java extension:

Void myJavaExtension(String param) :
 JAVA my.Type.staticMethod(java.lang.String)
;

The signature is the same as for any other extension. The implementation is redirected to a public static method
in a Java class.

Its syntax is:

JAVA fully.qualified.Type.staticMethod(my.ParamType1,
 my.ParamType2,
 ...)
;

Note that you cannot use any imported namespaces. You have to specify the type, its method and the parameter
types in a fully qualified way.

Example:

If you have defined the following Java extension:

Void dump(String s) :
 JAVA my.Helper.dump(java.lang.String)
;

and you have the following Java class:

package my;

public class Helper {
 public final static void dump(String aString) {
 System.out.println(aString);
 }
}

the expressions

dump('Hello world!')
'Hello World'.dump()

both result are invoking the Java method void dump(String aString)

5.7. Create Extensions (Model Transformation)
Since Version 4.1 the Xtend language supports additional support for model transformation. The new concept is
called create extension and it is explained a bit more comprehensive as usual.

Elements contained in a model are usually referenced multiple times. Consider the following model structure:

 P
 / \
 C1 C2
 \ /
 R

A package P contains two classes C1 and C2. C1 contains a reference R of type C2 (P also references C2).

Xpand / Xtend / Check Reference

15

We could write the following extensions in order to transform an Ecore (EMF) model to our metamodel (Package,
Class, Reference).

toPackage(EPackage x) :
 let p = new Package :
 p.ownedMember.addAll(x.eClassifiers.toClass()) ->
 p;

toClass(EClass x) :
 let c = new Class :
 c.attributes.addAll(x.eReferences.toReference()) ->
 c;

toReference(EReference x) :
 let r = new Reference :
 r.setType(x.eType.toClass()) ->
 r;

For an Ecore model with the above structure, the result would be:

 P
 / \
 C1 C2
 |
 R - C2

What happened? The C2 class has been created 2 times (one time for the package containment and another time
for the reference R that also refers to C2). We can solve the problem by adding the 'cached' keyword to the second
extension:

cached toClass(EClass x) :
 let c = new Class :
 c.attributes.addAll(c.eAttributes.toAttribute()) ->
 c;

The process goes like this:

1. start create P

a. start create C1 (contained in P)

i. start create R (contained in C1)

A. start create C2 (referenced from R)

B. end (result C2 is cached)

ii. end R

b. end C1

c. start get cached C2 (contained in P)

2. end P

So this works very well. We will get the intended structure. But what about circular dependencies? For instance,
C2 could contain a Reference R2 of type C1 (bidirectional references):

The transformation would occur like this:

1. start create P

a. start create C1 (contained in P)

i. start create R (contained in C1)

A. start create C2 (referenced from R)

I. start create R2 (contained in C2)

1. start create C1 (referenced from R1)... OOPS!

C1 is already in creation and will not complete until the stack is reduced. Deadlock! The problem is that the cache
caches the return value, but C1 was not returned so far, because it is still in construction. The solution: create
extensions

The syntax is as follows:

Xpand / Xtend / Check Reference

16

create Package toPackage(EPackage x) :
 this.classifiers.addAll(x.eClassifiers.toClass());

create Class toClass(EClass x) :
 this.attributes.addAll(x.eReferences.toReference());

create Reference toReference(EReference x) :
 this.setType(x.eType.toClass());

This is not only a shorter syntax, but it also has the needed semantics: The created model element will be added
to the cache before evaluating the body. The return value is always the reference to the created and maybe not
completely initialized element.

5.8. Calling Extensions From Java
The previous section showed how to implement Extensions in Java. This section shows how to call Extensions
from Java.

// setup
XtendFacade f = XtendFacade.create("my::path::MyExtensionFile");

// use
f.call("sayHello",new Object[]{"World"});

The called extension file looks like this:

sayHello(String s) :
 "Hello " + s;

This example uses only features of the BuiltinMetaModel, in this case the "+" feature from the StringTypeImpl.

Here is another example, that uses the JavaBeansMetaModel strategy. This strategy provides as additional
feature: the access to properties using the getter and setter methods.

For more information about type systems, see the Expressions reference documentation.

We have one JavaBean-like metamodel class:

package mypackage;
public class MyBeanMetaClass {
 private String myProp;
 public String getMyProp() { return myProp; }
 public void setMyProp(String s) { myProp = s;}
}

in addition to the built-in metamodel type system, we register the JavaMetaModel with the
JavaBeansStrategy for our facade. Now, we can use also this strategy in our extension:

// setup facade

XtendFacade f = XtendFacade.create("myext::JavaBeanExtension");

// setup additional type system
JavaMetaModel jmm =
 new JavaMetaModel("JavaMM", new JavaBeansStrategy());

f.registerMetaModel(jmm);

// use the facade
MyBeanMetaClass jb = MyBeanMetaClass();
jb.setMyProp("test");
f.call("readMyProp", new Object[]{jb}));

The called extension file looks like this:

import mypackage;

readMyProp(MyBeanMetaClass jb) :
 jb.myProp
;

Xpand / Xtend / Check Reference

17

5.9. WorkflowComponent
With the additional support for model transformation, it makes sense to invoke Xtend within a workflow. A typical
workflow configuration of the Xtend component looks like this:

<component class="org.eclipse.xtend.XtendComponent">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel1.ecore"/>
 </metamodel>
 <metaModel class="org.eclipse.xtend.typesystem.type.emf.EmfMetaModel">
 <metaModelFile value="metamodel2.ecore"/>
 </metaModel>
 <invoke value="my::example::Trafo::transform(inputSlot)"/>
 <outputSlot value="transformedModel"/>
</component>

Note that you can mix and use any kinds of metamodels (not only EMF metamodels).

5.10. Aspect-Oriented Programming in Xtend (since 4.2)
Using the workflow engine, it is now possible to package (e.g. zip) a written generator and deliver it as a kind of
black box. If you want to use such a generator but need to change some things without modifying any code, you
can make use of around advices that are supported by Xtend.

The following advice is weaved around every invocation of an extension whose name starts with 'my::generator::':

around my::generator::*(*) :
 log('Invoking ' + ctx.name) -> ctx.proceed()
;

Around advices let you change behaviour in an non-invasive way (you do not need to touch the packaged
extensions).

5.10.1. Join Point and Point Cut Syntax
Aspect orientaton is basically about weaving code into different points inside the call graph of a software module.
Such points are called join points. In Xtend the join points are the extension invocations (Note that Xpand offers
a similar feature, see the Xpand documentation).

One specifies on which join points the contributed code should be executed by specifying something like a 'query'
on all available join points. Such a query is called a point cut.

around [pointcut] :
 expression;

A point cut consists of a fully qualified name and a list of parameter declarations.

5.10.1.1. Extensions Name
The extension name part of a point cut must match the fully qualified name of the definition of the join point. Such
expressions are case sensitive. The asterisk character is used to specify wildcards. Some examples:

my::Extension::definition // extensions with the specified name
org::eclipse::xpand2::* //extensions prefixed with 'org::eclipse::xpand2::'
Operation // extensions containing the word 'Operation' in it.
* // all extensions

Be careful when using wildcards, because you will get an endless recursion, in case you weave an
extension, which is called inside the advice.

5.10.1.2. Parameter Types
The parameters of the extensions that we want to add our advice to, can also be specified in the point cut. The rule
is, that the type of the specified parameter must be the same or a supertype of the corresponding parameter type
(the dynamic type at runtime) of the definition to be called.

Additionally, one can set the wildcard at the end of the parameter list, to specify that there might be none or more
parameters of any kind.

Some examples:

Xpand / Xtend / Check Reference

18

my::Templ::extension() // extension without parameters
my::Templ::extension(String s) // extension with exactly one parameter of type String
my::Templ::extension(String s,*) // templ def with one or more parameters,
 // where the first parameter is of type String
my::Templ::extension(*) // templ def with any number of parameters

5.10.1.3. Proceeding
Inside an advice, you might want to call the underlying definition. This can be done using the implicit variable ctx,
which is of the type xtend::AdviceContext and provides an operation proceed() which invokes the underlying
definition with the original parameters (Note that you might have changed any mutable object in the advice before).

If you want to control what parameters are to be passed to the definition, you can use the operation
proceed(List[Object] params). You should be aware, that in advices, no type checking is done.

Additionally, there are some inspection properties (like name, paramTypes, etc.) available.

5.10.2. Workflow configuration
To weave the defined advices into the different join points, you need to configure the XtendComponent with
the qualified names of the Extension files containing the advices.

Example:

<component class="org.eclipse.xtend.XtendComponent">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel1.ecore"/>
 </metamodel>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel2.ecore"/>
 </metaModel>

 <invoke value="my::example::Trafo::transform(inputSlot)"/>
 <outputSlot value="transformedModel"/>
 <advices value="my::Advices,my::Advices2"/>
</component>

5.10.3. Model-to-Model transformation with Xtend
This example uses Eclipse EMF as the basis for model-to-model transformations.

The idea in this example is to transform the data model introduced in the EMF example into itself. This might
seem boring, but the example is in fact quite illustrative.

5.10.4. Workflow
By now, you should know the role and structure of workflow files. Therefore, the interesting aspect of the workflow
file below is the XtendComponent.

<workflow>
 <property file="workflow.properties"/>
 ...
 <component class="org.eclipse.xtend.XtendComponent">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelPackage value="data.DataPackage"/>
 </metaModel>
 <invoke value="test::Trafo::duplicate(rootElement)"/>
 <outputSlot value="newModel"/>
 </component>
 ...
</workflow>

As usual, we have to define the metamodel that should be used, and since we want to transform a data model into
a data model, we need to specify only the data.DataPackage as the metamodel.

We then specify which function to invoke for the transformation. The statement
test::Trafo::duplicate(rootElement) means to invoke:

• the duplicate function taking the contents of the rootElement slot as a parameter

• the function can be found in the Trafo.ext file

Xpand / Xtend / Check Reference

19

• and that in turn is in the classpath, in the test.

5.10.5. The transformation
The transformation, as mentioned above, can be found in the Trafo.ext file in the test package in the src
folder. Let us walk through the file.

So, first we import the metamodel.

import data;

The next function is a so-called create extension. Create extensions, as a side effect when called, create an
instance of the type given after the create keyword. In our case, the duplicate function creates an instance
of DataModel. This newly created object can be referred to in the transformation by this (which is why
this is specified behind the type). Since this can be omitted, we do not have to mention it explicitly in the
transformation.

The function also takes an instance of DataModel as its only parameter. That object is referred to in the
transformation as s. So, this function sets the name of the newly created DataModel to be the name of the original
one, and then adds duplicates of all entities of the original one to the new one. To create the duplicates of the
entities, the duplicate() operation is called for each Entity. This is the next function in the transformation.

create DataModel this duplicate(DataModel s):
 entity.addAll(s.entity.duplicate()) ->
 setName(s.name);

The duplication function for entities is also a create extension. This time, it creates a new Entity for each old
Entity passed in. Again, it copies the name and adds duplicates of the attributes and references to the new one.

create Entity this duplicate(Entity old):
 attribute.addAll(old.attribute.duplicate()) ->
 reference.addAll(old.reference.duplicate()) ->
 setName(old.name);

The function that copies the attribute is rather straight forward, but ...

create Attribute this duplicate(Attribute old):
 setName(old.name) ->
 setType(old.type);

... the one for the references is more interesting. Note that a reference, while being owned by some Entity,
also references another Entity as its target. So, how do you make sure you do not duplicate the target twice?
Xtend provides explicit support for this kind of situation. Create extensions are only executed once per tuple of
parameters! So if, for example, the Entity behind the target reference had already been duplicated by calling the
duplicate function with the respective parameter, the next time it will be called the exact same object will be
returned. This is very useful for graph transformations.

create EntityReference this duplicate(EntityReference old):
 setName(old.name) ->
 setTarget(old.target.duplicate());

For more information about the Xtend language please see the Xtend reference documentation.

6. Xpand2
The Xpand language is used in templates to control the output generation. This documentation describes the general
syntax and semantics of the Xpand language.

Typing the guillemets (« and ») used in the templates is supported by the Eclipse editor: which provides keyboard
shortcuts with Ctrl+< and Ctrl+>.

6.1. Template files and encoding
Templates are stored in files with the extension .xpt. Template files must reside on the Java classpath of the
generator process.

Almost all characters used in the standard syntax are part of ASCII and should therefore be available in any
encoding. The only limitation are the tag brackets (guillemets), for which the characters "«" (Unicode 00AB) and

Xpand / Xtend / Check Reference

20

"»" (Unicode 00BB) are used. So for reading templates, an encoding should be used that supports these characters
(e.g. ISO-8859-1 or UTF-8).

Names of properties, templates, namespaces etc. must only contain letters, numbers and underscores.

6.2. General structure of template files
Here is a first example of a template:

«IMPORT meta::model»
«EXTENSION my::ExtensionFile»

«DEFINE javaClass FOR Entity»
 «FILE fileName()»
 package «javaPackage()»;

 public class «name» {
 // implementation
 }
 «ENDFILE»
«ENDDEFINE»

A template file consists of any number of IMPORT statements, followed by any number of EXTENSION
statements, followed by one or more DEFINE blocks (called definitions).

6.3. Statements of the Xpand language

6.3.1. IMPORT
If you are tired of always typing the fully qualified names of your types and definitions, you can import a namespace
using the IMPORT statement.

«IMPORT meta::model»

This one imports the namespace meta::model. If your template contains such a statement, you can use the
unqualified names of all types and template files contained in that namespace. This is similar to a Java import
statement import meta.model.*.

6.3.2. EXTENSION
Metamodels are typically described in a structural way (graphical, or hierarchical, etc.) . A shortcoming of this
is that it is difficult to specify additional behaviour (query operations, derived properties, etc.). Also, it is a good
idea not to pollute the metamodel with target platform specific information (e.g. Java type names, packages, getter
and setter names, etc.).

Extensions provide a flexible and convenient way of defining additional features of metaclasses. You do this by
using the Xtend language. (See the corresponding reference documentation for details)

An EXTENSION import points to the Xtend file containing the required extensions:

«EXTENSION my::ExtensionFile»

Note that extension files have to reside on the Java classpath, too. Therefore, they use the same namespace
mechanism (and syntax) as types and template files.

6.3.3. DEFINE
The central concept of Xpand is the DEFINE block, also called a template. This is the smallest identifiable unit
in a template file. The tag consists of a name, an optional comma-separated parameter list, as well as the name of
the metamodel class for which the template is defined.

«DEFINE templateName(formalParameterList) FOR MetaClass»
 a sequence of statements
«ENDDEFINE»

To some extent, templates can be seen as special methods of the metaclass â## there is always an implicit this
parameter which can be used to address the "underlying" model element; in our example above, this model element
is "MetaClass".

Xpand / Xtend / Check Reference

21

As in Java, a formal parameter list entry consists of the type followed by the name of that parameter.

The body of a template can contain a sequence of other statements including any text.

A full parametric polymorphism is available for templates. If there are two templates with the same name that are
defined for two metaclasses which inherit from the same superclass, Xpand will use the corresponding subclass
template, in case the template is called for the superclass. Vice versa, the template of the superclass would be used
in case a subclass template is not available. Note that this not only works for the target type, but for all parameters.
Technically, the target type is handled as the first parameter.

So, let us assume you have the following metamodel:

Figure 1.1. Sample metamodel

Assume further, you would have a model which contains a collection of A, B and C instances in the property
listOfAs. Then, you can write the following template:

«DEFINE someOtherDefine FOR SomeMetaClass»
 «EXPAND implClass FOREACH listOfAs»
«ENDDEFINE»

«DEFINE implClass FOR A»
 // this is the code generated for the superclass A
«ENDDEFINE»

«DEFINE implClass FOR B»
 // this is the code generated for the subclass B
«ENDDEFINE»

«DEFINE implClass FOR C»
 // this is the code generated for the subclass C
«ENDDEFINE»

So for each B in the list, the template defined for B is executed, for each C in the collection the template defined
for C is invoked, and for all others (which are then instances of A) the default template is executed.

6.3.4. FILE
The FILE statement redirects the output generated from its body statements to the specified target.

«FILE expression [outletName]»
 a sequence of statements
«ENDFILE»

The target is a file in the file system whose name is specified by the expression (relative to the specified target
directory for that generator run). The expression for the target specification can be a concatenation (using the +
operator). Additionally, you can specify an identifier (a legal Java identifier) for the name of the outlet. (See the
configuration section for a description of outlets).

The body of a FILE statement can contain any other statements. Example:

«FILE InterfaceName + ".java"»
 package «InterfacePackageName»;

 /* generated class! Do not modify! */
 public interface «InterfaceName» {
 «EXPAND Operation::InterfaceImplementation FOREACH Operation»
 }
«ENDFILE»

«FILE ImplName + ".java" MY_OUTLET»
 package «ImplPackageName»;

 public class «ImplName» extends «ImplBaseName»
 implements «InterfaceName» {
 //TODO: implement it
 }
«ENDFILE»

Xpand / Xtend / Check Reference

22

6.3.5. EXPAND
The EXPAND statement "expands" another DEFINE block (in a separate variable context), inserts its output at the
current location and continues with the next statement. This is similar in concept to a subroutine call.

«EXPAND definitionName [(parameterList)]
 [FOR expression | FOREACH expression [SEPARATOR expression]]»

The various alternative syntaxes are explained below.

6.3.5.1. Names
If the definitionName is a simple unqualified name, the corresponding DEFINE block must be in the same template
file.

If the called definition is not contained in the same template file, the name of the template file must be specified.
As usual, the double colon is used to delimit namespaces.

«EXPAND TemplateFile::definitionName FOR myModelElement»

Note that you would need to import the namespace of the template file (if there is one). For instance, if the template
file resides in the java package my.templates, there are two alternatives. You could either write

«IMPORT my::templates»
...
«EXPAND TemplateFile::definitionName FOR myModelElement»

or

«EXPAND my::templates::TemplateFile::definitionName
 FOR myModelElement»

6.3.6. FOR vs. FOREACH
If FOR or FOREACH is omitted the other template is called FOR this.

«EXPAND TemplateFile::definitionName»

equals

«EXPAND TemplateFile::definitionName FOR this»

If FOR is specified, the definition is executed for the result of the target expression.

«EXPAND myDef FOR entity»

If FOREACH is specified, the target expression must evaluate to a collection type. In this case, the specified
definition is executed for each element of that collection.

«EXPAND myDef FOREACH entity.allAttributes»

6.3.6.1. Specifying a Separator
If a definition is to be expanded FOREACH element of the target expression it is possible to specify a SEPARATOR
expression:

«EXPAND paramTypeAndName FOREACH params SEPARATOR ','»

The result of the separator expression will be written to the output between each evaluation of the target definition
(not after each one, but rather only in between two elements. This comes in handy for things such as comma-
separated parameter lists).

An EvaluationException will be thrown if the specified target expression cannot be evaluated to an existing
element of the instantiated model or no suitable DEFINE block can be found.

6.3.7. FOREACH
This statement expands the body of the FOREACH block for each element of the target collection that results from
the expression. The current element is bound to a variable with the specified name in the current context.

Xpand / Xtend / Check Reference

23

«FOREACH expression AS variableName [ITERATOR iterName] [SEPARATOR expression]»
 a sequence of statements using variableName to access the
 current element of the iteration
«ENDFOREACH»

The body of a FOREACH block can contain any other statements; specifically FOREACH statements may be nested.
If ITERATOR name is specified, an object of the type xpand2::Iterator (see API doc for details) is accessible
using the specified name. The SEPARATOR expression works in the same way as the one for EXPAND.

Example:

«FOREACH {'A','B','C'} AS c ITERATOR iter SEPARATOR ','»
 «iter.counter1» : «c»
«ENDFOREACH»

The evaluation of the above statement results in the following text:

1 : A,
2 : B,
3 : C

6.3.8. IF
The IF statement supports conditional expansion. Any number of ELSEIF statements are allowed. The ELSE
block is optional. Every IF statement must be closed with an ENDIF. The body of an IF block can contain any
other statement, specifically, IF statements may be nested.

«IF expression»
 a sequence of statements
[«ELSEIF expression»]
 a sequence of statements]
[«ELSE»
 a sequence of statements]
«ENDIF»

6.3.9. PROTECT
Protected Regions are used to mark sections in the generated code that shall not be overridden again by the
subsequent generator run. These sections typically contain manually written code.

«PROTECT CSTART expression CEND expression ID expression (DISABLE)?»
 a sequence of statements
«ENDPROTECT»

The values of CSTART and CEND expressions are used to enclose the protected regions marker in the output.
They should build valid comment beginning and end strings corresponding to the generated target language (e.g.
"/*" and "*/" for Java). The following is an example for Java:

«PROTECT CSTART "/*" CEND "*/" ID ElementsUniqueID»
 here goes some content
«ENDPROTECT»

The ID is set by the ID expression and must be globally unique (at least for one complete pass of the generator).

Generated target code looks like this:

public class Person {
/*PROTECTED REGION ID(Person) ENABLED START*/
 This protected region is enabled, therefore the contents will
 always be preserved. If you want to get the default contents
 from the template you must remove the ENABLED keyword (or even
 remove the whole file :-))
/*PROTECTED REGION END*/
}

Protected regions are generated in enabled state by default. Unless you manually disable them, by removing the
ENABLED keyword, they will always be preserved.

If you want the generator to generate disabled protected regions, you need to add the DISABLE keyword inside
the declaration:

Xpand / Xtend / Check Reference

24

«PROTECT CSTART '/*' CEND '*/' ID this.name DISABLE»

6.3.10. LET
LET lets you specify local variables:

«LET expression AS variableName»
 a sequence of statements
«ENDLET»

During the expansion of the body of the LET block, the value of the expression is bound to the specified variable.
Note that the expression will only be evaluated once, independent from the number of usages of the variable within
the LET block. Example:

«LET packageName + "." + className AS fqn»
 the fully qualified name is: «fqn»;
«ENDLET»

6.3.11. ERROR
The ERROR statement aborts the evaluation of the templates by throwing an XpandException with the
specified message.

«ERROR expression»

Note that you should use this facility very sparingly, since it is better practice to check for invalid models using
constraints on the metamodel, and not in the templates.

6.3.12. Comments
Comments are only allowed outside of tags.

«REM»
 text comment
«ENDREM»

Comments may not contain a REM tag, this implies that comments are not nestable. A comment may not have a
white space between the REM keyword and its brackets. Example:

«REM»«LET expression AS variableName»«ENDREM»
 a sequence of statements
«REM» «variableName.stuff»
«ENDLET»«ENDREM»

6.3.13. Expression Statement
Expressions support processing of the information provided by the instantiated metamodel. Xpand provides
powerful expressions for selection, aggregation, and navigation. Xpand uses the expressions sublanguage in almost
any statement that we have seen so far. The expression statement just evaluates the contained expression and writes
the result to the output (using the toString() method of java.lang.Object). Example:

public class «this.name» {

All expressions defined by the oArchitectureWare expressions sublanguage are also available in Xpand. You can
invoke imported extensions. (See the Expressions and Xtend language reference for more details).

6.3.14. Controlling generation of whitespace
If you want to omit the output of superfluous whitespace you can add a minus sign just before any closing bracket.
Example:

«FILE InterfaceName + ".java"-»
«IF hasPackage-»
package «InterfacePackageName»;
«ENDIF-»
...
«ENDFILE»

Xpand / Xtend / Check Reference

25

The generated file would start with two new lines (one after the FILE and one after the IF statement) if the minus
characters had not been set.

In general, this mechanism works as follows: If a statement (or comment) ends with such a minus all preceding
whitespace up to the newline character (excluded!) is removed. Additionally all following whitespace including
the first newline character (\r\n is handled as one character) is also removed.

6.4. Aspect-Oriented Programming in Xpand
Using the workflow engine it is now possible to package (e.g. zip) a written generator and deliver it as a kind
of black box. If you want to use such a generator but need to change some small generation stuff, you can make
use of the AROUND aspects.

«AROUND qualifiedDefinitionName(parameterList)? FOR type»
 a sequence of statements
«ENDAROUND»

AROUND lets you add templates in an non-invasive way (you do not need to touch the generator templates). Because
aspects are invasive, a template file containing AROUND aspects must be wrapped by configuration (see next
section).

6.4.1. Join Point and Point Cut Syntax
AOP is basically about weaving code into different points inside the call graph of a software module. Such points
are called Join Points. In Xpand, there is only one join point so far: a call to a definition.

You specify on which join points the contributed code should be executed by specifying something like a 'query'
on all available join points. Such a query is called a point cut.

«AROUND [pointcut]»
 do stuff
«ENDAROUND»

A pointcut consists of a fully qualified name, parameter types and the target type.

6.4.1.1. Definition Name
The definition name part of a point cut must match the fully qualified name of the join point definition. Such
expressions are case sensitive. The asterisk character is used to specify wildcards.

Some examples:

my::Template::definition // definitions with the specified name
org::eclipse::xpand2::* // definitions prefixed with 'org::eclipse::xpand2::'
Operation // definitions containing the word 'Operation' in it.
* // all definitions

6.4.1.2. Parameter Types
The parameters of the definitions we want to add our advice to, can also be specified in the point cut. The rule is
that the type of the specified parameter must be the same or a supertype of the corresponding parameter type (the
dynamic type at runtime!) of the definition to be called.

Additionally, one can set a wildcard at the end of the parameter list, to specify that there might be an arbitrary
number of parameters of any kind.

Some examples:

my::Templ::def() // templ def without parameters
my::Templ::def(String s) // templ def with exactly one parameter
 // of type String
my::Templ::def(String s,*) // templ def with one or more parameters,
 // where the first parameter is of type String
my::Templ::def(*) // templ def with any number of parameters

6.4.1.3. Target Type
Finally, we have to specify the target type. This is straightforward:

my::Templ::def() FOR Object// templ def for any target type

Xpand / Xtend / Check Reference

26

my::Templ::def() FOR Entity// templ def objects of type Entity

6.4.2. Proceeding
Inside an advice, you might want to call the underlying definition. This can be done using the implicit variable
targetDef, which is of the type xpand2::Definition and which provides an operation proceed()that invokes
the underlying definition with the original parameters (Note that you might have changed any mutable object in
the advice before).

If you want to control, what parameters are to be passed to the definition, you can use the operation
proceed(Object target, List params). Please keep in mind that no type checking is done in this context.

Additionally, there are some inspection properties (like name, paramTypes, etc.) available.

6.5. Generator Workflow Component
This section describes the workflow component that is provided to perform the code generation, i.e. run the
templates. You should have a basic idea of how the workflow engine works. A simple generator component
configuration could look as follows:

<component class="org.eclipse.xpand2.Generator">
 <fileEncoding value="ISO-8859-1"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/>
 </metaModel>
 <expand value="example::Java::all FOR myModel"/>

 <!-- aop configuration -->
 <advices value='example::Advices1, example::Advices2'/>

 <!-- output configuration -->
 <outlet path='main/src-gen'/>
 <outlet name='TO_SRC' path='main/src' overwrite='false'/>
 <beautifier class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <beautifier class="org.eclipse.xpand2.output.XmlBeautifier"/>

 <!-- protected regions configuration -->
 <prSrcPaths value="main/src"/>
 <prDefaultExcludes value="false"/>
 <prExcludes value="*.xml"/>
</component>

Now, let us go through the different properties one by one.

6.5.1. Main configuration
The first thing to note is that the qualified Java name of the component is
org.eclipse.xpand2.Generator.

6.5.2. Encoding
For Xpand, it is important to have the file encoding in mind because of the guillemet characters used to delimit
keywords and property access. The fileEncoding property specifies the file encoding to use for reading the
templates, reading the protected regions and writing the generated files. This property defaults to the default file
encoding of your JVM.

6.5.3. Metamodel
The property metaModel is used to tell the generator engine on which metamodels the Xpand templates should
be evaluated. One can specify more than one metamodel here. Metamodel implementations are required by
the expression framework (see Expressions) used by Xpand2. In the example above we configured the Ecore
metamodel using the EMFMetaModel implementation shipped with the core part of the Xpand release.

A mandatory configuration is the expand property. It expects a syntax similar to that of the EXPAND statement
(described above). The only difference is that we omit the EXPAND keyword. Instead, we specify the name of
the property. Examples:

<expand value="Template::define FOR mySlot"/>

Xpand / Xtend / Check Reference

27

or:

<expand value="Template::define('foo') FOREACH {mySlot1,mySlot2}"/>

The expressions are evaluated using the workflow context. Each slot is mapped to a variable. For the examples
above the workflow context needs to contain elements in the slots 'mySlot', 'mySlot1' and 'mySlot2'. It
is also possible to specify some complex expressions here. If, for instance, the slot myModel contains a collection
of model elements one could write:

<expand value="Template::define FOREACH myModel.typeSelect(Entity)"/>

This selects all elements of type Entity contained in the collection stored in the myModel slot.

6.5.4. Output configuration
The second mandatory configuration is the specification of so called outlets (a concept borrowed from
AndroMDA). Outlets are responsible for writing the generated files to disk. Example:

<component class="org.eclipse.xpand2.Generator2">
 ...
 <outlet path='main/src-gen'/>
 <outlet name='TO_SRC' path='main/src' overwrite='false'/>
 ...
</component>

In the example there are two outlets configured. The first one has no name and is therefore handled as the default
outlet. Default outlets are triggered by omitting an outlet name:

«FILE 'test/note.txt'»
this goes to the default outlet
«ENDFILE»

The configured base path is 'main/src-gen', so the file from above would go to 'main/src-gen/test/
note.txt'.

The second outlet has a name ('TO_SRC') specified. Additionally the flag overwrite is set to false (defaults
to true). The following Xpand fragment

«FILE 'test/note.txt' TO_SRC»
this goes to the TO_SRC outlet
«ENDFILE»

would cause the generator to write the contents to 'main/src/test/note.txt' if the file does not already
exist (the overwrite flag).

Another option called append (defaults to false) causes the generator to append the generated text to an existing
file. If overwrite is set to false this flag has no effect.

6.5.5. Beautifier
Beautifying the generated code is a good idea. It is very important that generated code looks good, because
developers should be able to understand it. On the other hand template files should look good, too. It is thus best
practice to write nice looking template files and not to care how the generated code looks â## and then you run a
beautifier over the generated code to fix that problem. Of course, if a beautifier is not available, or if white space
has syntactical meaning (as in Python), you would have to write your templates with that in mind (using the minus
character before closing brackets as described in a preceding section).

The Xpand workflow component can be configured with multiple beautifiers:

<beautifier
 class="org.eclipse.xpand2.output.JavaBeautifier"/>
<beautifier
 class="org.eclipse.xpand2.output.XMLBeautifier"/>

These are the two beautifiers delivered with Xpand. If you want to use your own beautifier, you would just need
to implement the PostProcessor Java interface:

package org.eclipse.xpand2.output;

public interface PostProcessor {

Xpand / Xtend / Check Reference

28

 public void beforeWriteAndClose(FileHandle handle);
 public void afterClose(FileHandle handle);
}

The beforeWriteAndClose method is called for each ENDFILE statement.

6.5.5.1. JavaBeautifier
The JavaBeautifier is based on the Eclipse Java formatter provides base beautifying for Java files.

6.5.5.2. XmlBeautifier
The XmlBeautifier is based on dom4j and provides a single option fileExtensions (defaults to ".xml, .xsl,
.wsdd, .wsdl") used to specify which files should be pretty-printed.

6.5.6. Protected Region Configuration
Finally, you need to configure the protected region resolver, if you want to use protected regions.

<prSrcPaths value="main/src"/>
<prDefaultExcludes value="false"/>
<prExcludes value="*.xml"/>

The prSrcPaths property points to a comma-separated list of directories. The protected region resolver will scan
these directories for files containing activated protected regions.

There are several file names which are excluded by default:

RCS, SCCS, CVS, CVS.adm, RCSLOG, cvslog.*, tags, TAGS, .make.state, .nse_depinfo, *~, #*,
.#*, ',*', _$*,*$, *.old, *.bak, *.BAK, *.orig, *.rej, .del-*, *.a, *.olb, *.o, *.obj,
 *.so, *.exe, *.Z,* .elc, *.ln, core, .svn

If you do not want to exclude any of these, you must set prDefaultExcludes to false.

<prDefaultExcludes value="false"/>

If you want to add additional excludes, you should use the prExcludes property.

<prExcludes value="*.xml,*.hbm"/>

It is bad practice to mix generated and non-generated code in one artifact. Instead of using protected
regions, you should try to leverage the extension features of the used target language (inheritance,
inclusion, references, etc.) wherever possible. It is very rare that the use of protected regions is an
appropriate solution.

6.5.7. VetoStrategy
The Xpand engine will generate code for each processed FILE statement. This implies that files are written that
might not have changed to the previous generator run. Normally it does not matter that files are rewritten. There
are at least two good reasons when it is better to avoid rewriting of files:

1. The generated source code will be checked in. In general it is not the recommended way to go to check in
generated code, but sometimes you will have to. Especially with CVS there is the problem that rewritten files
are recognized as modified, even if they haven't changed. So the problem arises that identical files get checked
in again and again (or you revert it manually). When working in teams the problem even becomes worse, since
team members will have conflicts when checking in.

2. When it can be predicted that the generator won't produce different content before a file is even about to be
created by a FILE statement then this can boost performance. Of course it is not trivial to predict that a specific
file won't result in different content before it is even created. This requires information from a prior generator
run and evaluation against the current model to process. Usually a diff model would be used as input for the
decision.

Case 1) will prevent file writing after a FILE statement has been evaluated, case 2) will prevent creating a file at all.

To achieve this it is possible to add Veto Strategies to the generator,
which are implementations of interface org.eclipse.xpand2.output.VetoStrategy or
org.eclipse.xpand2.output.VetoStrategy2. Use VetoStrategy2 if you implement your own.

VetoStrategy2 declares two methods:

Xpand / Xtend / Check Reference

29

• boolean hasVetoBeforeOpen (FileHandle)

This method will be called before a file is being opened and generated. Return true to suppress the file creation.

• boolean hasVeto (FileHandle)

This method will be called after a file has been produced and after all configured PostProcessors have been
invoked. Return true to suppress writing the file.

Veto Strategies are configured per Outlet. It is possible to add multiple stratgy instances to each Outlet.

 <component id="generator" class="org.eclipse.xpand2.Generator" skipOnErrors="true">
 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
 <expand value="templates::Root::Root FOR model"/>
 <fileEncoding value="ISO-8859-1"/>
 <outlet path="src-gen">
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <vetoStrategy class="org.eclipse.xpand2.output.NoChangesVetoStrategy"/>
 </outlet>
 </component>

One VetoStrategy is already provided. The
org.eclipse.xpand2.output.NoChangesVetoStrategy is a simple implementation that will
compare the produced output, after it has been postprocessed, with the target file. If the content is identical the
strategy vetoes the file writing. This strategy is effective, but has two severe drawbacks:

1. The file has been created at least in memory before. This consumes time and memory. If applying code
formatting this usually implies that the file is temporarily written.

2. The existing file must be read into memory. This also costs time and memory.

Much better would be to even prevent the creation of files by having a valid implementation for the
hasVetoBeforeOpen() method. Providing an implementation that predicts that files do not have to be created
requires domain knowledge, thus a standard implementation is not available.

The number of skipped files will be reported by the Generator component like this:

2192 INFO - Generator(generator): generating <...>
3792 INFO - Skipped writing of 2 files to outlet [default](src-gen)

6.6. Example for using Aspect-Oriented Programming in Xpand
This example shows how to use aspect-oriented programming techniques in Xpand templates. It is applicable to
EMF based and Classic systems. However, we explain the idea based on the emfExample â## hence you should
read that before.

6.7. The Problem
There are many circumstances when template-AOP is useful. Here are two examples:

Scenario 1: Assume you have a nice generator that generates certain artifacts. The generator (or cartridge) might be
a third party product, delivered in a single JAR file. Still you might want to adapt certain aspects of the generation
process â## without modifying the original generator.

Scenario 2: You are building a family of generators that can generate variations of the generate code, e.g.
Implementations for different embedded platforms. In such a scenario, you need to be able to express those
differences (variabilities) sensibly without creating a non-understandable chaos of if statements in the templates.

6.8. Example
To illustrate the idea of extending a generator without "touching" it, let us create a new project called
org.eclipse.demo.emf.datamodel.generator-aop. The idea is that it will "extend" the original
org.eclipse.demo.emf.datamodel.generator project introduced in the emfExample. So this new
projects needs to have a project dependency to the former one.

6.8.1. Templates
An AOP system always needs to define a join point model; this is, you have to define, at which locations of a
(template) program you can add additional (template) code. In Xpand, the join points are simply templates (i.e.

Xpand / Xtend / Check Reference

30

DEFINE .. ENDDEFINE) blocks. An "aspect template" can be declared AROUND previously existing templates.
If you take a look at the org.eclipse.demo.emf.datamodel.generator source folder of the project,
you can find the Root.xpt template file. Inside, you can find a template called Impl that generates the
implementation of the JavaBean.

«DEFINE Entity FOR data::Entity»
 «FILE baseClassFileName() »
 // generated at «timestamp()»
 public abstract class «baseClassName()» {
 «EXPAND Impl»
 }
 «ENDFILE»
«ENDDEFINE»

«DEFINE Impl FOR data::Entity»
 «EXPAND GettersAndSetters»
«ENDDEFINE»

«DEFINE Impl FOR data::PersistentEntity»
 «EXPAND GettersAndSetters»
 public void save() {

 }
«ENDDEFINE»

What we now want to do is as follows: Whenever the Impl template is executed, we want to run an additional
template that generates additional code (for example, some kind of meta information for frameworks â## the
specific code is not important for the example here).

So, in our new project, we define the following template file:

«AROUND Impl FOR data::Entity»
 «FOREACH attribute AS a»
 public static final AttrInfo «a.name»Info = new AttrInfo(
 "«a.name»", «a.type».class);
 «ENDFOREACH»
 «targetDef.proceed()»
«ENDAROUND»

So, this new template wraps around the existing template called Impl It first generates additional code and then
forwards the execution to the original template using targetDef.proceed(). So, in effect, this is a BEFORE
advice. Moving the proceed statement to the beginning makes it an AFTER advice, omitting it, makes it an
override.

6.8.2. Workflow File
Let us take a look at the workflow file to run this generator:

<workflow>
 <cartridge file="workflow.mwe"/>
 <component adviceTarget="generator"
 id="reflectionAdvice"
 class="org.eclipse.xpand2.GeneratorAdvice">
 <advices value="templates::Advices"/>
 </component>
</workflow>

Mainly, what we do here, is to call the original workflow file. It has to be available from the classpath. After this
cartridge call, we define an additional workflow component, a so called advice component. It specifies generator
as its adviceTarget. That means, that all the properties we define inside this advice component will be added to
the component referenced by name in the adviceTarget instead. In our case, this is the generator. So, in effect,
we add the <advices value="templates::Advices" /> to the original generator component (without
invasively modifying its own definition). This contributes the advice templates to the generator.

6.8.3. Running the new generator
Running the generator produces the following code:

public abstract class PersonImplBase {

Xpand / Xtend / Check Reference

31

 public static final AttrInfo
 nameInfo = new AttrInfo("name", String.class);
 public static final AttrInfo
 name2Info = new AttrInfo("name2", String.class);
 private String name;
 private String name2;

 public void setName(String value) {
 this.name = value;
 }

 public String getName() {
 return this.name;
 }

 public void setName2(String value) {
 this.name2 = value;
 }

 public String getName2() {
 return this.name2;
 }
}

6.9. More Aspect Orientation
In general, the syntax for the AROUND construct is as follows:

<<AROUND fullyQualifiedDefinitionNameWithWildcards
 (Paramlist (*)?) FOR TypeName>>
 do Stuff
<<ENDAROUND>>

Here are some examples:

<<AROUND *(*) FOR Object>>

matches all templates

<<AROUND *define(*) FOR Object>>

matches all templates with define at the end of its name and any number of parameters

<<AROUND org::eclipse::xpand2::* FOR Entity>>

matches all templates with namespace org::eclipse::xpand2:: that do not have any parameters and whose type
is Entity or a subclass

<<AROUND *(String s) FOR Object>>

matches all templates that have exactly one String parameter

<<AROUND *(String s,*) FOR Object>>

matches all templates that have at least one String parameter

<<AROUND my::Template::definition(String s) FOR Entity>>

matches exactly this single definition

Inside an AROUND, there is the variable targetDef, which has the type xpand2::Definition. On this
variable, you can call proceed, and also query a number of other things:

<<AROUND my::Template::definition(String s) FOR String>>
 log('invoking '+<<targetDef.name>>+' with '+this)
 <<targetDef.proceed()>>
<<ENDAROUND>>

32

Chapter 2. Built-in types API
documentation
1. Object

Supertype: none

Table 2.1. Properties

Type Name Description

xpand2::Type metaType returns this object's meta type.

Table 2.2. Operations

Return type Name Description

Boolean == (Object)

Boolean < (Object)

String toString () returns the String representation
of this object. (Calling Java's
toString() method)

Boolean <= (Object)

Boolean != (Object)

Boolean > (Object)

Integer compareTo (Object) Compares this object with the
specified object for order. Returns
a negative integer, zero, or a
positive integer as this object is less
than, equal to, or greater than the
specified object.

Boolean >= (Object)

2. String
Supertype: Object

Table 2.3. Properties

Type Name Description

Integer length the length of this string

Table 2.4. Operations

Return type Name Description

String toLowerCase () Converts all of the characters in this
String to lower case using the rules
of the default locale (from Java)

String + (Object) concatenates two strings

List toCharList () splits this String into a List[String]
containing Strings of length 1

Built-in types API documentation

33

Return type Name Description

String toFirstUpper () Converts the first character in this
String to upper case using the rules
of the default locale (from Java)

String subString (Integer,
Integer)

Returns a new string that is a
substring of this string.

String trim () Returns a copy of the string, with
leading and trailing whitespace
omitted. (from Java 1.4)

String toFirstLower () Converts the first character in this
String to lower case using the rules
of the default locale (from Java)

String toUpperCase () Converts all of the characters in this
String to upper case using the rules
of the default locale (from Java)

List split (String) Splits this string around matches of
the given regular expression (from
Java 1.4)

Boolean startsWith (String) Tests if this string starts with the
specified prefix.

Boolean matches (String) Tells whether or not this string
matches the given regular
expression. (from Java 1.4)

Integer asInteger () Returns an Integer object holding
the value of the specified String
(from Java 1.5)

Boolean contains (String) Tests if this string contains
substring.

Boolean endsWith (String) Tests if this string ends with the
specified prefix.

String replaceFirst (String,
String)

Replaces the first substring of
this string that matches the given
regular expression with the given
replacement.

String replaceAll (String,
String)

Replaces each substring of this
string that matches the given
regular expression with the given
replacement.

3. Integer
Supertype: Real

This type does not define any properties.

Table 2.5. Operations

Return type Name Description

List upTo (Integer) returns a List of Integers starting
with the value of the target
expression, up to the value of the
specified Integer, incremented by
one.

Built-in types API documentation

34

Return type Name Description

</br>
e.g. '1.upTo(5)' evaluates to
{1,2,3,4,5}

Boolean >= (Integer)

Boolean == (Integer)

Boolean != (Integer)

List upTo (Integer, Integer) returns a List of Integers starting
with the value of the target
expression, up to the value of the
first paramter, incremented by the
second parameter.

</br>
e.g. '1.upTo(10, 2)' evaluates to
{1,3,5,7,9}

Integer - (Integer)

Integer + (Integer)

Boolean <= (Integer)

Boolean < (Integer)

Integer * (Integer)

Integer - ()

Boolean > (Integer)

Integer / (Integer)

4. Boolean
Supertype: Object

This type does not define any properties.

Table 2.6. Operations

Return type Name Description

Boolean ! ()

5. Real
Supertype: Object

This type does not define any properties.

Table 2.7. Operations

Return type Name Description

Real * (Real)

Boolean >= (Object)

Boolean <= (Object)

Real - ()

Boolean == (Object)

Boolean != (Object)

Boolean < (Object)

Built-in types API documentation

35

Return type Name Description

Real - (Real)

Real / (Real)

Boolean > (Object)

Real + (Real)

6. Collection
Supertype: Object

Table 2.8. Properties

Type Name Description

Boolean isEmpty returns true if this Collection is
empty

Integer size returns the size of this Collection

Table 2.9. Operations

Return type Name Description

Boolean contains (Object) returns true if this collection
contains the specified object.
otherwise false. returns this
Collection.

List toList () converts this collection to List

Set toSet () converts this collection to Set

List flatten () returns a flattened List.

Set intersect (Collection) returns a new Set, containing only
the elements contained in this and
the specified Collection

String toString (String) concatenates each contained
element (using toString()),
separated by the specified String.

Collection removeAll (Object) removes all elements contained in
the specified collection from this
Collection if contained (modifies
it!). returns this Collection.

Collection remove (Object) removes the specified element
from this Collection if contained
(modifies it!). returns this
Collection.

Set without (Collection) returns a new Set, containing all
elements from this Collection
without the elements from specified
Collection

Collection addAll (Collection) adds all elements to the Collection
(modifies it!). returns this
Collection.

Collection add (Object) adds an element to the Collection
(modifies it!). returns this
Collection.

Built-in types API documentation

36

Return type Name Description

Set union (Collection) returns a new Set, containing all
elements from this and the specified
Collection

Boolean containsAll (Collection) returns true if this collection
contains each element contained in
the specified collection. otherwise
false. returns this Collection.

7. List
Supertype: Collection

This type does not define any properties.

Table 2.10. Operations

Return type Name Description

List withoutFirst ()

Object last ()

Integer indexOf (Object)

List withoutLast ()

Collection reverse ()

Object first ()

Object get (Integer)

8. Set
Supertype: Collection

This type does not define any properties.

This type does not define any operations.

9. xpand2::Type
Supertype: Object

Table 2.11. Properties

Type Name Description

String name

Set allStaticProperties

String documentation

Set superTypes

Set allProperties

Set allFeatures

Set allOperations

Table 2.12. Operations

Return type Name Description

xpand2::StaticProperty getStaticProperty
(String)

Built-in types API documentation

37

Return type Name Description

xpand2::Feature getFeature (String, List)

Boolean isInstance (Object)

xpand2::Property getProperty (String)

Object newInstance ()

Boolean isAssignableFrom
(xpand2::Type)

xpand2::Operation getOperation (String,
List)

10. xpand2::Feature
Supertype: Object

Table 2.13. Properties

Type Name Description

String name

xpand2::Type returnType

String documentation

xpand2::Type owner

This type does not define any operations.

11. xpand2::Property
Supertype: xpand2::Feature

This type does not define any properties.

Table 2.14. Operations

Return type Name Description

Void set (Object, Object)

Object get (Object)

12. xpand2::Operation
Supertype: xpand2::Feature

This type does not define any properties.

Table 2.15. Operations

Return type Name Description

List getParameterTypes ()

Object evaluate (Object, List)

13. xpand2::StaticProperty
Supertype: xpand2::Feature

This type does not define any properties.

Built-in types API documentation

38

Table 2.16. Operations

Return type Name Description

Object get () returns the static value

14. Void
Supertype: Object

This type does not define any properties.

This type does not define any operations.

15. xtend::AdviceContext
Supertype: Object

Table 2.17. Properties

Type Name Description

List paramTypes

String name

List paramNames

List paramValues

Table 2.18. Operations

Return type Name Description

Object proceed (List)

Object proceed ()

16. xpand2::Definition
Supertype: Object

Table 2.19. Properties

Type Name Description

List paramTypes

String name

List paramNames

xpand2::Type targetType

Table 2.20. Operations

Return type Name Description

Void proceed ()

String toString ()

Void proceed (Object, List)

17. xpand2::Iterator
Supertype: Object

Built-in types API documentation

39

Table 2.21. Properties

Type Name Description

Boolean lastIteration

Boolean firstIteration

Integer elements

Integer counter0

Integer counter1

This type does not define any operations.

40

Chapter 3. XSD Tutorial
This tutorial shows how XML and XML Schemas Definitions (XSD) can be used to generate software. It illustrates
how XML files are treated as models, XSDs as meta models and how this integrates with oAW. This tutorial is
an introduction, for in-depth details see Chapter 4, XSD Adapter.

1. Setup
XSD support for oAW comes with oAW 4.3.1 or later. Make sure the following plugins are installed as well:

• XSD - XML Schema Definition Runtime (http://www.eclipse.org/xsd/, available via Ganymede Update Site)

• Web Tools Platform (WTP) (WTP is not required to use oAW XSD support, but helpful, as its provides a
nice XML Schema editor and a schema-aware XML editor. (http://www.eclipse.org/webtools/ , available via
Ganymede Update Site)

2. Overview
This tutorial explains how you can do code generation with Xtend and Xpand, using XML Schema Definitions as
meta models and XML files as models. To keep things easy, the introduced example is a minimalistic one. A text
file is generated from contents specified in XML. The general concept of models, meta models and why and when
code generation is useful, is not explained. At the end, a deeper view under the hood is taken to understand how
XML Schemas are transformed to EMF Ecore models, and which flexibilities/restrictions this approach provides.

All source files listed within this tutorial are also available as an example project wich can
be imported into the Eclipse workspace by running "File" / "New" / "Example..." / "Xpand/
Xtend Examples using an XSD Meta Model" / "M2T custom XML to Text via Xpand (minimal
Example)". This will create the project org.eclipse.xpand.examples.xsd.m2t.minimal
project in your workspace. This minimal example is based on "M2T custom XML to
Java via Xpand" (org.eclipse.xpand.examples.xsd.m2t.xml2javawizard) which is more
comprehensive and recommended for further reading.

To generate code from XML files with oAW, at least files of the following four types are needed:

• Meta Model (metamodel.xsd)

• Model (model.xml)

• oAW Xpand Template (template.xpt)

• oAW Workflow (workflow.oaw)

Figure 3.1. Minimalistic oAW XSD Project

3. Step 1: Create a Project
To create a Project, create an ordinary Xtend/Xpand-Project. This is done in Eclipse by changing to the Xtend/
Xpand perspective and clicking on "File" / "New" / "Xtend/Xpand Project". After entering a name for the project
it is created.

After the project is created, support for XSD meta models needs to be activated. Click with your right mouse
button on the project and open the properties window. Then go to the "Xpand/Xtend" page, "enable project specific
settings" and activate the "XSD Metamodels" checkbox. There is no need to leave support for any other meta
models activated, except you are sure that you want to use one of them, too. Figure 3.2, “Activate XSD Meta
Model Support for Project” shows how the configuration is supposed to look like.

Figure 3.2. Activate XSD Meta Model Support for Project

Then, org.eclipse.xtend.typesystem.xsd needs to be added to the project's dependencies. To do
so open the file META-INF/MANIFEST.MF from your project and navigate to the "Dependencies"-tab.

http://www.eclipse.org/xsd/
http://www.eclipse.org/webtools/

XSD Tutorial

41

org.eclipse.xtend.typesystem.xsd needs to be added to the list of "Required Plug-ins", as it is shown
in Figure 3.3, “Required Dependencies for Project” .

Figure 3.3. Required Dependencies for Project

4. Step 2: Define a Meta Model using XML Schema
In case you are not going to use an existing XML Schema Definition, you can create a new a new one like described
below. These steps make use of the Eclipse Web Tools Platform (WTP) to have fancy editors.

In Eclipse, click on "File", "New", "Other..." and choose "XML Schema" from category "XML". Select the project's
"src" folder and specify a filename. Clicking on "finish" creates an empty XSD file. It is important that the XSD
file is located somewhere within the project's classpath.

This XML Schema consists of two complex data types, which contain some elements and attributes. "complex"
in the XSD terminology means that as opposed to simple data types that they can actually have sub-elements and/
or attributes. This example is too minimalistic to do anything useful.

The complex Type Wizard contains the elements startpage , name , welcometext , and choicepage .
Except for choicepage all elements have to contain strings, whereas the string of startpage must be a valid
id of any ChoicePage . The complex type ChoicePage just contains an id and a name . For oAW it does
not make any difference if something is modeled as an XML-attribute or XML-element. Just the datafield's type
defines how oAW treats the value.

To get an overview how schemas can be used by the oAW XSD Adapter, see Section 5, “How to declare XML
Schemas”

Internally, the oAW XSD Adapter transforms the XSD model to an Ecore model which oAW can use like any other
Ecore model. For more information about that, see Section 4, “Behind the scenes: Transforming XSD to Ecore”

Figure 3.4. WTP Schema Editor

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/wizard"
 xmlns:tns="http://www.example.org/wizard"
 elementFormDefault="qualified">

 <complexType name="Wizard">
 <sequence>
 <element name="startpage" type="IDREF" />
 <element name="name" type="string" />
 <element name="welcometext" type="string" />
 <element name="choicepage" type="tns:ChoicePage" />
 </sequence>
 </complexType>

 <complexType name="ChoicePage">
 <sequence>
 <element name="title" type="string" />
 </sequence>
 <attribute name="id" type="ID" />
 </complexType>

 <element name="wizard" type="tns:Wizard" />
</schema>

5. Step 3: Create a Model using XML
As the title says, data in XML-Format will be the model. And as a model has to be valid according to a meta
model, the XML files must be valid according to the XSD.

In case you are not going to use an existing XML file, you can create a new one like described below. These steps
require the Eclipse Web Tools Platform (WTP) to be installed.

XSD Tutorial

42

In Eclipse, click on "File", "New", "Other..." and choose "XML" from category "XML". After specifying a filename
within folder "src" choose "create XML file from an XML Schema" and select you XML Schema Definition file.
Telling Eclipse which schema to use has three advantages: Eclipse validates XML files, there is meta model aware
code completion while editing and Eclipse creates a xsi:schemaLocation-attribute which tells anyone who reads
the XML file where the schema file is located. This tutorial does not use the xsi:schemaLocation-attribute and
introduces the schema file in the oAW workflow instead. For all possible ways see Section 5, “How to declare
XML Schemas” . It is important that the XML file is located somewhere within the project's classpath.

<?xml version="1.0" encoding="UTF-8"?>
<wizard xmlns="http://www.example.org/wizard">
 <startpage>start</startpage>
 <name>My Example Setup</name>
 <welcometext>Welcome to this little demo application.</welcometext>
 <choicepage id="start">
 <title>Wizard Page One</title>
 </choicepage>
</wizard>

6. Step 4: Create a Template using Xpand
Create an ordinary oAW Xpand file: Being in the Xpand/Xtend perspective, go to "File", "New", "xPand template".
The Xpand language itself is explained by several other oAW documents. Having XSD meta model support
activated like described in Section 3, “Step 1: Create a Project” , oAW scans and watches all it's projects for
suitable meta models. Based on what is found, the Xpand editor provides meta model aware code completion.

This example imports "metamodel" at the beginning, which refers to a file called metamodel.xsd that
you have created within the project's classpath in Section 4, “Step 2: Define a Meta Model using XML
Schema” . The define-block can be understood as a function named "Root" which takes one object of type
metamodel::Wizard as a parameter. This is the meta model's type for the XML's root object. The file-block
creates a file named wizard.txt and writes the text that is surrounded by the file-block into the file. name
, welcometext and choicepage.title are elements or attributes defined in the XSD meta model. Their
values are stored within the XML file and this templates inserts them into the generated (wizard.txt) file.

«IMPORT metamodel»

«DEFINE Root FOR metamodel::Wizard»
«FILE "wizard.txt"»
Name: «name»
Welcometext: «welcometext»
First Page Title: «choicepage.title»
«ENDFILE»
«ENDDEFINE»

7. Step 5: Create a Workflow
The workflow ties together model, meta model and templates and defines the process of how to generate code.

To create a new workflow file, switch to the Xpand/Xtend perspective, click on "File", "New" and "Workflow
file". After specifying a folder and a filename an empty workflow is created.

The minimalistic approach consists of two steps:

1. Read the Model: This is done by org.eclipse.xtend.typesystem.xsd.XMLReader .
It needs exactly one uri element which defines the XML file. A further nested element of type
org.eclipse.xtend.typesystem.xsd.XSDMetaModel tells the XMLReader which metamodel
to use. XSDMetaModel can contain multiple schemaFile elements. How the schemas are used for the
XML file is determined based on the declared namespaces. modelSlot defines a location where the model is
stored internally, this is like a variable name which becomes important if you want to handle multiple models
within the same workflow.

2. Generate Code: This part just does the regular code generation using Xpand and is not specific to the oAW
XSD Adapter at all. The generator org.eclipse.xpand2.Generator needs to know which meta
model to use. This example references the previously declared one. The expand element tells the generator to
call the definition named Root within file template.xpt using the contents of slot model as parameter.
Element outlet defines where to store the generates files.

XSD Tutorial

43

<workflow>
 <component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel id="mm"
 class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
 </metaModel>
 </component>
 <component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm" />
 <expand value="template::Root FOR model" />
 <outlet path="src-gen" />
 </component>
</workflow>

8. Step 6: Execute Workflow aka Generate Code
Before you actually execute the workflow, or in case of errors, you can use Figure 3.5, “Files of this Tutorial”
to double check your files.

Figure 3.5. Files of this Tutorial

To execute the workflow, click with your right mouse button on the workflow file and choose "Run As", "oAW
Workflow", as it is shown in Section 8, “Step 6: Execute Workflow aka Generate Code” .

Figure 3.6. Execute Workflow

When executing the workflow, this output is supposed to appear in Eclipse's Console View. If that View does not
pop up automatically, you can reach it via "Window", "Show View", "Console".

May 25, 2009 3:09:35 PM org.eclipse.emf.mwe.core.WorkflowRunner prepare
INFO: running workflow: /Users/meysholdt/Eclipse/workspace-3.5-M7/org.eclipse.xpand.examples.xsd.m2t.minimal/src/xsd/m2t/minimal/minimal.oaw
May 25, 2009 3:09:35 PM org.eclipse.emf.mwe.core.WorkflowRunner prepare
INFO:
May 25, 2009 3:09:36 PM org.eclipse.xtend.typesystem.xsd.XSDMetaModel addSchemaFile
INFO: Loading XSDSchema from 'xsd/m2t/minimal/metamodel.xsd'
May 25, 2009 3:09:37 PM org.eclipse.xtend.typesystem.xsd.builder.OawXSDEcoreBuilder initEPackage
INFO: Creating EPackage 'metamodel' from XSDSchema 'file:/.../bin/xsd/m2t/minimal/metamodel.xsd' (http://www.example.org/wizard)
May 25, 2009 3:09:37 PM org.eclipse.emf.mwe.core.container.CompositeComponent internalInvoke
INFO: XMLReader: Loading XML file xsd/m2t/minimal/model.xml
May 25, 2009 3:09:37 PM org.eclipse.emf.mwe.core.container.CompositeComponent internalInvoke
INFO: Generator: generating 'xsd::m2t::minimal::template::Root FOR model' => src-gen
May 25, 2009 3:09:38 PM org.eclipse.xpand2.Generator invokeInternal2
INFO: Written 1 files to outlet [default](src-gen)
May 25, 2009 3:09:38 PM org.eclipse.emf.mwe.core.WorkflowRunner executeWorkflow
INFO: workflow completed in 657ms!

After code generation, there is a file called wizard.txt within the src-gen folder. Its contents is supposed
to look like shown below. You should be able to recognize the structure you've defined within the template file
and the contents from your XML model.

Name: My Example Setup
Welcometext: Welcome to this little demo application.
First Page Title: Wizard Page One

44

Chapter 4. XSD Adapter
The XSD Adapter allows oAW to read/write XML files as models and to use XML Schemas (XSDs) as meta
models. This reference provides in-depth details, for a quick and pragmatic introduction see Chapter 3, XSD
Tutorial .

1. Prerequisites
Please take a look at Section 1, “Setup”.

2. Overview
The XSD Adapter performs two major tasks:

1. It converts XML Schemas (XSDs) to Ecore models in a transparent manner, so that the Ecore models are hidden
from the user. This is done in the workflow as well as in the IDE (to allow XSD-aware code completion for
Xtend/Xpand/Check). For details about the mapping see Section 4, “Behind the scenes: Transforming XSD to
Ecore” . For details about the workflow integration see Section 3, “Workflow Components”

2. It extends the EmfMetaModel with concepts that are needed for XSDs. Theses are, for example, support for
feature maps (needed to handle comments, nested text, CDATA and processing instructions), QNames, EMaps
and composed Simpletypes.

3. Workflow Components
The XSD Adapter provides the following workflow components:

3.1. XSDMetaModel
The XSDMetaModel loads the specified XSD, transforms them to Ecore models and makes them available for the
other oAW components. If XSDs include/import other XSDs or if XML files reference XSDs via schemaLocation,
theses XSDs are also loaded (details: Section 5, “How to declare XML Schemas”). The most common scenario
is to declare the XSDMetaModel within an XMLReader:

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel id="mm" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
 <registerPackagesGlobally value="true" />
 </metaModel>
</component>

Another option is to specify an XSDMetaModel independently of other components as a bean:

<bean id="mymetamodel" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
</bean>
<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel idRef="mymetamodel" />
</component>

Attention: It can lead to errors when XSDs are loaded multiple times, which can only happen when using multiple
XSDMetaModels within one workflow. The safe way to go is to declare just one XSDMetaModel per workflow
and reference it from all components that need it.

Properties:

• schemaFile: optional, allowed multiple times: Specifies an XSD file which is being loaded. The path can be a
complete URI, or relative to the project root or classpath.

• registerPackagesGlobally: optional, default "false": If true, generated EPackages are registered to
org.eclipse.emf.ecore.EPackage.Registry.INSTANCE, EMF's global package registry.
Warning: when running workflows from your own java code, make sure to remove the generated packages from
the registry before the next run!

XSD Adapter

45

3.2. XMLReader
The XMLReader reads one XML file which is valid according to the XSDs loaded by the XSDMetaModel. The
XML file is loaded as a model and stored in the specified slot. Example:

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel idRef="mymetamodel" />
</component>

Properties:

• slot: required: The name of the slot which in which the loaded model is stored. Other workflow components
can access the model via referring to this slot.

• uri: required: The file name of the XML file which should be read. Absolute URIs, and pathnames relative to
the project root or to the classpath are valid.

• metaModel: optional: Specifies the XSDMetaModel (see Section 3.1, “ XSDMetaModel ”) for the
XMLReader. In case no XSDMetaModel is specified, an XSDMetaModel with default configuration is
instantiated implicitly. It is important to pay attention that all needed XSDs can be found while the loading
process: Section 5, “How to declare XML Schemas”.

• useDocumentRoot: optional, default "false": Dealing with XML files as models, most people think of the
XML's root element as the model's root object. This is the default used by the XMLReader. But the XML's
root element actually has a parent, the so-called DocumentRoot. Additionally the DocumentRoot contains
comments/processing instructions and CDATA section which appears before or after the XML's root element,
and, most notably, the DocumentRoot contains information about the used namespaces. If useDocumentRoot
is set to true, the XMLReader stores the DocumentRoot-Object instead the XML's root element's object to the
specified slot.

• option: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed
on to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in
interface org.eclipse.emf.ecore.xmi.XMLResource . Additionally, the XMLReader supports
these options:

• DEFAULT_NAMESPACE: Specifies a default namespace, in case the XML file does not declare one:

<option key="DEFAULT_NAMESPACE" val="http://www.dlese.org/Metadata/opml" />

• NAMESPACE_MAP: Specifies a mapping for namespaces, which is applied when loading XML files.

<option key="NAMESPACE_MAP">
 <val class="org.eclipse.xtend.typesystem.xsd.lib.MapBean">
 <mapping from="http://www.eclipse.org/modeling/xpand/example/model/wrong"
 to="http://www.eclipse.org/modeling/xpand/example/model/loadcurve" />
 </val>
</option>

3.3. XMLWriter
The XMLWriter writes the model stored in a slot to an XML file. If the slot contains a collection of models,
each one is written to a separate file. The model(s) must have been instantiated using an XSD-based meta model.
Example:

<component class="org.eclipse.xtend.typesystem.xsd.XMLWriter">
 <metaModel idRef="svgmm" />
 <modelSlot value="svgmodel" />
 <uri value="src-gen/mycurve.svg" />
</component>

Properties:

• slot: required: The name of the slot which holds the model or the collection of models which shall be serialized
to XML.

• metaModel: required: The instance of XSDMetaModel, which holds the XSD that the supplied models are
based on. Also see Section 3.1, “ XSDMetaModel ”

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html

XSD Adapter

46

• uri: required if no uriExpression is specified: The file name of the XML file which should be written. Absolute
URIs are valid. Use relative path names on your own risk.

• uriExpression: required if no uri is specified: In the scenario where multiple XML files are written, this provides
a mechanism to determine the file name for each of them. The oAW-expression specified in expression is
evaluated for each file and has to return a file name. The model that is going to be written is accessible in the
expression via a variable that has the name specified in varName. Example:

<uriExpression varName="docroot" expression="'src-gen/'+ecore2xsd::getFileName(docroot)" />

• option: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on to
the EMF's XMLResource in the writing process. Valid options are documented via JavaDoc in interface
org.eclipse.emf.ecore.xmi.XMLResource .

3.4. XMLBeautifier
The XMLBeautifier uses EMF to load the XML file, formats the mixed content (elements and text contained
by the same element) and writes the file back to disk applying a nice indentation for the elements. The
XMLBeautifier is not intended to be used in combination with the XMLWriter, since the XMLWriter
cares about indentation by itself. Instead, use it for "manually" constructed XML files using Xpand. Since the
frameworks for loading/storing XML always load the whole file into a complex data structure in memory, this
approach does not scale well for huge XML files. Example:

<component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm" />
 <expand value="${src-pkg}::${file}::Root FOR '${out}'" />
 <outlet path="${src-gen-dir}" />
 <beautifier class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">
 <maxLineWidth value="60" />
 <formatComments value="true" />
 <fileExtensions value=".xml, .html" />
 </beautifier>
</component>

Properties:

• maxLineWidth: optional: Specifies the number of character after which a linewrap should be performed.

• formatComments: optional, default true: Specifies if formatting should also be applied to comments.

• fileExtensions: optional, default ".xml, .xsl, .xsd, .wsdd, .wsdl": Specifies a filter for which files formatting
should be applied. Only files that match one of the specified file extensions are processed.

• loadOption: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on
to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in interface
org.eclipse.emf.ecore.xmi.XMLResource .

• saveOption: optional, can be specified multiple times: Same as loadOption, except for the difference that these
options are applied while the writing process. Example:

<saveOption key="XML_VERSION" val="1.1" />
<saveOption key="ENCODING" val="ASCII" />

4. Behind the scenes: Transforming XSD to Ecore
In the code generation process an XML Schema is transformed to an EMF Ecore model, which is then
used as a meta model by EMF. XSD complex data types are mapped to EClasses, XSD simple data types
are mapped to EMF data types defined in org.eclipse.emf.ecore.xml.type.XMLTypePackage
and org.eclipse.xtend.typesystem.xsd.XSDMetaModel maps them to oAW data types. The
document XML Schema to Ecore Mapping explains the mapping's details. http://www.eclipse.org/modeling/emf/
docs/overviews/XMLSchemaToEcoreMapping.pdf

5. How to declare XML Schemas
There are three different ways to declare your XSDs. It does not matter which way you choose, or how you combine
them, as long as the XSD Adapter can find all needed schemas.

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf

XSD Adapter

47

1. Within the Workflow: org.eclipse.xtend.typesystem.xsd.XSDMetaModel can have any
amount of schemaFile elements.

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="${file}" />
 <metaModel id="mm" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="model/loadcurve.xsd" />
 <schemaFile value="model/device.xsd" />
 </metaModel>
</component>

2. Within the XML file: XML files can contain schemaLocation attributes which associate the schema's
namespace with the schema's filename. If the schema is created using WTP like described in Section 5, “Step
3: Create a Model using XML” , the schemaLocation attribute is created automatically.

<?xml version="1.0" encoding="UTF-8"?>
<device:Device
 xmlns:device="http://www.eclipse.org/modeling/xpand/example/model/device"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/modeling/xpand/example/model/device device.xsd">
 <device:Name>MyLaptop</device:Name>
</device:Device>

3. Within an XSD: If one schema imports another, the import element can have a schemaLocation attribute,
too.

<?xml version="1.0" encoding="UTF-8"?>
<schema
 targetNamespace="http://www.eclipse.org/modeling/xpand/example/model/device"
 elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.eclipse.org/modeling/xpand/example/model/device"
 xmlns:lc="http://www.eclipse.org/modeling/xpand/example/model/loadcurve"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore">

 <import
 namespace="http://www.eclipse.org/modeling/xpand/example/model/loadcurve"
 schemaLocation="loadcurve.xsd">
 </import>

 <complexType name="Device">
 <sequence>
 <element name="Name" type="string" />
 <element name="LoadCurve" type="lc:LoadCurve" />
 </sequence>
 </complexType>

 <element name="Device" type="tns:Device"></element>
</schema>

	Xpand Documentation
	Table of Contents
	Chapter 1. Xpand / Xtend / Check Reference
	1. Introduction
	2. Type System
	2.1. Types
	2.1.1. Type Names
	2.1.2. Collection Type Names
	2.1.3. Features

	2.2. Built-In Types
	2.2.1. Object
	2.2.2. Void
	2.2.3. Simple types (Data types)
	2.2.4. Collection types
	2.2.5. Type system types

	2.3. Metamodel Implementations (also known as Meta-Metamodels)
	2.3.1. Example JavaMetaModel
	2.3.2. Eclipse IDE MetaModelContributors
	2.3.3. Configuring Metamodel implementations with the workflow

	2.4. Using different Metamodel implementations (also known as Meta-Metamodels)

	3. Expressions
	3.1. Literals and special operators for built-in types
	3.1.1. Object
	3.1.2. Void
	3.1.3. Type literals
	3.1.4. StaticProperty literals
	3.1.5. String
	3.1.6. Boolean
	3.1.7. Integer and Real
	3.1.8. Collections

	3.2. Special Collection operations
	3.2.1. select
	3.2.2. typeSelect
	3.2.3. reject
	3.2.4. collect
	3.2.5. Shorthand for collect (and more than that)
	3.2.6. forAll
	3.2.7. exists
	3.2.8. sortBy

	3.3. if expression
	3.4. switch expression
	3.5. Chain expression
	3.6. create expression
	3.7. let expression
	3.8. 'GLOBALVAR' expression
	3.8.1. Using GLOBALVARS to configure workflows

	3.9. Multi methods (multiple dispatch)
	3.10. Casting

	4. Check
	4.1. Guard Conditions

	5. Xtend
	5.1. Extend files
	5.2. Comments
	5.3. Import Statements
	5.4. Extension Import Statement
	5.4.1. Reexporting Extensions

	5.5. Extensions
	5.5.1. Extension Invocation
	5.5.2. Type Inference
	5.5.3. Recursion
	5.5.4. Cached Extensions
	5.5.5. Private Extensions

	5.6. Java Extensions
	5.7. Create Extensions (Model Transformation)
	5.8. Calling Extensions From Java
	5.9. WorkflowComponent
	5.10. Aspect-Oriented Programming in Xtend (since 4.2)
	5.10.1. Join Point and Point Cut Syntax
	5.10.1.1. Extensions Name
	5.10.1.2. Parameter Types
	5.10.1.3. Proceeding

	5.10.2. Workflow configuration
	5.10.3. Model-to-Model transformation with Xtend
	5.10.4. Workflow
	5.10.5. The transformation

	6. Xpand2
	6.1. Template files and encoding
	6.2. General structure of template files
	6.3. Statements of the Xpand language
	6.3.1. IMPORT
	6.3.2. EXTENSION
	6.3.3. DEFINE
	6.3.4. FILE
	6.3.5. EXPAND
	6.3.5.1. Names

	6.3.6. FOR vs. FOREACH
	6.3.6.1. Specifying a Separator

	6.3.7. FOREACH
	6.3.8. IF
	6.3.9. PROTECT
	6.3.10. LET
	6.3.11. ERROR
	6.3.12. Comments
	6.3.13. Expression Statement
	6.3.14. Controlling generation of whitespace

	6.4. Aspect-Oriented Programming in Xpand
	6.4.1. Join Point and Point Cut Syntax
	6.4.1.1. Definition Name
	6.4.1.2. Parameter Types
	6.4.1.3. Target Type

	6.4.2. Proceeding

	6.5. Generator Workflow Component
	6.5.1. Main configuration
	6.5.2. Encoding
	6.5.3. Metamodel
	6.5.4. Output configuration
	6.5.5. Beautifier
	6.5.5.1. JavaBeautifier
	6.5.5.2. XmlBeautifier

	6.5.6. Protected Region Configuration
	6.5.7. VetoStrategy

	6.6. Example for using Aspect-Oriented Programming in Xpand
	6.7. The Problem
	6.8. Example
	6.8.1. Templates
	6.8.2. Workflow File
	6.8.3. Running the new generator

	6.9. More Aspect Orientation

	Chapter 2. Built-in types API documentation
	1. Object
	2. String
	3. Integer
	4. Boolean
	5. Real
	6. Collection
	7. List
	8. Set
	9. xpand2::Type
	10. xpand2::Feature
	11. xpand2::Property
	12. xpand2::Operation
	13. xpand2::StaticProperty
	14. Void
	15. xtend::AdviceContext
	16. xpand2::Definition
	17. xpand2::Iterator

	Chapter 3. XSD Tutorial
	1. Setup
	2. Overview
	3. Step 1: Create a Project
	4. Step 2: Define a Meta Model using XML Schema
	5. Step 3: Create a Model using XML
	6. Step 4: Create a Template using Xpand
	7. Step 5: Create a Workflow
	8. Step 6: Execute Workflow aka Generate Code

	Chapter 4. XSD Adapter
	1. Prerequisites
	2. Overview
	3. Workflow Components
	3.1. XSDMetaModel
	3.2. XMLReader
	3.3. XMLWriter
	3.4. XMLBeautifier

	4. Behind the scenes: Transforming XSD to Ecore
	5. How to declare XML Schemas

