Xpand Documentation

Xpand Documentation

1. Xpand / Xtend / Check REFENENCEuuiiiii e 1

O [gL oo [0 1o o RSP TP SPPPTTRPPN 1
A Y oL Y [1 PR PP P 1
2N T Y/ o= S PP PPT PP 1

2.2, BUIT-IN TS ittt ettt et 2

2.3. Metamodel Implementations (also known as Meta-Metamodels)coeeeeieiiiiiiiiineiinen. 3

2.4. Using different Metamodel implementations (also known as Meta-Metamodels) 4

S EXPIESSIONS ... ettt e e 4
3.1. Literals and special operators for built-in tyPeSccouvuiiiiiiiiiiii e 5

3.2. Special ColleCtion OPEIALIONSuiieiiii ettt e e 6

3.3 T BXPIESSION .ottt e e e e e e 8

34 SWI T CH BXPIESSION .eeieiiiti et 8

3.5, ChaiN EXPIESSION ...ceevi ittt ettt e et e e et e et e e 9

3.6, CT @AL € EXPIESSION .vuieiiiti ettt et e ettt e et e e et et e et e e et e e e e e e e 9

I = B (o = o o E PP UPPP T 9

3.8. 'GLOBALVAR' EXPIESSIONeiiitieeeeiie ettt e ettt e ettt e et e et e e e e et e e eaaa s 9

3.9. Multi methods (Multiple diSPAECN)coeereiieiiiii e 10

N L 7 = 1o To PP PP PPPPTI 10

R 11 1= ol TSP 10
A1, GUAIT CONDITIONS ...eeeettee ettt ettt ettt e e e et e et et r e e e et e e e e ebbaeeeennnaeeees 11

T 1= 2o PSP SO 11
B.L EXIENA FIIES .o 11

I 0] 11101 0| S PP 12

5.3, IMPOIT SEBEEMENTS ...oeveieeiie ittt e e e eeens 12

5.4. EXteNsion IMPOrt SEAEEMENTiiiiiteeiii ettt e e 12

B, EXLENSIONS ...ttt ettt ettt ettt ettt 12

5.6. JAVA EXEENSIONSeeviieiiiii ettt 14

5.7. Create Extensions (Model Transformation)oceeuuueeeiiineeiiiiee e 14

5.8. Calling EXtENSIONS FrOM JAVAeiiiiiieiiiiii ettt ettt e 16

5.9. WOrKfIOWCOMPONENT ... ettt ettt e et e ettt e e e et eeeeba e eeees 17

5.10. Aspect-Oriented Programming in Xtend (SINCE 4.2)ccouuunieiiiiiiieeiiii e 17

O {021 o 1 PP PP PUPPPTI 19
6.1. Template files and ENCOUINGccvvruiiiiii et e e e eees 19

6.2. General structure of template filESuuiiiii 20

6.3. Statements of the Xpand [anQUBOEoceeeuiiiiiiiie e 20

6.4. Aspect-Oriented Programming in XPandooeeeuiiiieiiiiiieiiii e 25

6.5. Generator WOrkflow COMPONENEcouuuueiiiiiieieeii ettt e e e enees 26

6.6. Example for using Aspect-Oriented Programming in Xpandccccoeveeeiiiiieeiiiinnneennn. 29

B.7. The ProbIEM ... e 29

B.8. EXBIMPIE ..ottt 29

6.9. MOre ASPECE OFENEALIONccvvrieeieit ettt e et e e ene s 31

2. Built-in types APl dOCUMENTALIONuuiiiiiti ettt e e e e e s 32
T © o] =T o3 PP PUPPPTPRPPIN 32
S o T 1o E TSP UPPPPINN 32
G I 1 =T = PP PPPTPRN 33
4. BOOI BAN ettt e 34
BRI e 34
S o] I =T ol B o] o PP TUPPPTTRSPPPTN 35
0 = RSO PPTTTRTRS 36
S TP UPPPTTRU PP 36
g =Yoo i V] o = SO UUPPP TP TUPPPTRUPPPPN 36
10, XPANAZ: I FEAL UF © .ottt et ettt e e et e e et e et e e e e 37
g o T Yoo A o o] o =T g Y P T PO PTTRPSPPPTTRN 37
12, XPANA2: 1 QDI BT OGN oottt ettt ettt e et e e e e 37
13, XPANd2: 1 St At | CPI O PO LY ettt 37
Yo Y o LSOO TUPPPTRTPPPPN 38
15, XEend: 1 ADVI CECONT BXT ..oiiiiiieiiiii ettt et et e et e e e e e e aeanns 38
16. XPaNd2: 1 Def i NI 11 ON oot 38

Xpand Documentation

17 XPANAZ: 1 T L BF AL OF ittt ettt et e et e e e b 38
6 D I V| o A T PP PRSPPI 40
S U o USRI PR TRPPTPIN 40

2. OVEIVIBIN .ottt e e ettt e e e e 40

3. SHEP 1 Creale @ PrOJECT . .covuieieiii ettt ettt 40

4. Step 2: Define a Meta Model using XML SChemaoooiiiiiiiiiiicc e 41

5. Step 3: Create a Model USING XML ..oouniiiiii et 41

6. Step 4: Create a Template USING XPANcoviriieiiiii et 42

7. Step 5: Create @ WOIKFIOWiiieie et 42

8. Step 6: Execute WOrkflow aka Generate COOEuuveierinieiiii e 43

R QS DI o I o] (= S PP 44
L PrErEOUISITES ...ttt ettt ettt ettt et e e s 44

2. OVEIVIBINV ..ttt oottt e e ettt e e e 44

3. WOrKFIOW COMPONENESueeieiiie ettt ettt et e et eeena e 44

3.1 XSDIVEL @MOAEI e 44

K 1Y I =T T = ST P PP RUPPPTTRSPPIN 45

R A (1Y T T B = SO UOPPTTRUPPPTTRSPPIN 45

34 XIVLBEAUL T i B e et et 46

4. Behind the scenes: Transforming XSD {0 ECOIeccouuuiiiiiiiiiiiiii e 46

5. HOow t0 declare XIML SCREMESiiiiiiiiiii et 46

Chapter 1. Xpand / Xtend / Check
Reference

1. Introduction

The Xpand generator framework provides textual languages, that are useful in different contexts in the MDSD
process (e.g. checks, extensions, code generation, model transformation). Each language (Check, Xtend, and
Xpand) is built up on a common expression language and type system. Therefore, they can operate on the same
models, metamodels and meta-metamodels and you do not need to learn the syntax again and again, because it
is always the same.

The expressions framework provides a uniform abstraction layer over different meta-meta-models (e.g. EMF
Ecore, Eclipse UML, JavaBeans, XML Schema etc.). Additionaly, it offers a powerful, staticaly typed
expressions language, which is used in the various textual languages.

2. Type System

The abstraction layer on API basis is called a type system. It provides access to built-in types and different
registered metamodel implementations. Theseregistered metamodel implementations offer accessto thetypesthey
provide. Thefirst part of this documentation describes the type system. The expression sub-language is described
afterwardsin the second part of this documentation. This differentiation is necessary because the type system and
the expression language aretwo different things. Thetype systemisakind of reflection layer, that can be extended
with metamodel implementations. The expression language defines a concrete syntax for executable expressions,
using the type system.

The Java API described here is located in the org.eclipse.xpand.type package and is a part of the subproject
COre.expressions.

2.1. Types

Every aobject (e.g. model elements, values, etc.) has atype. A type contains properties and operations. In addition
it might inherit from other types (multiple inheritance).

2.1.1. Type Names

Types have asimple name (e.g. St ri ng) and an optional namespace used to distingish between two types with
the same name (e.g. ny: : met anodel). The delimiter for name space fragmentsisadoublecolon™: : . A fully
qualified name looks like this:

ny::fully::qualified:: MetaType

The namespace and name used by a specific type is defined by the corresponding Met aMbdel implementation.
TheEnf Met aMbdel , for instance, mapsEPackages tonamespaceand ECl assi fi er s tonames. Therefore,
the name of the Ecore element ECl assi fi er iscaled:

ecore::EC assifier

If you do not want to use namespaces (for whatever reason), you can always implement your own metamodel and
map the names accordingly.

2.1.2. Collection Type Names

The built-in type system also contains the following collection types: Col | ecti on, Li st and Set . Because
the expressions language is statically type checked and we do not like casts and Cl assCast Except i ons, we
introduced the concept of parameterized types. The type system does not support full featured generics, because
we do not need them.

The syntax is:

Col |l ection[nmy:: Type]
Li st[ny:: Type]

Xpand / Xtend / Check Reference

Set [ny:: Type]

2.1.3. Features

Each type offers features. The type (resp. the metamodel) is responsible for mapping the features. There are three
different kinds of features:

» Properties
* Operations
* Static properties

Properties are straight forward: They have a name and a type. They can be invoked on instances of the
corresponding type. The same is true for Operations. But in contrast to properties, they can have parameters.
Satic properties are the equivalent to enums or constants. They must be invoked statically and they do not have
parameters.

2.2. Built-In Types

As mentioned before, the expressions framework has several built-in types that define operations and properties.
In the following, we will give arough overview of the types and their features. We will not document all of the
operations here, because the built-in types will evolve over time and we want to derive the documentation from
theimplementation (model-driven, of course). For acomplete reference, consult the generated APl documentation
(http://www.openarchitectureware.org/api/built-ing/).

2.2.1. Obj ect

hj ect defines acouple of basic operations, likeequal s() . Every type hasto extend Cbj ect .

2.2.2.Voi d

The Voi d type can be specified as the return type for operations, although it is not recommended, because
whenever possible expressions should be free of side effects whenever possible.

2.2.3. Simple types (Data types)

The type system doesn't have a concept data type. Data types are just types. Asin OCL, we support the following
types. St ri ng, Bool ean, | nt eger, Real .

» String: Arichand convenient St ri ng library is especially important for code generation. The type system
supportsthe '+' operator for concatenation, theusual j ava. | ang. St ri ng operations(l engt h() , etc.) and
some special operations(liket oFi r st Upper () ,t oFi r st Lower () , regular expressions, etc. often needed
in code generation templates).

» Bool ean: Bool ean offersthe usua operators (Java syntax): &&, ||, !, etc.

* Integer and Real : I nteger and Real offer the usua compare operators (<,>,<=>=) and simple
arithmetics (+,-,*,/). Notethat | nt eger extends Real !

2.2.4. Collection types

Thetype system hasthree different Collectiontypes. Col | ect i on isthebasetype, it provides several operations
known from j ava. util . Col | ecti on. The other two types (Li st, Set) correspond to their java.util
equivalents, too.

2.2.5. Type system types

The type system describes itself, hence, there are types for the different concepts. These types are needed for
reflective programming. To avoid confusion with metatypes with the same name (it is not unusua to have a
metatypecalled Oper at i on, forinstance) we have prefixed al of thetypeswith the namespacexpand. Wehave:

* Xxpand2:: Type

* xpand2:: Feature

e xpand2:: Property

e xpand2:: StaticProperty

http://www.openarchitectureware.org/api/built-ins/

Xpand / Xtend / Check Reference

* Xxpand2:: Operati on

2.3. Metamodel Implementations (also known as Meta-Metamodels)

By default, thetype system only knowsthe built-in types. In order to register your own metatypes(e.g. Enti ty or
St at e), you need to register a respective metamodel implementation with the type system. Within a metamodel
implementation the Xpand type system elements (Type, Property, Operation) are mapped to an arbitrary other
type system (Java reflections, Ecore or XML Schema).

2.3.1. Example JavaMetaModel

For instance, if you want to have the following JavaBean act as a metatype (i.e. your model contains instances
of the type):

public class Attribute {
private String nane;
private String type;
public String getName() ({
return nane;

}
public void setNane(String nanme) {
thi s. name = naneg;

public String getType() {
return type;

}
public void setType(String type) {
this.type = type;
}
}

You need to use the JavaMet aMbdel implementation which uses the ordinary Java reflection layer in order
to map access to the model.

So, if you have the following expression in e.g. Xpand:

nmyattr. name. t oFi r st Upper ()

and nyat t r isthe name of alocal variable pointing to an instance of At t ri but e. The Xpand type system
asks the metamodel implementations, if they 'know' a type for the instance of Attribute. If you have the
JavaMet aMbdel registered it will return an xpand2: : Type which maps to the underlying Java class. When
the typeisasked if it knows a property 'nane’, it will inspect the Java class using the Javareflection API.

The JavaMetaModel implementation shipped with Xpand can be configured with a strategy [GOF95-Pattern] in
order to control or change the mapping. For instance, the JavaBeansStrategy maps getter and setter methods to
simple properties, so we would use this strategy for the example above.

2.3.2. Eclipse IDE MetaModelContributors

You should know that for each Met anodel implementation you use at runtime, you need to have a so
called Met anodel Cont ri but or extension for the plugins to work with. If you just use one of the standard
metamodel implementations (EMF, UML2 or Java) you don't have to worry about it, since Xpand is shipped with
respective Metamodel Contributors (see the corresponding docs for details). If you need to implement your own
Met anodel Cont ri but or you should have alook at the Eclipse plug-in reference doc.

2.3.3. Configuring Metamodel implementations with the workflow
Y ou need to configure your Xpand language components with the respective metamodel implementations.
A possible configuration of the Xpand2 generator component looks like this:

<conponent cl ass="org. eclipse. xpand2. Generator">
<met aModel cl ass="org. eclipse.type. enf. Enf Met aModel ">
<met aMbdel Package val ue="nmny. gener at ed. Met aMbdel 1Package"/ >
</ met aModel >
<met aModel cl ass="org. eclipse.type. enf. Enf Met aModel ">
<met aModel Fi | e val ue="ny/j aval/ package/ net anodel 2. ecore"/ >
</ met aMbdel >

Xpand / Xtend / Check Reference

</ conponent >

Inthisexamplethe Enf Met aModel implementation isconfigured two times. This means that we want to use two
metamodels at the sametime, both based on EMF. The metaM odel Package property isaproperty that is specificto
theEnf Met aMbdel (locatedinthecor e. enf t ool s project). It pointsto the generated EPackages interface.
The second meta model is configured using the Ecore file. Y ou do no need to have a generated Ecore model for
Xpand in order to work. The Enf Met aMbdel works with dynamic EMF modelsjust as it works with generated
EMF models.

2.4. Using different Metamodel implementations (also known as Meta-
Metamodels)

With Xpad you can work on different kinds of Model representations at the same time in a transparent manner.
One can work with EMF models, XML DOM models, and simple JavaBeans in the same Xpand template. You
just need to configure the respective MetaModel implementations.

If you want to do so you need to know how the type lookup works. L et us assume that we have an EMF metamodel
and amodel based on some Java classes. Then the following would be a possible configuration:

<conponent class="org. eclipse.xpand2. Generator">
<met aModel class="org. eclipse.internal.xtend.type.inpl.java.JavaMetahodel"/>
<met aModel cl ass="org. eclipse.xtend.typesystem enf. Enf Met aMbdel ">
<met aModel Fi | e val ue="ny/j aval package/ met anodel . ecore"/>
</ et aMbdel >

</ conponent >

When the runtime needs to access a property of a given object, it asks the metamodels in the configured order.
Let us assume that our model element is an instance of the Javatypeor g. ecl i pse. enf . ecor e. EQbj ect
and it isadynamic instance of an EMF EClass My Ty pe.

We have three Metamodels:

1. Built-Ins (alwaysthe first one)

2. JavaMetaModel

3. EMFMetaModel - metamodel .ecore

Thefirst one will return the type Qbj ect (notj ava. | ang. Obj ect but Obj ect of Xpand). At this point the
type Obj ect best fitsthe request, so it will act as the desired type.

The second metamodel returns atype called or g: : ecl i pse: : enf:: ecore:: EObj ect The type system
will check if the returned type is a specialization of the current 'best-fit' type (Obj ect). It is, because
it extends Cbj ect (Every metatype has to extend Obj ect). At this time the type system assumes
org::eclipse::enf::ecore:: EOject tobethedesred type.

The third metamodel will return met anodel : : My Type which is the desired type. But unfortunately it doesn't
extend or g: : ecl i pse::enf::ecore:: EQhj ect asit has nothing to do with those Java types. Instead it
extendsent : : EQbj ect which extends Obj ect .

We need to swap the configuration of the two metamodels to get the desired type.

<conponent class="org. eclipse. xpand2. Generator">
<met aModel cl ass="org. eclipse. xtend. typesystem enf. Enf Met aMbdel " >
<met aModel Fi | e val ue="ny/j aval package/ net anodel . ecore"/ >
</ met aMobdel >
<met aModel cl ass="org. eclipse.internal.xtend.type.inpl.java.JavaMetahbdel "/>

</ conponent >

3. Expressions

The expression sub-language is a syntactical mixture of Java and OCL. This documentation provides a detailed
description of each available expression. Let us start with some simple examples.

Accessing a property:

Xpand / Xtend / Check Reference

myModel El enent . nane

Accessing an operation:
nmyModel El erent . doSt uff ()

simple arithmetic:
1+1%*2

boolean expressions (just an example:-)):

I("text'.startsWth('t') & ! false)

3.1. Literals and special operators for built-in types

There are severa literals for built-in types:

3.1.1. Obj ect

3.1.2.

3.1.3.

3.1.4.

3.1.5.

3.1.6.

There are naturally no literals for object, but we have two operators:
equals:

obj1 == obj2
not equals:

obj1l !'= obj2

Voi d
The only possible instance of Voi d isthenul | reference. Therefore, we have one literal:

nul

Type literals

Thelitera for typesisjust the name of the type (no '.class suffix, etc.). Example:
String // the type string
ny::special::Type // evaluates to the type 'ny::special::Type

StaticProperty literals
Theliteral for static properties (aka enum literals) is correlative to type literals:

ny: : Col or:: RED

String
There are two different literal syntaxes (with the same semantics):

‘a String literal
"a String literal" // both are okay

For Strings the expression sub-language supports the plus operator that is overloaded with concatenation:
‘my element '+ ele.name +' is really cool!

Note, that multi-line Strings are supported.

Bool ean

The boolean literals are:

true
fal se

Xpand / Xtend / Check Reference

Operators are:

true & false // AND
true || false // OR
I true /1 NOT

3.1.7. 1 nt eger and Real
The syntax for integer literalsis as expected:

/1 integer literals
3

57278

/1 real literals
3.0

0.75

Additionally, we have the common arithmetic operators:

3+ 4 // addition

4 - 5 /] subtraction
2* 6 [/ multiplication
3/ 64 // divide

/1 Unary minus operator
- 42

- 47.11

Furthermore, the well known compare operators are defined:
> 5 // greater than
<5 // snmaller than

23 /] greater equals than
12 // smaller equals than

3.1.8. Collections
Thereisalitera for lists:

{1,2,3,4} // alist with four integers

Thereisno other special concrete syntax for collections. If you need aset, you haveto call thet oSet () operation
onthelist literal:

{1,2,4,4}.toSet() // a set with 3(!) integers

3.2. Special Collection operations
Like OCL, the Xpand expression sub-language defines several specia operations on collections. However, those
operations are not members of the type system, therefore you cannot use them in a reflective manner.

3.2.1. sel ect

Sometimes, an expression yields alarge collection, but oneis only interested in a special subset of the collection.
The expression sub-language has special constructs to specify a selection out of a specific collection. These are
thesel ect andr ej ect operations. The select specifies a subset of acollection. A sel ect isan operation on
acollection and is specified as follows:

coll ection.select(v | bool ean-expression-wth-v)

sel ect returns a sublist of the specified collection. The list contains all elements for which the evaluation of
bool ean-expression-with-v resultsist r ue. Example:

{1,2,3,4}.select(i | i >=3) // returns {3, 4}

3.2.2. typeSel ect

A specia version of a select expression ist ypeSel ect . Rather than providing a boolean expression a class
name is here provided.

Xpand / Xtend / Check Reference

col l ection.typeSel ect (cl assnane)

t ypeSel ect returnsthat sublist of the specified collection, that contains only objects which are an instance of
the specified class (also inherited).

3.2.3.rej ect

Ther ej ect operationissimilartothesel ect operation, but withr ej ect weget the subset of all the elements
of the collection for which the expression evaluatesto f al se. Ther ej ect syntax isidentical to the sel ect
syntax:

collection.reject(v | bool ean-expression-wth-v)
Example:

{1,2,3,4}.reject(i | i >=3) // returns {1,2}

3.2.4.col | ect

As shown in the previous section, the sel ect and r ej ect operations always result in a sub-collection of the
original collection. Sometimes one wants to specify a collection which is derived from another collection, but
which contains objects that are not in the original collection (it is not a sub-collection). In such cases, we can
useacol | ect operation. Thecol | ect operation uses the same syntax asthe sel ect andrej ect andis
written like this:

collection.collect(v | expression-wth-v)

col | ect againiterates over thetarget collection and eval uates the given expression on each element. In contrast
to sel ect, the evaluation result is collected in a list. When an iteration is finished the list with all results is
returned. Example:

nanedEl enents. col l ect(ne | ne.nane) // returns a list of strings

3.2.5. Shorthand for col | ect (and more than that)

As navigation through many objects is very common, there is a shorthand notation for collect that makes the
expressions more readable. Instead of

sel f.enpl oyee.collect(e | e.birthdate)
one can also write:
sel f. enpl oyee. birthdate

In general, when aproperty isapplied to acollection of Objects, it will automatically beinterpreted asacol | ect
over the members of the collection with the specified property.

The syntax isashorthand for col | ect , if the feature does not return a collection itself. But sometimes we have
the following:

sel f. buil di ngs.rooms.wi ndows // returns a list of w ndows

This syntax works, but one cannot expressit using thecol | ect operationin an easy way.

3.26.forAl |

Often a boolean expression has to be evaluated for al elementsin a collection. The f or Al | operation allows
specifying a Boolean expression, which must be t r uefor all objects in a collection in order for the f or Al |
operationtoreturnt r ue:

collection.forAll (v | bool ean-expression-wth-v)

Theresultof f or Al | istrue if bool ean- expressi on-wi th-vistrue foral theelementscontainedin
acoallection. If bool ean- expr essi on-wi t h-v isf al se for one or more of the elementsin the collection,
thenthef or Al | expression evaluatestof al se.

Xpand / Xtend / Check Reference

Example:

{3,4,500}.forAll (i | i <10) // evaluates to false (500 < 10 is false)

3.2.7.exi sts

Often you will need to know whether there is at least one element in a collection for which abooleanist r ue.
The exists operation allows you to specify a Boolean expression which must bet r ue for at least one object in
acollection:

col l ection.exists(v | bool ean-expression-wth-v)

The result of the exists operation is t r ue if bool ean- expressi on-w th-v istrue for a least one
element of collection. If the bool ean- expressi on-wi t h-v isf al se for al elementsin collection, then
the complete expression evaluatesto f al se.

Example:

{3,4,500}.exists(i | i <10) // evaluates to true (e.g. 3 < 10 is true)

3.2.8.sort By1

If you want to sort a list of elements, you can use the higher order function sor t By . The list you invoke the
sor t By operation on, is sorted by the results of the given expression.

Example:
nyListOfFEntity.sortBy(entity | entity.name)

In the example the list of entities is sorted by the name of the entities. Note that there is no such Conpar abl e
type in Xpand. If the values returned from the expression are instances of j ava. uti | . Conpar abl e the
conpar eTo method is used, otherwiset oSt ri ng() isinvoked and the the result is used.

More Examples &t all the following expressionsreturnt r ue:
{*C,'B,"A}.sortBy(e | e) == {'"A,'B,'C}
{"AAA",'BB' ,'C}.sortBy(e | e.length) == {"C,'BB,' AAA'"}

{5,3,1,2}.sortBy(e | e) == {1,2,3,5}
{5,3,1,2}.sortBy(e | e - 2 * e) == {5,3,2,1}

3.3.i f expression
There are two different forms of conditional expressions. The first oneisthe so-called if expression. Syntax:
condition ? thenExpression : el seExpression
Example:

nane != null ? nanme : 'unknown'

3.4.swi t ch expression
The other oneis called switch expression. Syntax:
switch (expression) {
(case expression : thenExpression)*

default : catchAl | Expression

}

The default part is mandatory, because swi t ch is an expression, therefore it needs to evaluate to something in
any case. Example:

switch (person. nane) {

case 'Hansen' : 'Du kanns platt schnacken'
default : 'Du kanns m nech verstohn!'

1.

since4.1.2

Xpand / Xtend / Check Reference

}
Thereis an abbreviation for Boolean expressions:
switch {

case bool eanExpressi on : thenExpression
default : catchAl | Expression

3.5. Chain expression

Expressions and functional languages should be free of side effects as far as possible. But sometimes there you
need invocations that do have side effects. In some cases expressions even don not have a return type (i.e. the
return typeis Voi d). If you need to call such operations, you can use the chain expression. Syntax:

anExpr ->

anot her Expr ->

| ast Expr

Each expression is evaluated in sequence, but only the result of the last expression is returned. Example:

pers.setNanme('test') ->
pers

This chain expression will set the nane of the person first, before it returns the person object itself.

3.6. cr eat e expression
Thecr eat e expression is used to instantiate new objects of agiven type:

new TypeNane

3.7. 1 et expression
Thel et expression letsyou define local variables. Syntax is as follows:
let v = expression : expression-with-v
Thisis especially useful together with a chain- and a create expressions. Example:

let p = new Person :
p. nane(' John Doe') ->

p.age(42) ->
p.city(' New York') ->
p

3.8. 'GLOBALVAR' expression

Sometimes you don't want to pass everything down the call stack by parameter. Therefore, we have the
GLOBALVAR expression. There are two things you need to do, to use global variables.

3.8.1. Using GLOBALVARS to configure workflows

Each workflow component using the expression framework (Xpand, Check and Xtend) can be configured with
global variables. Hereisan example:

<wor kf | ow>
. stuff
<conponent class="org. eclipse.xpand2. Generator">
. usual stuff (see ref doc)
<gl obal Var Def nane="MWPSM' val ue="sl ot NameCf PSM'/ >
<gl obal Var Def nane="Inpl C assSuffix" value=""Ilnpl"'"/>
</ conponent >
</ wor kf | ow>

If you have injected global variablesinto the respective component, you can call them using the following syntax:

GLOBALVAR | npl O assSuf fi x

Xpand / Xtend / Check Reference

Note, we don't have any static type information. Therefore Obj ect is assumed. So, you have to down cast the
global variable to the intended type:

((String) GLOBALVAR | npl d assSuffi x)

It is good practice to type it once, using an Extension and then always refer to that extension:

String inpldassSuffix() : GLOBALVAR | npl O assSuffi x;
/1 usage of the typed gl obal var extension
I npl Nane(Cl ass c) :

name+i npl A assSuf fix();

3.9. Multi methods (multiple dispatch)

The expressions |language supports multiple dispatching . This means that when there is a bunch of overloaded
operations, the decision which operation has to be resolved is based on the dynamic type of all parameters (the
implicit 't hi s'included).

In Java only the dynamic type of the 't hi s' element is considered, for parameters the static type is used. (this
is called single dispatch)

Here is a Java example:

class MyC ass {
bool ean equal s(Obj ect o) {
if (o instanceof Myd ass) {
return equal s((MC ass)o);
}

return super.equal s(0);

}
bool ean equal s(MyType nt) {

//inplenmentation...
}

}

The method equal s(Obj ect 0) would not have to be overwritten, if Javawould support multiple dispatch.

3.10. Casting

The expression language is statically type checked. Although there are many concepts that help the programmer
to have really good static type information, sometimes. one knows more about the real type than the system. To
explicitly give the system such an information casts are avail able. Casts are 100% static, so you do not need them,
if you never statically typecheck your expressions!

The syntax for castsis very Javarlike:

((String)unTypedLi st.get(0)).toUpperCase()

4. Check

Xpand also provides a language to specify constraints that the model has to fulfill in order to be correct. This
language is very easy to understand and use. Basicaly, it is built around the expression syntax that has been
discussed in detail in the previous section. Constraints specified in the Check language have to be stored in files
with thefile extension . chk . Furthermore, these files have to be on the Java classpath, of course, in order to be
found. Let uslook at an example, in order to understand, what these constraints look like and what they do:

i nport dat a;

context Attribute ERROR
"Names have to be nore than one character long." :
nane. |l ength > 1;

Now, let uslook at the example line by line:
1. First, the metamodel has to be imported.

2. Then, the context is specified for which the constraint applies. In other words, after thecont ext keyword, we
put the name of the metaclass that is going to be checked by the constraint. Then, there follows either ERROR
or WARNI NG, These keywords specify what kind of action will be taken in case the constraint fails:

10

Xpand / Xtend / Check Reference

Table 1.1. Typesof action for Check constraints

WARNI NG | If theconstraint fails, the specified messageis printed, but theworkflow execution isnot stopped.
ERRCOR If the constraint fails, the specified message is printed and all further processing is stopped.

3. Now, the message that is put in case that the constraint failsis specified asastring. It is possible to include the
value of attributes or the return value of functions into the message in order to make the message more clear.
For example, it would be possible to improve the above example by rewriting it like this;

i nport dat a;
context Attribute ERROR
"Name of '" + name + "too short. Names have to be nore than one character long." :

nane. length > 1;

4. Findly, thereisthe condition itself, which is specified by an expression, which has been discussed in detail in
the previous section. If thisexpressionist r ue, the constraint is fulfilled.

Please always keep in mind that the message that is associated with the constraint is printed, if the
condition of the constraint is f al se! Thus, if the specified constraint condition ist r ue, nothing

will be printed out and the constraint will be fulfilled.

4.1. Guard Conditions
The Check language of Xpand also provides so called . These conditions allow to apply a check constraint only to
model elements that meet certain criteria. Specifying such a guard condition is done by adding an if clause to the
check constraint. The if clause has to be added after the context clause as demonstrated by the following example:

i nport dat a;
context Attribute if name.length > 1 ERROR
"Attribute names have to start with an "a'"

nanme. startswWth("a");

5. Xtend

Like the expressions sublanguage that summarizes the syntax of expressions for al the other textual languages
delivered with the Xpand framework, there is another commonly used language called Xtend.

This language provides the possibility to define rich libraries of independent operations and non-invasive
metamodel extensions based on either Java methods orXtend expressions. Those libraries can be referenced from
all other textual languages, that are based on the expressions framework.

5.1. Extend files
An extend file must reside in the Java class path of the used execution context. Additionally it is file extension
must be* . ext . Let ushave alook at an extend file.

i mport rmy:: netanodel ; extensi on other:: ExtensionFile;

/**
* Docunent ati on
*/

anExpressi onExtensi on(String stringParam :
doi ngSt uf f (Wi t h(stringParam)

/**
* java extensions are just nmappings
*/

String aJavaExtension(String param : JAVA
nmy. JavaCl ass. stati cMet hod(j ava. | ang. Stri ng)

The example shows the following statements:
1. import statements

11

Xpand / Xtend / Check Reference

2. extension import statements
3. expression or java extensions

5.2. Comments
We have single- and multi-line comments. The syntax for single line commentsis:
/1 my commrent
Multi line comments are written like this:

/* W multi line comrent */

5.3. Import Statements

Using the import statement one can import hame spaces of different types.(see expressions framework reference
documentation).

Syntax is:
i nport ny::inported:: nanespace;
Extend does not support static imports or any similar concept. Therefore, the following isincorrect syntax:

import nmy::inported::namespace::*; // WRONG inmport ny::Type; // WRONG

5.4. Extension Import Statement
Y ou can import another extend file using the extension statement. The syntax is:

extension fully::qualified::ExtensionFil eNane;

Note, that no file extension (* . ext) is specified.

5.4.1. Reexporting Extensions

If you want to export extensions from another extension file together with your local extensions, you can add the
keyword 'reexport' to the end of the respective extension import statement.

extension fully::qualified::ExtensionFil eName reexport;

5.5. Extensions
The syntax of asimple expression extension is as follows:
Ret ur nType ext ensi onName(Par aniTypel paramNanel, Paranilype2...): expression-using-parans;
Example:

String getterNane(NanmedEl ement ele) : 'get' +ele.name.firstUpper();

5.5.1. Extension Invocation
There are two different ways of how to invoke an extension. It can be invoked like afunction:;

get t er Name(nyNanedEl erment)

The other way to invoke an extension is through the "member syntax":

nmyNanmedEl ement . gett er Nane()

For any invocation in member syntax, the target expression (the member) is mapped to the first parameter.
Therefore, both syntactical forms do the same thing.

It is important to understand that extensions are not members of the type system, hence, they are not accessible
through reflection and you cannot specialize or overwrite operations using them.

12

Xpand / Xtend / Check Reference

The expression evaluation engine first looks for an appropriate operation before looking for an extension, in other
words operations have higher precedence.

5.5.2. Type Inference

For most extensions, you do not need to specify the return type, because it can be derived from the specified
expression. The special thing is, that the static return type of such an extension depends on the context of use.

For instance, if you have the following extension
asList(pject o): {o};
the invocation of
asList('text')
has the static type List[String]. This means you can call
asList('text').get(0).toUpperCase()
The expression is statically type safe, because its return type is derived automatically.
There is aways areturn value, whether you specify it or not, even if you specify explicitly 'Voi d'.
See the following example.

nodel Tar get . ownedEl ement s. addAl | Not Nul | (rodel Sour ce. contents. duplicate())

In this example duplicate() dispatches polymorphically. Two of the extensions might ook like:

Voi d duplicate(Realization realization):
realization. Specifier().duplicate()->
realization.Realizer().duplicate()

create target::d ass duplicate(source:: d ass):

If a 'Realization'is contained in the ‘cont ents' list of 'nodel Sour ce', the 'Real i zer"' of the
'Real i zat i on' will be added to the 'ownedEl enent s'list of the 'nodel Tar get . If you do not want to add
in the case that the contained element is a'Realization' you might change the extension to:

Voi d duplicate(Realization realization):

realization. Specifier().duplicate()->
realization.Realizer().duplicate() ->

{}

5.5.3. Recursion

There is only one exception: For recursive extensions the return type cannot be inferred, therefore you need to
specify it explicitly:
String fullyQualifiedNane(NanedEl emrent n) : n.parent == null ? n.nane :

fullyQualifiedName(n. parent)+'::'+n. name

Recursive extensions are non-deterministic in a static context, therefore, it is necessary to specify areturn type.

5.5.4. Cached Extensions

If you call an extension without side effectsvery often, you would liketo cachetheresult for each set of parameters,
inorder improvethe performance. Y ou can just add the keyword ‘cached' to the extension in order to achievethis:

cached String getterNanme(NanmedEl ement ele) :
' get' +el e. nane. first Upper ()

Theget t er Nane will be computed only once for each NanmedEl enent .

13

Xpand / Xtend / Check Reference

5.5.5. Private Extensions

By default all extensions are public, i.e. they are visible from outside the extension file. If you want to hide
extensions you can add the keyword 'private' in front of them:

private internal Hel per (NanedEl enent ele) :
/1 inplenentation....

5.6. Java Extensions

In some rare cases one does want to call a Java method from inside an expression. This can be done by providing
aJava extension:

Voi d nmyJavaExt ension(String param :
JAVA ny. Type. stati cMet hod(j ava. | ang. Stri ng)

The signature is the same as for any other extension. The implementation is redirected to a public static method
in aJavaclass.

Itssyntax is:

JAVA fully.qualified. Type.staticMethod(ny. ParanTypel,
ny. Par anifype2,

Note that you cannot use any imported hamespaces. Y ou have to specify the type, its method and the parameter
typesin afully qualified way.

Example:
If you have defined the following Java extension:
Voi d dunp(String s) :
JAVA ny. Hel per. dunp(j ava. | ang. Stri ng)
and you have the following Java class:
package ny;
public class Hel per {
public final static void dunp(String aString) {
Systemout.println(aString);
}
}
the expressions

dunp(' Hel o world!")
"Hello World' . dunp()

both result are invoking the Java method void dump(String aString)

5.7. Create Extensions (Model Transformation)

Since Version 4.1 the Xtend language supports additional support for model transformation. The new concept is
called create extension and it is explained a bit more comprehensive as usual .

Elements contained in amodel are usually referenced multiple times. Consider the following model structure:

A package P contains two classes C1 and C2. C1 contains areference R of type C2 (P a so references C2).

14

Xpand / Xtend / Check Reference

We could write the following extensionsin order to transform an Ecore (EMF) model to our metamodel (Package,
Class, Reference).

t oPackage(EPackage x) :
let p = new Package :
p. ownedMenber . addAl | (x. ed assifiers.tod ass()) ->
p;

tod ass(EC ass x) :
let ¢ = new Class :
c.attributes.addAl | (x. eRef erences.toReference()) ->
C;

t oRef erence(ERef erence x) :
let r = new Reference :
r.set Type(x. eType.toC ass()) ->
r;

For an Ecore model with the above structure, the result would be:

P
I\
Cl

|
R- @

What happened? The C2 class has been created 2 times (one time for the package containment and ancther time
for thereference R that also refersto C2). We can solve the problem by adding the ‘cached' keyword to the second
extension:

cached tod ass(EC ass x) :
let ¢ = new d ass :
c.attributes.addAl | (c.eAttributes.toAttribute()) ->
c;
The process goes like this:
1. start create P
a. start create C1 (contained in P)
i. start create R (contained in C1)
A. start create C2 (referenced from R)
B. end (result C2 is cached)
ii. end R
b. end C1
C. start get cached C2 (contained in P)
2. endP

So thisworks very well. We will get the intended structure. But what about circular dependencies? For instance,
C2 could contain a Reference R2 of type C1 (bidirectional references):

The transformation would occur like this:
1. start create P
a start create C1 (contained in P)
i. start create R (contained in C1)
A. start create C2 (referenced from R)
|. start create R2 (contained in C2)
1. start create C1 (referenced from R1)... OOPS!

Clisadready in creation and will not complete until the stack isreduced. Deadlock! The problem isthat the cache
caches the return value, but C1 was not returned so far, because it is still in construction. The solution: create
extensions

The syntax is asfollows:

15

Xpand / Xtend / Check Reference

create Package toPackage(EPackage x) :
this.classifiers.addAl | (x.eC assifiers.toC ass());

create Class toC ass(EC ass x) :
this.attributes.addAl | (x. eReferences.toReference());

create Reference toReference(EReference x) :
this. set Type(x. eType.toCd ass());

Thisis not only a shorter syntax, but it also has the needed semantics: The created model element will be added
to the cache before evaluating the body. The return value is always the reference to the created and maybe not
completely initialized element.

5.8. Calling Extensions From Java

The previous section showed how to implement Extensions in Java. This section shows how to call Extensions
from Java.

/] setup
Xt endFacade f = XtendFacade.create("ny:: path:: M/ExtensionFile");

/'l use
f.call ("sayHel l 0", new Object[]{"World"});

The called extension file looks like this:

sayHello(String s) :
"Hello " + s;
This example uses only features of the BuiltinMetaModel, in this case the "+" feature from the StringTypel mpl.

Here is another example, that uses the JavaBeansMet aMbdel strategy. This strategy provides as additional
feature: the access to properties using the getter and setter methods.

For more information about type systems, see the Expressions reference documentation.
We have one JavaBean-like metamodel class:

package mnypackage;
public class MyBeanMet ad ass {
private String myProp;
public String get MyProp() { return nyProp; }
public void setMProp(String s) { myProp = s;}
}

in addition to the built-in metamodel type system, we register the JavaMet aModel with the
JavaBeansSt r at egy for our facade. Now, we can use also this strategy in our extension:

/1 setup facade
XtendFacade f = XtendFacade. creat e("nyext::JavaBeanExt ensi on");
/1 setup additional type system
JavaMet avbdel jnm =
new JavaMet aMbdel ("JavaMM', new JavaBeansStrategy());
f.regi ster Met avbdel (j n);
/'l use the facade
MyBeanMet aCl ass jb = MyBeanMet adl ass() ;

jb.set MyProp("test");
f.call ("readMyProp", new Qbject[]{jb}));

The called extension file looks like this:
i nport nypackage;

readMyPr op(MyBeanMet aCl ass j b) :
jb.nyProp

16

Xpand / Xtend / Check Reference

5.9. WorkflowComponent

With the additional support for model transformation, it makes sense to invoke Xtend within aworkflow. A typical
workflow configuration of the Xtend component looks like this:

<conponent class="org. eclipse. xt end. Xt endConponent ">
<met aMbdel class="org. eclipse. xtend. typesystem enf. Enf Met aMbdel ">
<met aModel Fi | e val ue="net anodel 1. ecore"/ >
</ met anodel >
<met aMobdel class="org. eclipse. xtend. typesystem type. enf. Enf Met aMbdel ">
<met aModel Fi | e val ue="net anodel 2. ecore"/ >
</ met aMbdel >
<i nvoke val ue="ny::exanple:: Trafo::transforn{inputSlot)"/>
<out put Sl ot val ue="transf or redvbdel "/ >
</ conponent >

Note that you can mix and use any kinds of metamodels (not only EMF metamodels).

5.10. Aspect-Oriented Programming in Xtend (since 4.2)

Using the workflow engine, it is now possible to package (e.g. zip) awritten generator and deliver it asakind of
black box. If you want to use such a generator but need to change some things without modifying any code, you
can make use of around advices that are supported by Xtend.

The following adviceisweaved around every invocation of an extension whose name starts with 'my::generator::":

around my: :generator::*(*) :
log('Invoking ' + ctx.nane) -> ctx.proceed()

Around advices let you change behaviour in an non-invasive way (you do not need to touch the packaged
extensions).

5.10.1. Join Point and Point Cut Syntax

Aspect orientaton is basically about weaving code into different pointsinside the call graph of a software module.
Such points are called join points. In Xtend the join points are the extension invocations (Note that Xpand offers
asimilar feature, see the Xpand documentation).

One specifies on which join points the contributed code should be executed by specifying something like a'query’
on all available join points. Such aquery is called a point cut.

around [pointcut] :
expressi on

A point cut consists of afully qualified name and alist of parameter declarations.

5.10.1.1. Extensions Name

The extension name part of apoint cut must match the fully qualified name of the definition of the join point. Such
expressions are case sensitive. The asterisk character is used to specify wildcards. Some examples:

my:: Extension::definition // extensions with the specified name
org::eclipse::xpand2::* //extensions prefixed with 'org::eclipse::xpand2::
Operation // extensions containing the word 'Cperation' init.

* [/ all extensions

Be careful when using wildcards, because you will get an endless recursion, in case you weave an
extension, which is called inside the advice.

5.10.1.2. Parameter Types

The parameters of the extensions that we want to add our advice to, can also be specified in the point cut. Therule
is, that the type of the specified parameter must be the same or a supertype of the corresponding parameter type
(the dynamic type at runtime) of the definition to be called.

Additionally, one can set the wildcard at the end of the parameter list, to specify that there might be none or more
parameters of any kind.

Some examples:

17

Xpand / Xtend / Check Reference

:Tenpl : :extension() // extension without paraneters
:Tenpl : :extension(String s) // extension with exactly one paraneter of type String
:Tenpl ::extension(String s,*) // tenpl def with one or nore paraneters,

/'l where the first paraneter is of type String
:Tenpl ::extension(*) // tenpl def with any nunber of paraneters

2 238

5.10.1.3. Proceeding

Inside an advice, you might want to call the underlying definition. Thiscan be doneusing theimplicit variablect x,
which is of the type xtend:: AdviceContext and provides an operation pr oceed() which invokes the underlying
definition with the original parameters (Notethat you might have changed any mutabl e object in the advice before).

If you want to control what parameters are to be passed to the definition, you can use the operation
proceed(Li st[Object] parans).Youshould beaware, that in advices, no type checking is done.

Additionally, there are some inspection properties (like name, par anTypes, etc.) available.

5.10.2. Workflow configuration

To weave the defined advices into the different join points, you need to configure the Xt endConponent with
the qualified names of the Extension files containing the advices.

Example:

<conponent class="org. eclipse. xtend. Xt endConponent " >
<met aModel cl ass="org. eclipse.xtend.typesystem enf. Enf Met aMbdel ">
<met aModel Fi | e val ue="net anodel 1. ecore"/>
</ met anodel >
<met aModel cl ass="org. eclipse. xtend.typesystem enf. Enf Met aMbdel ">
<met aModel Fi | e val ue="net anodel 2. ecore"/ >
</ et aMbdel >

<i nvoke val ue="ny::exanple:: Trafo::transforn(inputSlot)"/>
<out put Sl ot val ue="transf or mredvbdel "/ >
<advi ces val ue="ny: : Advi ces, ny: : Advi ces2"/>
</ conponent >

5.10.3. Model-to-Model transformation with Xtend
This example uses Eclipse EMF as the basis for model-to-model transformations.

The idea in this example is to transform the data model introduced in the EMF example into itself. This might
seem boring, but the exampleisin fact quiteillustrative.

5.10.4. Workflow

By now, you should know theroleand structure of workflow files. Therefore, theinteresting aspect of theworkflow
file below isthe Xt endConponent .

<wor kf | ow>
<property fil e="workfl ow. properties"/>

<conponent class="org. ecli pse. xtend. Xt endConponent" >
<met aModel cl ass="org. eclipse. xtend. typesystem enf. Enf Met aMbodel ">
<met aMbdel Package val ue="dat a. Dat aPackage"/ >
</ met aMobdel >
<i nvoke val ue="test:: Trafo::duplicate(rootEl ement)"/>
<out put Sl ot val ue="newhbdel "/ >
</ conponent >

</ vor kf | o>
Asusual, we have to define the metamodel that should be used, and since we want to transform a data model into
adatamodel, we need to specify only thedat a. Dat aPackage asthe metamodel.

We then specify which function to invoke for the transformation. The statement
test:: Trafo:: duplicate(rootEl enent) meanstoinvoke:

» thedupl i cat e function taking the contents of ther oot El enent dlot as a parameter
« thefunction can be found inthe Tr af 0. ext file

18

Xpand / Xtend / Check Reference

 and that in turnisin the classpath, in the test.

5.10.5. The transformation

The transformation, as mentioned above, can be found in the Tr af 0. ext fileinthet est packageinthesrc
folder. Let uswalk through the file.

So, first we import the metamodel.

i mport dat a;

The next function is a so-called create extension. Create extensions, as a side effect when called, create an
instance of the type given after the cr eat e keyword. In our case, the dupl i cat e function creates an instance
of Dat aMbdel . This newly created object can be referred to in the transformation by t hi s (which is why
t hi s is specified behind the type). Since t hi s can be omitted, we do not have to mention it explicitly in the
transformation.

The function also takes an instance of Dat aMbdel as its only parameter. That object is referred to in the
transformation ass. So, thisfunction setsthe name of the newly created Dat aModel to bethenameof theoriginal
one, and then adds duplicates of all entities of the original one to the new one. To create the duplicates of the
entities, thedupl i cat e() operationiscaled for each Ent i t y. Thisisthe next function in the transformation.

create DataMdel this duplicate(DataMwdel s):
entity.addAl | (s.entity.duplicate()) ->
set Nanme(s. nane) ;

The duplication function for entities is also a create extension. Thistime, it createsanew Ent i t y for each old
Enti ty passedin. Again, it copies the name and adds duplicates of the attributes and references to the new one.

create Entity this duplicate(Entity old):
attribute.addAll (ol d.attribute.duplicate()) ->
reference. addAl | (ol d. reference. duplicate()) ->
set Nanme(ol d. nane) ;

The function that copies the attribute is rather straight forward, but ...

create Attribute this duplicate(Attribute old):
set Nanme(ol d. nane) ->
set Type(ol d. type);

... the one for the references is more interesting. Note that a reference, while being owned by some Enti ty,
also references another Entity as its target. So, how do you make sure you do not duplicate the target twice?
Xtend provides explicit support for this kind of situation. Create extensions are only executed once per tuple of
parameters! So if, for example, the Entity behind the target reference had already been duplicated by calling the
dupl i cat e function with the respective parameter, the next time it will be called the exact same object will be
returned. Thisisvery useful for graph transformations.

create EntityReference this duplicate(EntityReference old):
set Name(ol d.nane) ->
set Target(old.target.duplicate());

For more information about the Xtend language please see the Xtend reference documentation.

6. Xpand2

The Xpand languageisused in templatesto control the output generation. Thisdocumentation describesthe general
syntax and semantics of the Xpand language.

Typing the guillemets (« and ») used in the templates is supported by the Eclipse editor: which provides keyboard
shortcuts with Ctrl+< and Ctrl+>.

6.1. Template files and encoding

Templates are stored in files with the extension . xpt . Template files must reside on the Java classpath of the
generator process.

Almost all characters used in the standard syntax are part of ASCII and should therefore be available in any
encoding. The only limitation are the tag brackets (guillemets), for which the characters "«" (Unicode 00AB) and

19

Xpand / Xtend / Check Reference

"»" (Unicode 00BB) are used. So for reading templates, an encoding should be used that supports these characters
(eg.1 SO 8859- 1 or UTF- 8).

Names of properties, templates, namespaces etc. must only contain letters, numbers and underscores.

6.2. General structure of template files

Hereisafirst example of atemplate:

«| MPORT net a: : nodel »
«EXTENSI ON ny: : Ext ensi onFi | e»

«DEFI NE j avaCl ass FOR Entity»
«FI LE fil eNanme()»
package «j avaPackage() »;

public class «name» {
/1 inplenentation

}
«ENDFI LE»
«ENDDEFI NE»

A template file consists of any number of IMPORT statements, followed by any number of EXTENSION
statements, followed by one or more DEFINE blocks (called definitions).

6.3. Statements of the Xpand language

6.3.1. IMPORT

If you aretired of alwaystyping thefully qualified namesof your typesand definitions, you can import anamespace
using the IMPORT statement.

«| MPORT net a: : nodel »

This one imports the namespace net a: : nodel . If your template contains such a statement, you can use the
unqualified names of all types and template files contained in that namespace. This is similar to a Java import
statement i mport net a. nodel . *.

6.3.2. EXTENSION

Metamodels are typically described in a structural way (graphical, or hierarchical, etc.) . A shortcoming of this
isthat it is difficult to specify additional behaviour (query operations, derived properties, etc.). Also, it isagood
idea not to pollute the metamodel with target platform specific information (e.g. Javatype names, packages, getter
and setter names, €tc.).

Extensions provide a flexible and convenient way of defining additional features of metaclasses. Y ou do this by
using the Xtend language. (See the corresponding reference documentation for details)

An EXTENSION import points to the Xtend file containing the required extensions:
«EXTENSI ON ny: : Ext ensi onFi | e»

Note that extension files have to reside on the Java classpath, too. Therefore, they use the same namespace
mechanism (and syntax) as types and template files.

6.3.3. DEFINE

The central concept of Xpand is the DEFI NE block, also called atemplate. This is the smallest identifiable unit
in atemplate file. The tag consists of a name, an optional comma-separated parameter list, as well as the name of
the metamodel class for which the template is defined.

«DEFI NE t enpl at eNane(f or mal Par anet er Li st) FOR Met aCl ass»
a sequence of statements
«ENDDEFI NE»

To some extent, templates can be seen as special methods of the metaclass &## there is always an implicit this
parameter which can be used to addressthe "underlying" model element; in our example above, thismodel element
is"Met adl ass".

20

Xpand / Xtend / Check Reference

Asin Java, aformal parameter list entry consists of the type followed by the name of that parameter.
The body of atemplate can contain a sequence of other statements including any text.

A full parametric polymorphism isavailable for templates. If there are two templates with the same name that are
defined for two metaclasses which inherit from the same superclass, Xpand will use the corresponding subclass
template, in case thetemplateis called for the superclass. Vice versa, the template of the superclass would be used
in case asubclasstemplate is not available. Note that this not only worksfor the target type, but for all parameters.
Technically, the target type is handled as the first parameter.

S0, let us assume you have the following metamodel:

Figure 1.1. Sample metamodel

Assume further, you would have a model which contains a collection of A, B and C instances in the property
i st OF As. Then, you can write the following template:

«DEFI NE soneQ her Defi ne FOR SoneMet ad ass»
«EXPAND i npl Cl ass FOREACH | i st Of As»
«ENDDEFI NE»

«DEFI NE i npl Cl ass FOR A»
/1 this is the code generated for the superclass A
«ENDDEFI NE»

«DEFI NE i npl Cl ass FOR B»
/1 this is the code generated for the subclass B
«ENDDEFI NE»

«DEFI NE i npl Gl ass FOR C»
/1 this is the code generated for the subclass C
«ENDDEFI NE»

So for each B in the list, the template defined for B is executed, for each Cin the collection the template defined
for Cisinvoked, and for all others (which are then instances of A) the default template is executed.

6.3.4. FILE
The FI LE statement redirects the output generated from its body statements to the specified target.

«FI LE expression [outl et Nanme] »
a sequence of statenents
«ENDFI LE»

The target is afile in the file system whose name is specified by the expression (relative to the specified target
directory for that generator run). The expression for the target specification can be a concatenation (using the +
operator). Additionally, you can specify an identifier (alegal Javaidentifier) for the name of the outlet. (See the
configuration section for a description of outlets).

The body of aFI LE statement can contain any other statements. Example:

«FI LE InterfaceName + ".java"»
package «l nterfacePackageNane»;

/* generated class! Do not nodify! */
public interface «lnterfaceNanme» {
«EXPAND Operation::Interfacel npl ementati on FOREACH Operati on»

«ENDFI LE»
«FI LE | mpl Name + ".java" MY_OUTLET»

package «l npl PackageNane»;

public class «l npl Nane» extends «l npl BaseNanme»

i npl enents «l nterfaceNane» {

[/ TODO i nplenment it

«ENDFI LE»

21

Xpand / Xtend / Check Reference

6.3.5. EXPAND

The EXPAND statement "expands"' another DEFI NE block (in a separate variable context), insertsits output at the
current location and continues with the next statement. Thisis similar in concept to a subroutine call.

«EXPAND definitionName [(paraneterlList)]
[FOR expression | FOREACH expression [SEPARATOR expression]]»

The various alternative syntaxes are explained below.

6.3.5.1. Names

If the definitionNameisasimple unqualified name, the corresponding DEFI NE block must bein the sametemplate
file

If the called definition is not contained in the same template file, the name of the template file must be specified.
Asusual, the double colon is used to delimit namespaces.

«EXPAND Tenpl at eFi | e: : definiti onNane FOR nyModel El ement »

Note that you would need to import the namespace of thetemplatefile (if thereisone). For instance, if thetemplate
fileresidesin the java packageny. t enpl at es, there are two alternatives. Y ou could either write

«| MPORT ny: :tenpl ates»
«EXPAND Tenpl at eFi | e: : definitionNane FOR nyModel El enent »
or

«EXPAND ny: :tenpl ates:: Tenpl ateFi | e: : defi niti onNane
FOR nyModel El enent »

6.3.6. FOR vs. FOREACH
If FOR or FOREACH is omitted the other templateis called FOR t hi s.

«EXPAND Tenpl at eFi | e: : defi ni ti onName»

equals
«EXPAND Tenpl at eFi | e: : definitionNanme FOR this»

If FORis specified, the definition is executed for the result of the target expression.
«EXPAND nyDef FOR entity»

If FOREACH is specified, the target expression must evaluate to a collection type. In this case, the specified
definition is executed for each element of that collection.

«EXPAND nyDef FOREACH entity.allAttributes»

6.3.6.1. Specifying a Separator
If adefinition isto be expanded FOREACH element of the target expression it is possible to specify a SEPARATOR
expression:
«EXPAND par anifypeAndNanme FOREACH params SEPARATOR ', ' »
Theresult of the separator expression will be written to the output between each eval uation of the target definition

(not after each one, but rather only in between two elements. This comes in handy for things such as comma-
separated parameter lists).

AnEval uat i onExcept i on will bethrownif the specified target expression cannot be eval uated to an existing
element of the instantiated model or no suitable DEFI NE block can be found.

6.3.7. FOREACH

This statement expands the body of the FOREACH block for each element of the target collection that results from
the expression. The current element is bound to a variable with the specified name in the current context.

22

Xpand / Xtend / Check Reference

«FOREACH expression AS variabl eNanme [| TERATOR iterName] [SEPARATOR expression] »
a sequence of statenments using variabl eNane to access the
current element of the iteration

«ENDFOREACH»

Thebody of aFOREACH block can contain any other statements; specifically FOREACH statements may be nested.
If | TERATOR name is specified, an object of the type xpand2::Iterator (see API doc for details) is accessible
using the specified name. The SEPARATOR expression works in the same way as the one for EXPAND.

Example:
«FOREACH {"A','B'","C} AS c I TERATOR iter SEPARATOR ','»
«iter.counterl» : «C»
«ENDFOREACH»

The evaluation of the above statement resultsin the following text:

1: A
2 B,
3: C

6.3.8. IF

The | F statement supports conditional expansion. Any number of ELSEI F statements are allowed. The ELSE
block is optional. Every | F statement must be closed with an ENDI F. The body of an | F block can contain any
other statement, specifically, | F statements may be nested.

«| F expression»

a sequence of statenents
[«ELSEI F expression»]

a sequence of statenments]
[«ELSE»

a sequence of statenments]
«ENDI F»

6.3.9. PROTECT

Protected Regions are used to mark sections in the generated code that shall not be overridden again by the
subsequent generator run. These sections typically contain manually written code.

«PROTECT CSTART expression CEND expression | D expression (Dl SABLE) ?»
a sequence of statements
«ENDPROTECT»

The values of CSTART and CEND expressions are used to enclose the protected regions marker in the output.
They should build valid comment beginning and end strings corresponding to the generated target language (e.g.
"/*" and "*/" for Java). The following is an example for Java:

«PROTECT CSTART "/*" CEND "*/" |D El ement sUni quel D»
here goes sone content
«ENDPROTECT»

The ID isset by the | D expression and must be globally unique (at least for one complete pass of the generator).
Generated target code looks like this:

public class Person {

/ * PROTECTED REQ ON | D(Per son) ENABLED START*/
This protected region is enabled, therefore the contents will
al ways be preserved. If you want to get the default contents
fromthe tenplate you nust renove the ENABLED keyword (or even
renove the whole file :-))

/ * PROTECTED REQ ON END*/

}

Protected regions are generated in enabled state by default. Unless you manually disable them, by removing the
ENABLED keyword, they will always be preserved.

If you want the generator to generate disabled protected regions, you need to add the DI SABLE keyword inside
the declaration:

23

Xpand / Xtend / Check Reference

«PROTECT CSTART '/*' CEND '*/' ID this.name DI SABLE»

6.3.10. LET
LET lets you specify local variables:

«LET expression AS vari abl eNane»
a sequence of statements
«ENDLET»

During the expansion of the body of the LET block, the value of the expression is bound to the specified variable.
Note that the expression will only be evaluated once, independent from the number of usages of the variablewithin
the LET block. Example:

«LET packageNarme + "." + classNanme AS fqgn»
the fully qualified name is: «fqgn»;
«ENDLET»
6.3.11. ERROR
The ERROR statement aborts the evaluation of the templates by throwing an XpandExcept i on with the
specified message.

«ERROR expr essi on»

Note that you should use this facility very sparingly, since it is better practice to check for invalid models using
constraints on the metamodel, and not in the templates.

6.3.12. Comments
Comments are only allowed outside of tags.

«REM»
text comment
«ENDREM»

Comments may not contain a REM tag, thisimplies that comments are not nestable. A comment may not have a
white space between the REM keyword and its brackets. Example:

«REMh«LET expression AS vari abl eName»«ENDREM»
a sequence of statenents

«REM» «vari abl eName. st uf f »

«ENDLET»«ENDREM»>

6.3.13. Expression Statement

Expressions support processing of the information provided by the instantiated metamodel. Xpand provides
powerful expressionsfor selection, aggregation, and navigation. Xpand usesthe expressions sublanguage in almost
any statement that we have seen so far. The expression statement just eval uates the contained expression and writes
the result to the output (using thet oSt ri ng() method of j ava. | ang. Obj ect). Example:

public class «this.name» {

All expressions defined by the oArchitecturéWare expressions sublanguage are also available in Xpand. Y ou can
invoke imported extensions. (See the Expressions and Xtend language reference for more details).

6.3.14. Controlling generation of whitespace

If you want to omit the output of superfluouswhitespace you can add aminus sign just before any closing bracket.
Example:

«FI LE InterfaceName + ".java"-»
«l F hasPackage- »

package «l nterfacePackageNane»;
«ENDI F- »

«ENDFI LE»

24

Xpand / Xtend / Check Reference

The generated filewould start with two new lines (one after the FI LE and one after the | F statement) if the minus
characters had not been set.

In general, this mechanism works as follows: If a statement (or comment) ends with such a minus all preceding
whitespace up to the newline character (excluded!) is removed. Additionally all following whitespace including
the first newline character (\r\n is handled as one character) is also removed.

6.4. Aspect-Oriented Programming in Xpand

Using the workflow engine it is now possible to package (e.g. zip) a written generator and deliver it as a kind
of black box. If you want to use such a generator but need to change some small generation stuff, you can make
use of the AROUND aspects.

«AROUND qual i fi edDefi nitionNane(paraneterList)? FOR type»
a sequence of statements
«ENDAROUND»

AROUND letsyou add templ atesin an non-invasive way (you do not need to touch the generator templates). Because
aspects are invasive, a template file containing AROUND aspects must be wrapped by configuration (see next
section).

6.4.1. Join Point and Point Cut Syntax

AOPisbasically about weaving code into different pointsinside the call graph of a software module. Such points
are called Join Points. In Xpand, there is only one join point so far: acall to adefinition.

Y ou specify on which join points the contributed code should be executed by specifying something like a 'query'
on al available join points. Such aquery is called a point cut.

«AROUND [poi nt cut] »
do stuff
«ENDAROUND»

A pointcut consists of afully qualified name, parameter types and the target type.

6.4.1.1. Definition Name

The definition name part of a point cut must match the fully qualified name of the join point definition. Such
expressions are case sensitive. The asterisk character is used to specify wildcards.

Some examples:

ny::Tenpl ate::definition // definitions with the specified name
org::eclipse::xpand2::* // definitions prefixed with 'org::eclipse::xpand2::'
Qperation // definitions containing the word 'Operation' in it.

* /1 all definitions

6.4.1.2. Parameter Types

The parameters of the definitions we want to add our advice to, can also be specified in the point cut. Theruleis
that the type of the specified parameter must be the same or a supertype of the corresponding parameter type (the
dynamic type at runtime!) of the definition to be called.

Additionally, one can set a wildcard at the end of the parameter list, to specify that there might be an arbitrary
number of parameters of any kind.

Some examples:

ny::Tenpl::def() // tenpl def without paraneters
ny:: Tenpl ::def (String s) // tenpl def with exactly one paraneter
/1 of type String
ny::Tenpl::def(String s,*) // tenpl def with one or nobre paraneters,
/1 where the first paraneter is of type String
ny:: Tenpl ::def(*) // tenpl def with any nunber of paraneters

6.4.1.3. Target Type
Finally, we have to specify the target type. Thisis straightforward:

ny:: Tenpl ::def () FOR Object// tenpl def for any target type

25

Xpand / Xtend / Check Reference

ny:: Tenpl::def() FOR Entity// tenpl def objects of type Entity

6.4.2. Proceeding

Inside an advice, you might want to call the underlying definition. This can be done using the implicit variable
t ar get Def , which is of the type xpand2::Definition and which provides an operation pr oceed() that invokes
the underlying definition with the original parameters (Note that you might have changed any mutable object in
the advice before).

If you want to control, what parameters are to be passed to the definition, you can use the operation
proceed(hj ect t arget,Li st par ans). Please keep in mind that no type checking is donein this context.

Additionally, there are some inspection properties (like nane, par anTypes, etc.) available.

6.5. Generator Workflow Component

This section describes the workflow component that is provided to perform the code generation, i.e. run the
templates. You should have a basic idea of how the workflow engine works. A simple generator component
configuration could look asfollows:

<conponent class="org. eclipse.xpand2. Generator">
<fil eEncodi ng val ue="1S0O 8859-1"/>
<met aModel cl ass="org. eclipse. xtend. typesystem enf. Enf Met aModel ">
<met aMbdel Package val ue="org. ecli pse. enf. ecore. Ecor ePackage"/ >
</ met aMbdel >
<expand val ue="exanpl e: : Java: :all FOR nmyModel "/ >

<l-- aop configuration -->
<advi ces val ue=' exanpl e: : Advi cesl, exanple:: Advices2' />

<l-- output configuration -->

<outl et path='main/src-gen' />

<outl et nane='TO SRC path='nmin/src' overwite='false' />
<beautifier class="org.eclipse.xpand2. output.JavaBeautifier"/>
<beautifier class="org.eclipse.xpand2. output. Xm Beautifier"/>

<l-- protected regions configuration -->
<pr SrcPat hs val ue="main/src"/>
<pr Def aul t Excl udes val ue="fal se"/ >
<pr Excl udes val ue="*.xm "/ >
</ conponent >

Now, let us go through the different properties one by one.

6.5.1. Main configuration

The first thing to note is that the qualified Java name of the component is
org. ecl i pse. xpand2. Gener at or .

6.5.2. Encoding

For Xpand, it isimportant to have the file encoding in mind because of the guillemet characters used to delimit
keywords and property access. Thef i | eEncodi ng property specifies the file encoding to use for reading the
templates, reading the protected regions and writing the generated files. This property defaults to the default file
encoding of your VM.

6.5.3. Metamodel

The property net avbdel isused to tell the generator engine on which metamodels the Xpand templates should
be evaluated. One can specify more than one metamodel here. Metamodel implementations are required by
the expression framework (see Expressions) used by Xpand2. In the example above we configured the Ecore
metamodel using the EMFMetaModel implementation shipped with the core part of the Xpand release.

A mandatory configuration isthe expand property. It expects a syntax similar to that of the EXPAND statement
(described above). The only difference is that we omit the EXPAND keyword. Instead, we specify the name of
the property. Examples:

<expand val ue="Tenpl ate: : define FOR nySlot"/>

26

Xpand / Xtend / Check Reference

or:
<expand val ue="Tenpl ate:: define('foo') FOREACH {nySlot1, nySl ot2}"/>

The expressions are evaluated using the workflow context. Each dlot is mapped to a variable. For the examples
above the workflow context needsto contain elementsintheslots’ nySl ot' ," mySl ot 1' and' mySl ot 2' . It
isalso possibleto specify some complex expressions here. If, for instance, the slot myModel containsacollection
of model elements one could write:

<expand val ue="Tenpl at e: : defi ne FOREACH myMbdel . t ypeSel ect (Entity)"/>

This selects al elements of type Entity contained in the collection stored in the nyMbdel dlot.

6.5.4. Output configuration

The second mandatory configuration is the specification of so called outlets (a concept borrowed from
AndroMDA). Outlets are responsible for writing the generated filesto disk. Example:

<conponent class="org. eclipse.xpand2. Gener at or2">

<out | et path="main/src-gen' />
<outl et nanme='TO SRC path='"nmin/src' overwite=false' />

</ conponent >

In the example there are two outlets configured. The first one has no name and is therefore handled as the default
outlet. Default outlets are triggered by omitting an outlet name:

«FILE 'test/note.txt'»
this goes to the default outlet
«ENDFI LE»

The configured base path is 'mai n/ sr c- gen', so the file from above would go to 'mai n/ src- gen/ t est/
note. txt"

The second outlet hasanane ('TO_SRC') specified. Additionally theflagover wri t e issettof al se (defaults
tot r ue). The following Xpand fragment

«FILE '"test/note.txt' TO SRC»
this goes to the TO SRC outl et
«ENDFI LE»

would cause the generator to write the contents to 'mai n/ src/ t est / not e. t xt " if the file does not already
exist (theover wri t e flag).

Another option called append (defaultstof al se) causesthe generator to append the generated text to an existing
file. If overw it eissettof al se thisflag has no effect.

6.5.5. Beautifier

Beautifying the generated code is a good idea. It is very important that generated code looks good, because
developers should be able to understand it. On the other hand template files should look good, too. It is thus best
practice to write nice looking template files and not to care how the generated code looks &## and then you run a
beautifier over the generated code to fix that problem. Of course, if a beautifier is not available, or if white space
has syntactical meaning (asin Python), you would have to write your templates with that in mind (using the minus
character before closing brackets as described in a preceding section).

The Xpand workflow component can be configured with multiple beautifiers:
<beautifier
cl ass="org. ecl i pse. xpand2. out put. JavaBeautifier"/>
<beautifier
cl ass="org. ecl i pse. xpand2. out put. XM_Beautifier"/>

These are the two beautifiers delivered with Xpand. If you want to use your own beautifier, you would just need
to implement the Post Pr ocessor Javainterface:

package org. eclipse. xpand2. out put ;

public interface PostProcessor {

27

Xpand / Xtend / Check Reference

public void beforeWiteAndd ose(Fil eHandl e handl e);
public void afterd ose(Fil eHandl e handl e);
}

Thebef oreWi t eAndCl ose method is called for each ENDFI LE statement.

6.5.5.1. JavaBeautifier
The JavaBeautifier is based on the Eclipse Java formatter provides base beautifying for Javafiles.

6.5.5.2. XmIBeautifier

The XmlBeautifier isbased on domdj and providesasingleoptionf i | eExt ensi ons (defaultsto”. xmi ,. xsl ,
.wsdd, . wsdl ") used to specify which files should be pretty-printed.

6.5.6. Protected Region Configuration
Finally, you need to configure the protected region resolver, if you want to use protected regions.

<pr SrcPat hs val ue="mai n/src"/>
<pr Def aul t Excl udes val ue="fal se"/>
<pr Excl udes val ue="*.xm "/ >

The prScPaths property points to a comma-separated list of directories. The protected region resolver will scan
these directories for files containing activated protected regions.

There are several file names which are excluded by default:

RCS, SCCS, CVS, CVS.adm RCSLOG, cvslog.*, tags, TAGS, .nmke.state, .nse_depinfo, *~, #*,
SHE L, $*, %%, *.old, *.bak, *.BAK, *.orig, *.rej, .del-*, *.a, *.olb, *.0, *.o0bj
* . so, *.exe, *.Z* .elc, *.In, core, .svn

If you do not want to exclude any of these, you must set pr Def aul t Excl udes to false.
<pr Def aul t Excl udes val ue="fal se"/ >

If you want to add additional excludes, you should use the prExcludes property.

<pr Excl udes val ue="*.xnm ,*. hbni/>

It isbad practice to mix generated and non-generated code in one artifact. Instead of using protected
regions, you should try to leverage the extension features of the used target language (inheritance,
inclusion, references, etc.) wherever possible. It is very rare that the use of protected regionsis an
appropriate solution.

6.5.7. VetoStrategy

The Xpand engine will generate code for each processed FILE statement. Thisimplies that files are written that
might not have changed to the previous generator run. Normally it does not matter that files are rewritten. There
are at least two good reasons when it is better to avoid rewriting of files:

1. The generated source code will be checked in. In genera it is not the recommended way to go to check in
generated code, but sometimes you will have to. Especially with CV S there is the problem that rewritten files
are recognized as modified, even if they haven't changed. So the problem arises that identical files get checked
inagain and again (or you revert it manually). When working in teams the problem even becomes worse, since
team members will have conflicts when checking in.

2. When it can be predicted that the generator won't produce different content before a file is even about to be
created by a FILE statement then this can boost performance. Of courseitisnot trivial to predict that a specific
filewon't result in different content before it is even created. This requires information from a prior generator
run and evaluation against the current model to process. Usually a diff model would be used as input for the
decision.

Case 1) will prevent filewriting after aFILE statement has been eval uated, case 2) will prevent creating afileat all.

To achieve this it is possbhle to add Veto Strategies to the generator,
which are implementations of interfface org. ecli pse. xpand2. out put. Vet oStrategy or
org. ecl i pse. xpand2. out put . Vet oSt r at egy2. Use Vet oSt r at egy 2 if you implement your own.

Vet oSt r at egy2 declares two methods:

28

Xpand / Xtend / Check Reference

* bool ean hasVet oBef or eOpen (Fil eHandl e)
Thismethod will be called before afileis being opened and generated. Return true to suppress the file creation.
* bool ean hasVeto (Fil eHandl e)

This method will be called after a file has been produced and after all configured PostProcessors have been
invoked. Return true to suppress writing the file.

Veto Strategies are configured per Outlet. It is possible to add multiple stratgy instances to each Outlet.

<conponent id="generator" class="org.eclipse.xpand2. Generator" ski pOnErrors="true">
<met aMobdel cl ass="org. eclipse.xtend.typesystem unl 2. UML.2Met aMbdel "/ >
<expand val ue="tenpl at es: : Root: : Root FOR nodel "/ >
<fil eEncodi ng val ue="1S0O 8859-1"/ >
<outl et path="src-gen">
<post processor class="org. eclipse. xpand2. out put.JavaBeautifier"/>
<vetoStrategy class="org.eclipse.xpand2. out put. NoChangesVet oStrat egy"/ >
</ outlet>
</ conponent >

One Vet oSt r at egy is aready provided. The
org. ecli pse. xpand2. out put . NoChangesVet oStrat egy is a simple implementation that will
compare the produced output, after it has been postprocessed, with the target file. If the content is identical the
strategy vetoes the file writing. This strategy is effective, but has two severe drawbacks:

1. The file has been created at least in memory before. This consumes time and memory. If applying code
formatting this usually implies that the file is temporarily written.

2. Theexisting file must be read into memory. This aso costs time and memory.

Much better would be to even prevent the creation of files by having a valid implementation for the
hasVet oBef or eQpen() method. Providing animplementation that predictsthat files do not haveto be created
requires domain knowledge, thus a standard implementation is not available.

The number of skipped files will be reported by the Generator component like this:

2192 INFO - Generator(generator): generating <...>
3792 INFO - Skipped witing of 2 files to outlet [default](src-gen)

6.6. Example for using Aspect-Oriented Programming in Xpand

This example shows how to use aspect-oriented programming techniques in Xpand templates. It is applicable to
EMF based and Classic systems. However, we explain the idea based on the emfExample &## hence you should
read that before.

6.7. The Problem

There are many circumstances when template-AOP is useful. Here are two examples:

Scenario 1: Assumeyou haveanice generator that generates certain artifacts. The generator (or cartridge) might be
athird party product, delivered in asingle JAR file. Still you might want to adapt certain aspects of the generation
process & without modifying the original generator.

Scenario 2: You are building a family of generators that can generate variations of the generate code, e.g.
Implementations for different embedded platforms. In such a scenario, you need to be able to express those
differences (variabilities) sensibly without creating a non-understandable chaos of if statementsin the templates.

6.8. Example

To illustrate the idea of extending a generator without "touching” it, let us create a new project called
org. ecl i pse. deno. enf . dat anodel . gener at or - aop. The idea is that it will "extend" the original
org. ecl i pse. deno. enf . dat anodel . gener at or project introduced in the emfExample. So this new
projects needs to have a project dependency to the former one.

6.8.1. Templates

An AOP system always needs to define a join point model; thisis, you have to define, at which locations of a
(template) program you can add additional (template) code. In Xpand, the join points are simply templates (i.e.

29

Xpand / Xtend / Check Reference

DEFINE .. ENDDEFINE) blocks. An "aspect template" can be declared AROUND previously existing templates.
If you take alook at theor g. ecl i pse. denp. enf . dat anodel . gener at or source folder of the project,
you can find the Root . xpt template file. Inside, you can find a template called | npl that generates the
implementation of the JavaBean.

«DEFINE Entity FOR data::Entity»
«FI LE based assFil eNanme() »
/] generated at «tinmestanp()»
public abstract class «baseC assNanme()» {
«EXPAND | npl »

}
«ENDFI LE»

«ENDDEFI NE»

«DEFI NE | npl FOR data::Entity»
«EXPAND CettersAndSetters»
«ENDDEFI NE»

«DEFI NE | npl FOR data:: PersistentEntity»
«EXPAND CettersAndSetters»
public void save() {

}
«ENDDEFI NE»

What we now want to do is as follows. Whenever the Impl template is executed, we want to run an additional
template that generates additional code (for example, some kind of meta information for frameworks &## the
specific code is not important for the example here).

So, in our new project, we define the following template file:

«AROUND | npl FOR data::Entity»
«FOREACH attribute AS a»
public static final Attrinfo «a.name»Info = new Attrlnfo(
"«a. name»", «a.type».class);
«ENDFOREACH»
«t ar get Def . proceed() »
«ENDAROUND»

So, this new template wraps around the existing template called | npl It first generates additional code and then
forwards the execution to the original templateusingt ar get Def . pr oceed() . So, in effect, thisisa BEFORE
advice. Moving the pr oceed statement to the beginning makes it an AFTER advice, omitting it, makes it an
override.

6.8.2. Workflow File
Let ustake alook at the workflow file to run this generator:

<wor kf | ow>
<cartridge file="workflow mwe"/>
<conponent advi ceTar get ="generator"
i d="refl ectionAdvice"
cl ass="org. ecl i pse. xpand2. Gener at or Advi ce" >
<advi ces val ue="tenpl at es: : Advi ces"/ >
</ conponent >
</ wor kf | ow>

Mainly, what we do here, isto call the original workflow file. It has to be available from the classpath. After this
cartridge call, we define an additional workflow component, a so called advice component. It specifies generator
asits adviceTarget. That means, that al the properties we define inside this advice component will be added to
the component referenced by name in the adviceTarget instead. In our case, this is the generator. So, in effect,
weadd the<advi ces val ue="t enpl at es: : Advi ces" /> totheoriginal generator component (without
invasively modifying its own definition). This contributes the advice templates to the generator.

6.8.3. Running the new generator
Running the generator produces the following code:

public abstract class Personl npl Base {

30

Xpand / Xtend / Check Reference

public static final Attrinfo

nanmel nfo = new Attrlnfo("nanme", String.class);
public static final Attrinfo

nanme2l nfo = new Attrlnfo("name2", String.class);
private String nane;
private String nane2;

public void setName(String value) {
thi s. nane = val ue;

}

public String getName() ({
return this.nane;

}

public void setNane2(String val ue) {
thi s. nane2 = val ue;

}

public String getNane2() ({
return this.nanme2;

}

6.9. More Aspect Orientation
In general, the syntax for the AROUND construct is as follows:
<<AROUND ful | yQual i fiedDefiniti onNameW t hW | dcards
(Paramist (*)?) FOR TypeName>>

do Stuff
<<ENDAROUND>>

Here are some examples:
<<ARQUND *(*) FOR nbj ect>>

matches all templates
<<AROUND *define(*) FOR Object>>

matches all templates with define at the end of its name and any number of parameters
<<AROUND org:: eclipse::xpand2::* FOR Entity>>

matches all templates with namespace org::eclipse: :xpand2:: that do not have any parameters and whose type
is Entity or a subclass

<<AROUND *(String s) FOR nject>>

matches all templates that have exactly one St r i ng parameter
<<AROUND *(String s,*) FOR Object>>

matches all templates that have at least one St r i ng parameter
<<AROUND ny:: Tenpl ate::definition(String s) FOR Entity>>

matches exactly this single definition

Inside an AROUND, there is the variable t ar get Def , which has the type xpand2: : Def i ni ti on. On this
variable, you can call pr oceed, and also query anumber of other things:

<<AROUND ny:: Tenpl ate::definition(String s) FOR String>>
I og('invoking '+<<targetDef.nane>>+ with '+this)
<<t ar get Def . proceed() >>

<<ENDAROUND>>

31

Chapter 2. Built-in types API
documentation

1. Qbj ect

Supertype: none

Table 2.1. Properties

Type Name Description

xpand2: : Type nmet aType returns this object's meta type.

Table 2.2. Operations

Return type Name Description

Bool ean == (nj ect)

Bool ean < (Obj ect)

String toString() returns the String representation
of this object. (Calling Java's
toString() method)

Bool ean <= (nj ect)

Bool ean I = ((bj ect)

Bool ean > (Obj ect)

I nt eger conpar eTo (Obj ect) Compares this object with the
specified object for order. Returns
anegative integer, zero, or a
positive integer asthis object is less
than, equal to, or greater than the
specified object.

Bool ean >= (Cbj ect)

2.String
Supertype: Obj ect
Table 2.3. Properties
Type Name Description
I nt eger | ength the length of this string
Table 2.4. Operations

Return type Name Description

String t oLower Case () Converts al of the charactersin this
String to lower case using the rules
of the default locale (from Java)

String + (bj ect) concatenates two strings

Li st t oChar Li st () splitsthis String into a List[String]
containing Strings of length 1

32

Built-in types API documentation

Return type

Name

Description

String

t oFi r st Upper ()

Convertsthefirst character in this
String to upper case using the rules
of the default locale (from Java)

String

subString (I nt eger,
I nt eger)

Returns anew string that isa
substring of this string.

String

trim(

Returns a copy of the string, with
leading and trailing whitespace
omitted. (from Java 1.4)

String

t oFi r st Lower ()

Convertsthefirst character in this
String to lower case using the rules
of the default locale (from Java)

String

t oUpper Case ()

Converts all of the charactersin this
String to upper case using the rules
of the default locale (from Java)

Li st

split (String)

Splits this string around matches of
the given regular expression (from
Java l.4)

Bool ean

startsWth (String)

Testsif this string starts with the
specified prefix.

Bool ean

mat ches (Stri ng)

Tells whether or not this string
matches the given regular
expression. (from Java 1.4)

| nt eger

asl nt eger ()

Returns an Integer object holding
the value of the specified String
(from Java 1.5)

Bool ean

contains (String)

Testsif this string contains
substring.

Bool ean

endsWth (String)

Testsif this string ends with the
specified prefix.

String

repl aceFirst (String,
String)

Replaces the first substring of
this string that matches the given
regular expression with the given
replacement.

String

replaceAll (String,
String)

Replaces each substring of this
string that matches the given
regular expression with the given
replacement.

3. I nt eger

Supertype: Real

This type does not define any properties.

Table 2.5. Operations

Return type

Name

Description

Li st

upTo (I nt eger)

returns a List of Integers starting
with the value of the target
expression, up to the value of the
specified Integer, incremented by
one.

33

Built-in types API documentation

Return type Name Description

</br>
e.g. 'LupTo(5)' evaluatesto
{1,2,3,4,5}

Bool ean >= (I nt eger)

Bool ean ==(l nt eger)

Bool ean I = (I nt eger)

Li st upTo (I nt eger, I nt eger) returns a List of Integers starting
with the value of the target
expression, up to the value of the
first paramter, incremented by the
second parameter.

</br>
e.g. 'LupTo(10, 2)' evaluatesto
{1,3,5,7,9}

I nt eger - (I nteger)

I nt eger + (I nt eger)

Bool ean <=(I nt eger)

Bool ean < (I nteger)

I nt eger * (I nt eger)

I nt eger -0

Bool ean > (I nt eger)

I nt eger / (I nt eger)

4. Bool ean

Supertype: Obj ect

This type does not define any properties.

Table 2.6. Operations

Return type Name Description
Bool ean ()
5. Real
Supertype: Obj ect
This type does not define any properties.
Table2.7. Operations
Return type Name Description
Real * (Real)
Bool ean >= (hj ect)
Bool ean <= (Mnj ect)
Real -0
Bool ean == (hj ect)
Bool ean I = ((bj ect)
Bool ean < (Obj ect)

Built-in types API documentation

Return type Name Description

Real - (Real)

Real / (Real)

Bool ean > (hj ect)

Real + (Real)

6. Col | ecti on

Supertype: Obj ect

Table 2.8. Properties

Type Name Description

Bool ean i SEmpty returnstrueif this Collection is
empty

I nt eger si ze returns the size of this Collection

Table 2.9. Operations

Return type Name Description

Bool ean cont ai ns (Obj ect) returns true if this collection
contains the specified object.
otherwise false. returnsthis
Collection.

Li st toLi st () converts this collection to List

Set toSet () convertsthis collection to Set

Li st flatten() returns a flattened List.

Set i ntersect (Col | ection) returns a new Set, containing only
the elements contained in thisand
the specified Collection

String toString (String) concatenates each contained

element (using toString()),
separated by the specified String.

Col | ection

renoveAl | (Qbj ect)

removes all elements contained in
the specified collection from this

Coallection if contained (modifies

it!). returns this Collection.

Col | ection

renove (Obj ect)

removes the specified element
from this Collection if contained
(modifiesit!). returns this
Collection.

Set

wi t hout (Col | ecti on)

returns a new Set, containing al
elements from this Collection
without the elements from specified
Collection

Col | ection

addAl' | (Col I ecti on)

adds all elements to the Collection
(modifiesit!). returns this
Collection.

Col | ection

add (Obj ect)

adds an element to the Collection
(modifiesit!). returns this
Collection.

35

Built-in types API documentation

Return type Name Description

Set uni on (Col I ecti on) returns a new Set, containing all
elements from this and the specified
Collection

Bool ean cont ai nsAl'l (Col | ection) |returnstrueif thiscollection
contains each element contained in
the specified collection. otherwise
false. returns this Collection.

7. LI st

Supertype: Col | ecti on

This type does not define any properties.

Table 2.10. Operations

Return type Name Description
Li st Wi t hout First ()
bj ect l ast ()
I nt eger i ndexOF (Qbj ect)
Li st wi t hout Last ()
Col l ection reverse ()
bj ect first ()
hj ect get (I nteger)
8. Set
Supertype: Col | ecti on
This type does not define any properties.
This type does not define any operations.
9. xpand2: : Type
Supertype: Obj ect
Table2.11. Properties
Type Name Description
String name
Set all StaticProperties
String docunent ati on
Set super Types
Set al | Properties
Set al | Feat ures
Set al | Operations
Table 2.12. Operations
Return type Name Description

xpand2:: StaticProperty

get Stati cProperty
(String)

36

Built-in types API documentation

Return type Name Description
xpand2: : Feat ure get Feature (String,List)
Bool ean i sl nstance (Obj ect)
xpand2: : Property get Property (String)
bj ect newl nst ance ()
Bool ean i SAssi gnabl eFrom
(xpand2: : Type)
xpand2: : Oper ati on get Operation (String,
Li st)

10. xpand2: : Feature

Supertype: Obj ect

Table 2.13. Properties

Type Name Description
String nane

xpand2: : Type returnType

String docunent ati on

xpand2: : Type owner

This type does not define any operations.

11. xpand2: : Property

Supertype: xpand2: : Feat ur e
This type does not define any properties.

Table 2.14. Operations

Return type Name Description
Voi d set (Obj ect, Obj ect)
bj ect get (Obj ect)

12. xpand2: : Qper ati on

Supertype: xpand2: : Feat ur e
This type does not define any properties.

Table 2.15. Operations

Return type Name Description
Li st get Par anet er Types ()
bj ect eval uat e (Obj ect, Li st)

13. xpand2: : Stati cProperty

Supertype: xpand2: : Feat ur e
This type does not define any properties.

37

Built-in types API documentation

Table 2.16. Operations

Return type Name Description
hj ect get () returns the static value
14. Voi d

Supertype: Obj ect

This type does not define any properties.
This type does not define any operations.

15. xt end: : Advi ceCont ext

Supertype: Obj ect

Table2.17. Properties

Type Name Description
Li st par amlypes
String nanme
Li st par amNanes
Li st par anval ues
Table 2.18. Operations
Return type Name Description
bj ect proceed (Li st)
bj ect proceed ()
16. xpand2: : Definition
Supertype: Obj ect
Table 2.19. Properties
Type Name Description
Li st par anlypes
String nane
Li st par amNanes
xpand2: : Type t ar get Type
Table 2.20. Operations
Return type Name Description
Voi d proceed ()
String toString()
Voi d proceed (Obj ect, Li st)

17. xpand2: : I terator

Supertype: Obj ect

38

Built-in types API documentation

Table2.21. Properties

Type Name Description
Bool ean lastlteration

Bool ean firstlteration

I nt eger el enent s

I nt eger counterO

I nt eger counterl

This type does not define any operations.

39

Chapter 3. XSD Tutorial

Thistutorial showshow XML and XML Schemas Definitions (XSD) can be used to generate software. Itillustrates
how XML files are treated as models, X SDs as meta models and how this integrates with oAW. This tutoria is
an introduction, for in-depth details see Chapter 4, XSD Adapter.

1. Setup

XSD support for)oAW comes with o0AW 4.3.1 or later. Make sure the following plugins are installed as well:
» XSD - XML Schema Definition Runtime (http://www.eclipse.org/xsd/, available via Ganymede Update Site)

* Web Tools Platform (WTP) (WTP is not required to use)oAW XSD support, but helpful, as its provides a
nice XML Schema editor and a schema-aware XML editor. (http://www.eclipse.org/webtools , available via
Ganymede Update Site)

2. Overview

Thistutorial explains how you can do code generation with Xtend and Xpand, using XML Schema Definitions as
meta models and XML files as models. To keep things easy, the introduced exampleisaminimalistic one. A text
fileis generated from contents specified in XML. The general concept of models, meta models and why and when
code generation is useful, is not explained. At the end, a deeper view under the hood is taken to understand how
XML Schemas are transformed to EMF Ecore models, and which flexibilities/restrictions this approach provides.

All source files listed within this tutorial are also available as an example project wich can
be imported into the Eclipse workspace by running "File" / "New' / "Example.." [/ "Xpand/
Xtend Examples using an XSD Meta Model" / "M2T custom XML to Text via Xpand (minimal
Example)". This will create the project org. ecli pse. xpand. exanpl es. xsd. n2t. m ni mal
project in your workspace. This minimal example is based on "M2T custom XML to
Java via Xpand" (org. ecli pse. xpand. exanpl es. xsd. n2t . xm 2j avawi zar d) which is more
comprehensive and recommended for further reading.

To generate code from XML fileswith cAW, at least files of the following four types are needed:
 MetaModel (et anodel . xsd)

* Mode (nodel . xm)

* 0OAW Xpand Template (t enpl at e. xpt)

* 0OAW Workflow (wor kf | ow. oaw)

Figure 3.1. Minimalistic oAW XSD Proj ect

3. Step 1: Create a Project

To create a Project, create an ordinary Xtend/Xpand-Project. This is done in Eclipse by changing to the Xtend/
Xpand perspective and clicking on "File" / "New" / " Xtend/Xpand Project". After entering a name for the project
itiscreated.

After the project is created, support for XSD meta models needs to be activated. Click with your right mouse
button on the project and open the propertieswindow. Then go to the" X pand/Xtend" page, "enable project specific
settings' and activate the "XSD Metamodels' checkbox. There is no need to leave support for any other meta
models activated, except you are sure that you want to use one of them, too. Figure 3.2, “Activate XSD Meta
Model Support for Project” shows how the configuration is supposed to look like.

Figure 3.2. Activate XSD Meta Model Support for Project

Then, or g. ecl i pse. xt end. t ypesyst em xsd needs to be added to the project's dependencies. To do
so open the file META-1 NF/ MANI FEST. M- from your project and navigate to the "Dependencies’-tab.

40

http://www.eclipse.org/xsd/
http://www.eclipse.org/webtools/

XSD Tutorial

org. eclipse. xtend. t ypesyst em xsd needsto be added to thelist of "Required Plug-ins’, asit isshown
in Figure 3.3, “Required Dependencies for Project” .

Figure 3.3. Required Dependencies for Project

4. Step 2: Define a Meta Model using XML Schema

In caseyou are not going to use an existing XML Schema Definition, you can create anew anew onelike described
below. These steps make use of the Eclipse Web Tools Platform (WTP) to have fancy editors.

InEclipse, click on"File", "New", "Other..." and choose" XML Schema'" from category "XML". Select the project's
"src" folder and specify afilename. Clicking on "finish" creates an empty XSD file. It isimportant that the XSD
file islocated somewhere within the project's classpath.

This XML Schema consists of two complex data types, which contain some elements and attributes. "complex"
in the XSD terminology means that as opposed to simple data types that they can actually have sub-elements and/
or atributes. This example istoo minimalistic to do anything useful.

The complex Type W zar d containsthe elementsst ar t page , nanme , wel conet ext , and choi cepage .
Except for choi cepage al elements have to contain strings, whereasthe string of st ar t page must beavalid
id of any Choi cePage . The complex type Choi cePage just containsani d and anane . For oAW it does
not make any difference if something is modeled as an XML-attribute or XML-element. Just the datafield's type
defines how 0AW treats the value.

To get an overview how schemas can be used by the oAW XSD Adapter, see Section 5, “How to declare XML
Schemas’

Internally, the)oAW X SD Adapter transformsthe X SD model to an Ecore model which oAW can uselike any other
Ecore model. For more information about that, see Section 4, “Behind the scenes. Transforming XSD to Ecore”

Figure 3.4. WTP Schema Editor

<?xm version="1.0" encodi ng="UTF-8"?>

<schema xm ns="htt p://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="htt p:// ww. exanpl e. org/ wi zard"
xm ns:tns="http://ww. exanpl e. org/ wi zard"
el enent For nDef aul t =" qual i fi ed">

<conpl exType nane="W zard" >
<sequence>
<el ement name="start page" type="I|DREF" />
<el ement name="name" type="string" />
<el ement name="wel cometext" type="string" />
<el ement name="choi cepage" type="tns: Choi cePage" />
</ sequence>
</ conpl exType>

<conpl exType nane="Choi cePage" >
<sequence>
<el ement name="title" type="string" />
</ sequence>
<attribute name="id" type="ID" />
</ conpl exType>

<el enment name="wi zard" type="tns: Wzard" />
</ schema>

5. Step 3: Create a Model using XML

As the title says, data in XML-Format will be the model. And as a model has to be valid according to a meta
model, the XML files must be valid according to the XSD.

In case you are not going to use an existing XML file, you can create a new one like described below. These steps
require the Eclipse Web Tools Platform (WTP) to beinstalled.

41

XSD Tutorial

InEclipse, click on"File", "New", "Other..." and choose"XML" from category "XML". After specifying afilename
within folder "src" choose "create XML file from an XML Schema" and select you XML Schema Definition file.
Telling Eclipse which schemato use hasthree advantages: Eclipse validates XML files, thereis metamodel aware
code completion while editing and Eclipse creates a xsi:schemal ocation-attribute which tells anyone who reads
the XML file where the schema file is located. This tutorial does not use the xsi:schemal ocation-attribute and
introduces the schema file in the oAW workflow instead. For al possible ways see Section 5, “How to declare
XML Schemas’ . It isimportant that the XML fileislocated somewhere within the project's classpath.

<?xm version="1.0" encodi ng="UTF-8"?>
<wi zard xm ns="http://ww. exanpl e. org/ w zard" >
<startpage>start</startpage>
<nane>My Exanpl e Set up</nanme>
<wel conmet ext >\l come to this little deno application. </ wel conet ext>
<choi cepage id="start">
<title>Wzard Page One</title>
</ choi cepage>
</w zar d>

6. Step 4. Create a Template using Xpand

Createan ordinary oAW Xpandfile: Beinginthe X pand/Xtend perspective, goto"File", "New", "xPand template".
The Xpand language itself is explained by several other AW documents. Having XSD meta model support
activated like described in Section 3, “Step 1: Create a Project” , oAW scans and watches all it's projects for
suitable meta models. Based on what is found, the Xpand editor provides meta model aware code completion.

This example imports "met anpdel " at the beginning, which refers to a file called met anodel . xsd that
you have created within the project's classpath in Section 4, “Step 2: Define a Meta Model using XML
Schema” . The define-block can be understood as a function named "Root " which takes one object of type
nmet anodel : : W zar d as aparameter. Thisis the meta model's type for the XML's root object. The file-block
creates afile named wi zar d. t xt and writes the text that is surrounded by the file-block into the file. nane
,Wwel conet ext and choi cepage. titl e are elements or attributes defined in the XSD meta model. Their
values are stored within the XML file and this templates inserts them into the generated (Wi zar d. t xt) file.

«| MPORT net anodel »

«DEFI NE Root FOR net anodel : : W zar d»
«FILE "wi zard. txt"»

Nanme: «name»

Wl conet ext : «wel conet ext »

First Page Title: «choicepage.title»
«ENDFI LE»

«ENDDEFI NE»

7. Step 5: Create a Workflow

The workflow ties together model, meta model and templates and defines the process of how to generate code.

To create a new workflow file, switch to the Xpand/Xtend perspective, click on "File", "New" and "Workflow
file". After specifying afolder and a filename an empty workflow is created.

The minimalistic approach consists of two steps:

1. Read the Model: This is done by org. eclipse. xtend. t ypesyst em xsd. XM_Reader
It needs exactly one uri element which defines the XML file. A further nested element of type
org. eclipse. xtend. t ypesyst em xsd. XSDMet aMbdel tellsthe XM_Reader which metamodel
to use. XSDMet aMbdel can contain multiple schemaFi | e elements. How the schemas are used for the
XML fileis determined based on the declared namespaces. model Sl ot definesalocation where the model is
stored internally, thisis like a variable name which becomes important if you want to handle multiple models
within the same workflow.

2. Generate Code: This part just does the regular code generation using Xpand and is not specific to the)oAW
XSD Adapter at all. The generator or g. ecl i pse. xpand2. Gener at or needs to know which meta
model to use. This example referencesthe previously declared one. The expand element tells the generator to
call the definition named Root within filet enpl at e. xpt using the contents of slot nodel as parameter.
Element out | et defines where to store the generates files.

42

XSD Tutorial

<wor kf | ow>
<conponent class="org. eclipse. xtend. typesystem xsd. XM_.Reader " >
<nmodel Sl ot val ue="nodel " />
<uri value="nodel.xm" />
<met aModel id="m{
class="org. eclipse. xtend. t ypesyst em xsd. XSDvet aMbdel " >
<schemaFi | e val ue="net anndel . xsd" />
</ met aMbdel >
</ conponent >
<conponent class="org. eclipse.xpand2. Generator">
<met aModel idRef="mi" />
<expand val ue="tenpl ate:: Root FOR nodel " />
<outl et path="src-gen" />
</ conponent >
</ wor kf | ow>

8. Step 6: Execute Workflow aka Generate Code

Before you actually execute the workflow, or in case of errors, you can use Figure 3.5, “Files of this Tutorial”
to double check your files.

Figure 3.5. Filesof this Tutorial

To execute the workflow, click with your right mouse button on the workflow file and choose "Run As’, "0AW
Workflow", asit is shown in Section 8, “ Step 6: Execute Workflow aka Generate Code” .

Figure 3.6. Execute Wor kflow

When executing the workflow, this output is supposed to appear in Eclipse's Console View. If that View does not
pop up automatically, you can reach it via"Window", " Show View", "Consol€".

May 25, 2009 3:09:35 PM org. eclipse. enf. me. core. Wr kfl owRunner prepare

INFO running workflow [/Users/meyshol dt/Eclipse/ workspace-3.5- M/ org. ecli pse. xpand. exanpl es. xsd. n2t. m ni ma
May 25, 2009 3:09:35 PM org. eclipse. enf. me. core. Wr kfl owRunner prepare

I NFO

May 25, 2009 3:09:36 PM org. eclipse. xtend.typesystem xsd. XSDMvet aMbdel addSchenaFil e

I NFO Loadi ng XSDSchena from ' xsd/ n2t/ m ni nal / net anodel . xsd'

May 25, 2009 3:09:37 PMorg. eclipse. xtend.typesystem xsd. bui | der. CawxSDEcor eBui | der i ni t EPackage

I NFO Creating EPackage 'netanodel' from XSDSchenma 'file:/.../bin/xsd/ nR2t/m ninmal/nmetanodel.xsd" (http://wn
May 25, 2009 3:09:37 PM org. eclipse.enf. mmwe. core. container. ConpositeConponent internall nvoke

I NFO XM.Reader: Loading XM file xsd/nRt/nininal/nodel.xnl

May 25, 2009 3:09:37 PM org. eclipse.enf. mwe. core. container. Conposi t eConponent i nternal |l nvoke

I NFO Cenerator: generating 'xsd::nRt::mininal::tenplate:: Root FOR nodel' => src-gen

May 25, 2009 3:09:38 PM org. eclipse. xpand2. Gener at or i nvokel nternal 2

INFO Witten 1 files to outlet [default](src-gen)

May 25, 2009 3:09:38 PM org. eclipse.enf. me. core. Wrkfl owRunner execut eWr kf | ow

I NFO wor kfl ow conpleted in 657ms!

After code generation, thereisafile called wi zar d. t xt within the sr c- gen folder. Its contents is supposed
to look like shown below. Y ou should be able to recognize the structure you've defined within the template file
and the contents from your XML model.

Narme: My Exanpl e Setup
Wel cometext: Welcome to this little demo application.
First Page Title: Wzard Page One

43

Chapter 4. XSD Adapter

The XSD Adapter allows 0AW to read/write XML files as models and to use XML Schemas (XSDs) as meta
models. This reference provides in-depth details, for a quick and pragmatic introduction see Chapter 3, XSD
Tutorial .

1. Prerequisites
Please take alook at Section 1, “ Setup”.

2. Overview

The XSD Adapter performs two major tasks:

1. Itconverts XML Schemas (X SDs) to Ecore modelsin atransparent manner, so that the Ecore modelsare hidden
from the user. This is done in the workflow as well asin the IDE (to allow X SD-aware code completion for
Xtend/X pand/Check). For details about the mapping see Section 4, “Behind the scenes: Transforming XSD to
Ecore” . For details about the workflow integration see Section 3, “Workflow Components’

2. It extends the EmfMetaModel with concepts that are needed for XSDs. Theses are, for example, support for
feature maps (needed to handle comments, nested text, CDATA and processing instructions), QNames, EMaps
and composed Simpl etypes.

3. Workflow Components

The XSD Adapter provides the following workflow components:

3.1. XSDivet aMbdel

The XSDMetaM odel loads the specified XSD, transforms them to Ecore model s and makes them available for the
other oAW components. If XSDsinclude/import other XSDsor if XML filesreference X SDsvia schemal ocation,
theses XSDs are also |oaded (details: Section 5, “How to declare XML Schemas’). The most common scenario
isto declare the XSDMet aMbdel within an XMLReader :

<conponent class="org. eclipse.xtend.typesystem xsd. XM_Reader ">
<nodel Sl ot val ue="nodel " />
<uri val ue="nodel.xm" />
<met aModel id="m{ cl ass="org. eclipse.xtend.typesystem xsd. XSDwvet aMbdel ">
<schemaFi | e val ue="net anodel . xsd" />
<regi st er Packagesd obal | y val ue="true" />
</ met aMbdel >
</ conponent >

Another option isto specify an XSDMet aMbdel independently of other components as a bean:

<bean id="nynetanodel " cl ass="org. ecli pse. xtend. t ypesyst em xsd. XSD\vet aMbdel " >
<schemaFi | e val ue="net anodel . xsd" />
</ bean>
<conponent class="org. eclipse. xtend. typesystem xsd. XM_.Reader " >
<nodel Sl ot val ue="nodel " />
<uri value="nodel.xm" />
<nmet aModel i dRef ="nynetanodel " />
</ conponent >

Attention: It can lead to errors when X SDs are loaded multiple times, which can only happen when using multiple
XSDMet aModel s within oneworkflow. The safeway to goisto declarejust one XSDMVet aMbdel per workflow
and reference it from all components that need it.

Properties:
» schemaFile: optional, allowed multiple times: Specifies an XSD file which is being loaded. The path can be a
complete URI, or relative to the project root or classpath.

* registerPackagesGlobally: optional, default "false": If true, generated EPackages are registered to
org. eclipse. enf. ecore. EPackage. Regi stry. | NSTANCE, EMF's global package registry.
Warning: when running workflows from your own java code, make sure to remove the generated packagesfrom
the registry before the next run!

XSD Adapter

3.2. XM_LReader

The XM_LReader readsone XML filewhichisvalid according to the X SDs|oaded by the XSDMVet aModel . The
XML fileisloaded as amodel and stored in the specified slot. Example:

<conponent class="org. eclipse.xtend.typesystem xsd. XM_Reader ">
<nmodel Sl ot val ue="nodel " />
<uri value="nmodel .xm" />
<met aModel i dRef="nynetanodel " />

</ conponent >

Properties:

» dot: required: The name of the slot which in which the loaded mode is stored. Other workflow components
can access the model viareferring to this slot.

« uri: required: The file name of the XML file which should be read. Absolute URIs, and pathnames relative to
the project root or to the classpath are valid.

» metaModel: optional: Specifies the XSDMet aMbdel (see Section 3.1, “ XSDMet avbdel ") for the
XM_Reader . In case no XSDMet aMbdel is specified, an XSDMet aModel with default configuration is
instantiated implicitly. It is important to pay attention that al needed XSDs can be found while the loading
process. Section 5, “How to declare XML Schemas”.

» useDocumentRoot: optional, default "false": Dealing with XML files as models, most people think of the
XML's root element as the model's root object. This is the default used by the XM_Reader . But the XML's
root element actually has a parent, the so-called DocumentRoot. Additionally the DocumentRoot contains
comments/processing instructions and CDATA section which appears before or after the XML's root element,
and, most notably, the DocumentRoot contains information about the used namespaces. |f useDocumentRoot
isset to true, the XMLReader stores the DocumentRoot-Object instead the XML 's root element's object to the
specified dlot.

» option: optional, can be specified multiple times. Option specifies a key-value-pair, which is handed
on to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in
interface org. ecli pse. enf. ecore. xni . XM_LResour ce . Additionaly, the XM_Reader supports
these options:

* DEFAULT_NAMESPACE: Specifies a default namespace, in case the XML file does not declare one:

<option key="DEFAULT_NAMESPACE" val ="http://ww. dl ese. org/ Met adat a/ opm " />
* NAMESPACE_MAP: Specifies amapping for namespaces, which is applied when loading XML files.

<option key="NAMESPACE MAP">
<val class="org.eclipse.xtend.typesystem xsd.|ib. MapBean">
<mappi ng from="http://ww. eclipse. org/ nodel i ng/ xpand/ exanpl e/ nodel / w ong"
to="http://ww:. eclipse. org/ nodel i ng/ xpand/ exanpl e/ nodel /| oadcurve" />
</val >
</ opti on>

3.3. XMW iter

The XMLW i t er writes the model stored in a slot to an XML file. If the ot contains a collection of models,
each one iswritten to a separate file. The model (s) must have been instantiated using an X SD-based meta model.
Example:

<conponent class="org. eclipse.xtend.typesystem xsd. XM Witer">
<met aModel i dRef="svgmi' />
<nodel Sl ot val ue="svgnodel " />
<uri val ue="src-gen/ mycurve.svg" />

</ conponent >

Properties:

« dlot: required: The name of the slot which holds the model or the collection of models which shall be serialized
to XML.

» metaModel: required: The instance of XSDMVet aMbdel , which holds the XSD that the supplied models are
based on. Also see Section 3.1, “ XSDMvet aMbdel ”

45

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html

XSD Adapter

* uri: required if no uriExpression is specified: The file name of the XML file which should be written. Absolute
URIsarevalid. Use relative path names on your own risk.

* uriExpression: required if no uri is specified: In the scenario where multiple XML filesarewritten, this provides
amechanism to determine the file name for each of them. The oAW-expression specified in expr essi on is
evaluated for each file and has to return a file name. The model that is going to be written is accessible in the
expression viaavariable that has the name specified in var Nane. Example:

<uri Expressi on var Nanme="docroot" expressi on="'src-gen/' +ecore2xsd:: getFi | eName(docroot)" />

 option: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on to
the EMF's XMLResource in the writing process. Valid options are documented via JavaDoc in interface
org. eclipse. enf.ecore. xm . XM_Resource .

3.4. XM_Beauti fier

The XM_Beaut i fi er usesEMF to load the XML file, formats the mixed content (elements and text contained
by the same element) and writes the file back to disk applying a nice indentation for the elements. The
XM.Beaut i fi er is not intended to be used in combination with the XMLW i t er, since the XMLW i t er
cares about indentation by itself. Instead, use it for "manually” constructed XML files using Xpand. Since the
frameworks for loading/storing XML always load the whole file into a complex data structure in memory, this
approach does not scale well for huge XML files. Example:

<conponent class="org. eclipse.xpand2. Generator">
<met aModel idRef="mi" />
<expand val ue="${src-pkg}:: ${file}:: Root FOR '${out}'" />
<outl et path="${src-gen-dir}" />
<beautifier class="org.eclipse.xtend.typesystem xsd. XM.Beautifier">
<maxLi neW dth val ue="60" />
<f ormat Comment s val ue="true" />
<fil eExtensions value=".xm, .htm" />
</ beautifier>
</ conponent >

Properties:
» maxLineWidth: optional: Specifies the number of character after which alinewrap should be performed.
» formatComments: optional, default true: Specifiesif formatting should aso be applied to comments.

* fileExtensions: optional, default ".xml, .xsl, .xsd, .wsdd, .wsdl": Specifies a filter for which files formatting
should be applied. Only files that match one of the specified file extensions are processed.

* loadOption: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on
to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in interface
org. eclipse. enf.ecore. xm . XM_Resource .

 saveOption: optional, can be specified multiple times: Same as loadOption, except for the difference that these
options are applied while the writing process. Example:

<saveOption key="XM__VERSI ON' val ="1.1" />
<saveOpti on key="ENCODI NG' val ="ASCI | " />

4. Behind the scenes: Transforming XSD to Ecore

In the code generation process an XML Schema is transformed to an EMF Ecore model, which is then
used as a meta model by EMF. XSD complex data types are mapped to EClasses, XSD simple data types
are mapped to EMF data types defined in or g. ecl i pse. enf. ecore. xnm .type. XM_.TypePackage
and org.eclipse. xtend.typesystem xsd. XSDMvet aMbdel maps them to coAW data types. The
document XML Schema to Ecore Mapping explains the mapping's details. http://www.eclipse.org/modeling/emf/
docs/overviews/X ML SchemaT oEcoreM apping. pdf

5. How to declare XML Schemas

Therearethreedifferent waysto declareyour X SDs. It does not matter which way you choose, or how you combine
them, aslong as the XSD Adapter can find al needed schemas.

46

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf

XSD Adapter

1. Within the Workflow: org. ecl i pse. xt end. t ypesyst em xsd. XSDMVet aMbdel can have any
amount of schenaFi | e elements.

<conponent class="org. eclipse.xtend.typesystem xsd. XM_Reader ">
<nodel Sl ot val ue="nodel " />
<uri value="${file}" />
<met aModel id="mmt'" cl ass="org. eclipse. xtend.typesystem xsd. XSDwvet aMbdel ">
<schemaFi | e val ue="nodel /| oadcurve. xsd" />
<schemaFi | e val ue="nodel / devi ce. xsd" />
</ met aMobdel >
</ conponent >

2. Within the XML file: XML files can contain schenmalLocat i on attributes which associate the schema's
namespace with the schema's filename. If the schema s created using WTP like described in Section 5, “ Step
3: CreateaModel using XML" , theschemalLocat i on attribute is created automatically.

<?xm version="1.0" encodi ng="UTF-8"?>
<devi ce: Devi ce
xm ns: devi ce="http://ww. ecl i pse. or g/ nodel i ng/ xpand/ exanpl e/ nodel / devi ce"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="http://ww. ecl i pse. or g/ nodel i ng/ xpand/ exanpl e/ nodel / devi ce devi ce. xsd">
<devi ce: Nane>MyLapt op</ devi ce: Nanme>
</ devi ce: Devi ce>

3. Withinan XSD: If one schemaimportsanother, thei nport element canhaveaschenalLocat i on attribute,
too.

<?xm version="1.0" encodi ng="UTF-8"?>
<schemm
t ar get Nanespace="http://ww. ecl i pse. or g/ nodel i ng/ xpand/ exanpl e/ nodel / devi ce"
el enent For nDef aul t =" qual i fi ed" xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns:tns="http://ww. eclipse. org/ nodel i ng/ xpand/ exanpl e/ nodel / devi ce"
xm ns: | c="http://ww. ecl i pse. or g/ nodel i ng/ xpand/ exanpl e/ nodel /| oadcur ve"
xm ns: ecore="http://ww. eclipse. org/enf/ 2002/ Ecore">

<i nport
namespace="http://ww. ecl i pse. or g/ nodel i ng/ xpand/ exanpl e/ nodel / | oadcur ve"
schemaLocati on="1 oadcurve. xsd" >

</inport>

<conpl exType nane="Device">
<sequence>
<el ement name="Name" type="string" />
<el ement name="LoadCurve" type="|c: LoadCurve" />
</ sequence>
</ conpl exType>

<el enment name="Devi ce" type="tns: Device"></el ement >
</ schema>

47

	Xpand Documentation
	Table of Contents
	Chapter 1. Xpand / Xtend / Check Reference
	1. Introduction
	2. Type System
	2.1. Types
	2.1.1. Type Names
	2.1.2. Collection Type Names
	2.1.3. Features

	2.2. Built-In Types
	2.2.1. Object
	2.2.2. Void
	2.2.3. Simple types (Data types)
	2.2.4. Collection types
	2.2.5. Type system types

	2.3. Metamodel Implementations (also known as Meta-Metamodels)
	2.3.1. Example JavaMetaModel
	2.3.2. Eclipse IDE MetaModelContributors
	2.3.3. Configuring Metamodel implementations with the workflow

	2.4. Using different Metamodel implementations (also known as Meta-Metamodels)

	3. Expressions
	3.1. Literals and special operators for built-in types
	3.1.1. Object
	3.1.2. Void
	3.1.3. Type literals
	3.1.4. StaticProperty literals
	3.1.5. String
	3.1.6. Boolean
	3.1.7. Integer and Real
	3.1.8. Collections

	3.2. Special Collection operations
	3.2.1. select
	3.2.2. typeSelect
	3.2.3. reject
	3.2.4. collect
	3.2.5. Shorthand for collect (and more than that)
	3.2.6. forAll
	3.2.7. exists
	3.2.8. sortBy

	3.3. if expression
	3.4. switch expression
	3.5. Chain expression
	3.6. create expression
	3.7. let expression
	3.8. 'GLOBALVAR' expression
	3.8.1. Using GLOBALVARS to configure workflows

	3.9. Multi methods (multiple dispatch)
	3.10. Casting

	4. Check
	4.1. Guard Conditions

	5. Xtend
	5.1. Extend files
	5.2. Comments
	5.3. Import Statements
	5.4. Extension Import Statement
	5.4.1. Reexporting Extensions

	5.5. Extensions
	5.5.1. Extension Invocation
	5.5.2. Type Inference
	5.5.3. Recursion
	5.5.4. Cached Extensions
	5.5.5. Private Extensions

	5.6. Java Extensions
	5.7. Create Extensions (Model Transformation)
	5.8. Calling Extensions From Java
	5.9. WorkflowComponent
	5.10. Aspect-Oriented Programming in Xtend (since 4.2)
	5.10.1. Join Point and Point Cut Syntax
	5.10.1.1. Extensions Name
	5.10.1.2. Parameter Types
	5.10.1.3. Proceeding

	5.10.2. Workflow configuration
	5.10.3. Model-to-Model transformation with Xtend
	5.10.4. Workflow
	5.10.5. The transformation

	6. Xpand2
	6.1. Template files and encoding
	6.2. General structure of template files
	6.3. Statements of the Xpand language
	6.3.1. IMPORT
	6.3.2. EXTENSION
	6.3.3. DEFINE
	6.3.4. FILE
	6.3.5. EXPAND
	6.3.5.1. Names

	6.3.6. FOR vs. FOREACH
	6.3.6.1. Specifying a Separator

	6.3.7. FOREACH
	6.3.8. IF
	6.3.9. PROTECT
	6.3.10. LET
	6.3.11. ERROR
	6.3.12. Comments
	6.3.13. Expression Statement
	6.3.14. Controlling generation of whitespace

	6.4. Aspect-Oriented Programming in Xpand
	6.4.1. Join Point and Point Cut Syntax
	6.4.1.1. Definition Name
	6.4.1.2. Parameter Types
	6.4.1.3. Target Type

	6.4.2. Proceeding

	6.5. Generator Workflow Component
	6.5.1. Main configuration
	6.5.2. Encoding
	6.5.3. Metamodel
	6.5.4. Output configuration
	6.5.5. Beautifier
	6.5.5.1. JavaBeautifier
	6.5.5.2. XmlBeautifier

	6.5.6. Protected Region Configuration
	6.5.7. VetoStrategy

	6.6. Example for using Aspect-Oriented Programming in Xpand
	6.7. The Problem
	6.8. Example
	6.8.1. Templates
	6.8.2. Workflow File
	6.8.3. Running the new generator

	6.9. More Aspect Orientation

	Chapter 2. Built-in types API documentation
	1. Object
	2. String
	3. Integer
	4. Boolean
	5. Real
	6. Collection
	7. List
	8. Set
	9. xpand2::Type
	10. xpand2::Feature
	11. xpand2::Property
	12. xpand2::Operation
	13. xpand2::StaticProperty
	14. Void
	15. xtend::AdviceContext
	16. xpand2::Definition
	17. xpand2::Iterator

	Chapter 3. XSD Tutorial
	1. Setup
	2. Overview
	3. Step 1: Create a Project
	4. Step 2: Define a Meta Model using XML Schema
	5. Step 3: Create a Model using XML
	6. Step 4: Create a Template using Xpand
	7. Step 5: Create a Workflow
	8. Step 6: Execute Workflow aka Generate Code

	Chapter 4. XSD Adapter
	1. Prerequisites
	2. Overview
	3. Workflow Components
	3.1. XSDMetaModel
	3.2. XMLReader
	3.3. XMLWriter
	3.4. XMLBeautifier

	4. Behind the scenes: Transforming XSD to Ecore
	5. How to declare XML Schemas

