Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Eclipse Projects » SeMantic Information Logistics Architecture (SMILA) » "tolerant" search problem
"tolerant" search problem [message #722] Fri, 20 February 2009 05:07 Go to next message
Andreas Weber is currently offline Andreas Weber
Messages: 23
Registered: July 2009
Junior Member
Hi again,

I tried to use a search configuration (DataDictionary.xml) which uses
Tolerance="tolerant".

But this delivers strange result orders, e.g. the documents which contain
the exact term are less equal(scored) than those containing the misspelled
term.

I proved that by indexing 75 text documents containing only one word:
- 50 docs containing the word "hallo"
- 22 docs containing the word "hillo"
- 3 docs containing the word "hello"

I made a (tolerant) search for "hillo".
But the first three hits were the docs with "hello" with a score of 15%.
Than followed by "hillo" hits (8%).
So - why are the "hello" hits better scored than the "hillo" hits?

Best regards,
Andreas
Re: "tolerant" search problem [message #728 is a reply to message #722] Fri, 20 February 2009 05:30 Go to previous messageGo to next message
Georg Schmidt is currently offline Georg Schmidt
Messages: 9
Registered: July 2009
Junior Member
Hi Andreas,

sorry i did not realized this question on the newsgroup.

The tolerant lucene search does set a matching hit and a fault tolerant hit
equal.

The chance for a fault tolerant hit is just "better" because its fault
tolerant.

The result is from my point of view a strage behaving search.

There are ways to improve this behavior... you could use a arithmetic mean
in conjunction with search templates. (exact hit and a tolerant hit will
lead to a higher ranking of a exact hit).

From my point of view. Its a behavior of the Lucene search algorithm. To get
rid of this behaviour you need to dig into lucene or get extensions to
lucene. Then you may get e.g. extensions like a quality based search or
lingustics.

Sorry... i am monitoring the mailing list more frequently than the
newsgroup.

Kind regards,

Georg


"Andreas Weber" <Andreas.Weber@empolis.com> wrote in message
news:b9a9b2627451ccc8d5cf8789129f80ac$1@www.eclipse.org...
> Hi again,
>
> I tried to use a search configuration (DataDictionary.xml) which uses
> Tolerance="tolerant".
>
> But this delivers strange result orders, e.g. the documents which contain
> the exact term are less equal(scored) than those containing the misspelled
> term.
>
> I proved that by indexing 75 text documents containing only one word:
> - 50 docs containing the word "hallo"
> - 22 docs containing the word "hillo"
> - 3 docs containing the word "hello"
>
> I made a (tolerant) search for "hillo". But the first three hits were the
> docs with "hello" with a score of 15%. Than followed by "hillo" hits (8%).
> So - why are the "hello" hits better scored than the "hillo" hits?
>
> Best regards,
> Andreas
>
>
>
>
>
>
>
>
>
Re: "tolerant" search problem [message #736 is a reply to message #728] Fri, 20 February 2009 07:08 Go to previous message
Andreas Weber is currently offline Andreas Weber
Messages: 23
Registered: July 2009
Junior Member
This is a multi-part message in MIME format.
--------------040702020506050307050305
Content-Type: text/plain; charset=ISO-8859-15; format=flowed
Content-Transfer-Encoding: 7bit

Hi Georg,

thanx for your answer.
I think you are right, it's normal Lucene default behavior for a
fuzzy search caused by the tf-idf algorithm and how Lucene handles it.

I analyzed the described "hillo" query and the results with the LUKE tool.
Find attached the explanation of the best hit (hello.png), and a worser
hit (hillo.png) - which I expected to be the best hit in my first posting.

As you can see, the boost factor for the misspelling (0.6) ist more
than compensated by the idf - which is caused by the fact that the
misspelled "hello" term is only in three documents, whereas the correct
term "hillo" is contained in much more (21 documents).

Not really a nice (and expected) behaviour by Lucene at this point...

Best regards,
Andreas























> Georg Schmidt wrote:
> Hi Andreas,
>
> sorry i did not realized this question on the newsgroup.
>
> The tolerant lucene search does set a matching hit and a fault tolerant
> hit equal.
>
> The chance for a fault tolerant hit is just "better" because its fault
> tolerant.
>
> The result is from my point of view a strage behaving search.
>
> There are ways to improve this behavior... you could use a arithmetic
> mean in conjunction with search templates. (exact hit and a tolerant hit
> will lead to a higher ranking of a exact hit).
>
> From my point of view. Its a behavior of the Lucene search algorithm.
> To get rid of this behaviour you need to dig into lucene or get
> extensions to lucene. Then you may get e.g. extensions like a quality
> based search or lingustics.
>
> Sorry... i am monitoring the mailing list more frequently than the
> newsgroup.
>
> Kind regards,
>
> Georg
>
>
> "Andreas Weber" <Andreas.Weber@empolis.com> wrote in message
> news:b9a9b2627451ccc8d5cf8789129f80ac$1@www.eclipse.org...
>> Hi again,
>>
>> I tried to use a search configuration (DataDictionary.xml) which uses
>> Tolerance="tolerant".
>>
>> But this delivers strange result orders, e.g. the documents which
>> contain the exact term are less equal(scored) than those containing
>> the misspelled term.
>>
>> I proved that by indexing 75 text documents containing only one word:
>> - 50 docs containing the word "hallo"
>> - 22 docs containing the word "hillo"
>> - 3 docs containing the word "hello"
>>
>> I made a (tolerant) search for "hillo". But the first three hits were
>> the docs with "hello" with a score of 15%. Than followed by "hillo"
>> hits (8%).
>> So - why are the "hello" hits better scored than the "hillo" hits?
>>
>> Best regards,
>> Andreas
>>
>>
>>
>>
>>
>>
>>
>>
>>
>


--------------040702020506050307050305
Content-Type: image/png;
name="hello.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="hello.png"

iVBORw0KGgoAAAANSUhEUgAAAcEAAAFpCAMAAADTKmNZAAADAFBMVEUAAACA AAAAgACAgAAA
AICAAIAAgIDAwMDA3MCmyvBAIABgIACAIACgIADAIADgIAAAQAAgQABAQABg QACAQACgQADA
QADgQAAAYAAgYABAYABgYACAYACgYADAYADgYAAAgAAggABAgABggACAgACg gADAgADggAAA
oAAgoABAoABgoACAoACgoADAoADgoAAAwAAgwABAwABgwACAwACgwADAwADg wAAA4AAg4ABA
4ABg4ACA4ACg4ADA4ADg4AAAAEAgAEBAAEBgAECAAECgAEDAAEDgAEAAIEAg IEBAIEBgIECA
IECgIEDAIEDgIEAAQEAgQEBAQEBgQECAQECgQEDAQEDgQEAAYEAgYEBAYEBg YECAYECgYEDA
YEDgYEAAgEAggEBAgEBggECAgECggEDAgEDggEAAoEAgoEBAoEBgoECAoECg oEDAoEDgoEAA
wEAgwEBAwEBgwECAwECgwEDAwEDgwEAA4EAg4EBA4EBg4ECA4ECg4EDA4EDg 4EAAAIAgAIBA
AIBgAICAAICgAIDAAIDgAIAAIIAgIIBAIIBgIICAIICgIIDAIIDgIIAAQIAg QIBAQIBgQICA
QICgQIDAQIDgQIAAYIAgYIBAYIBgYICAYICgYIDAYIDgYIAAgIAggIBAgIBg gICAgICggIDA
gIDggIAAoIAgoIBAoIBgoICAoICgoIDAoIDgoIAAwIAgwIBAwIBgwICAwICg wIDAwIDgwIAA
4IAg4IBA4IBg4ICA4ICg4IDA4IDg4IAAAMAgAMBAAMBgAMCAAMCgAMDAAMDg AMAAIMAgIMBA
IMBgIMCAIMCgIMDAIMDgIMAAQMAgQMBAQMBgQMCAQMCgQMDAQMDgQMAAYMAg YMBAYMBgYMCA
YMCgYMDAYMDgYMAAgMAggMBAgMBggMCAgMCggMDAgMDggMAAoMAgoMBAoMBg oMCAoMCgoMDA
oMDgoMAAwMAgwMBAwMBgwMCAwMCgwMD/+/CgoKSAgID/AAAA/wD//wAAAP// AP8A//////9Y
0jREAAAACXBIWXMAAAAAAAAAAACdYiYyAAAR20lEQVR4nO2du44sORnHv4O0 mhG7KwHSCgQJ
iwh5gBUxAUiLkE64G+4LkPEEPAAZ0kRoWyLhRLABxMS8Ae9AgidYoaUvZfu7 2HXputjfzP93
Tk/dbFe1f21Xle2uJgLO+f3334TL9M359c2Zbw3TuazZ9/fOr4+G+Y/GAhb4 0fn1/jD/wcK4
H7K4748FrPBjNW1LAJsR8/QX9Cf6J/3tN/968wH95+Of/+6Xv/r1p789Tz89 v352fv3g/LqU
mPi68O3z6yd0+1TE12Xbx29SiaI/fvidf/zhp+/9+4fffe+vn3xy+cz/j/4O g96hZ+CCEYMH
flzA3cw0+Hw6ff72tP/hgMVMGnz72en0l3dfPT4+fgWDPaCr0DGDj1eePv/i wuPjF6dH0B5h
7FktD+qkwTOn09O5ED41PGyQeFYLUwbfnovfu2vgXARvtykyXbXI19c2gbt4 vgi4zFz+Xg3S
Vdr5H4Xr67LisjSUwdPT6cLj4+cpjZKSEYNgU64GafhzK4MUBnfXV0hLqbie vvjyUpOmNChP
6PKP4sIwFz8iw27sJrCCi5ZUC3KDIb3i0iXol+/eXa9DeRFM5eoqhyhWlYNI kkuFTWAN14IV
T2PDeZBC1eDjtQ492/svuxCNnwCSph4fua28JAPB4EoKBmnM4JW358LIDfIZ LoeIaUpLMLgp
S2rRh4HrdcxDhuKUhgWK/4sTsw6sQV7JnJfTteiIwbPsE0sjGbxa4ZpIqoPB HXgeis7179Vg
vU0mxrkafHo6PQ8ab2V48EGsKBLXRFHwbYGVV7CGZ7Uwy+DtavTxq6dCgjBy MPcYfDhdmkaf
zq9CgjB4MLJle6ZB0DEw6J1xg8cNFQD3MWmwuhV0AQx6Bwa9A4PeKTtKffQw 2D0w6B3Rsm1H
WcBg99wcVUdZwGD3cIOh1LtkDOIbTX0xOKr10VuD9PXXUNgTQxmcb/Ac9oSx 9x2xuBaFwM6Y
HGWhDIpKtPRF31oVS/VNt6RGwiyttonHmtixexa2yZwFMoWlnBkxOELK8+0N 3hHfFUtb1U6X
Qhir0fwpT7eTt4Vh7lY+6XabQoVNfGsMwyINAVhEccZmN7Ai3Rg0pHX0giUu NngRqAyy28lc
AfMVobIp8K2lSDJ0MZXaLvUBvViW16KnfCUTz4MkTYWgLNi8T5uMwZEAJe12 cyEUDGYuRbBw
ftF5ScQzmGzxDAUZsjDFanSmQbFLGIwYg9eT4IMQd51Kg7VysbAMBh1gogwW UoPBgsF550F1
6lpXi5bOg6KQT3mGQbaGC4znwVtWiWtRUUSi4KFKDYEJYitymLSar2TXonoH Ot14Lcp0v1yJ
S69F600yLzeP+mbxKItqmxoMtgF99N6BQe9glIV3MMrCO8tHWYC+WDzKAnTG 8lEWoC9Qi3pn
6SgL0Bv45ot3YNA7MOgdGPQODHoHBr0Dg96Zb7D1Y1OA5A6Deuufd+SeD+Pr YhOD+z1mCgYn
mTBY6qOHwa6AQe9Ig7NGWVxn+HkUBluiyuCcURbPPF40SLdnL+fHNlNcE/8u enxsDA6DkxQN
htHepZvB+Lz8cDVIFFVlacNDt+NTtZcoTGFhcBJ9HpzRR18yKLJdCTT28rpr YRX6UwG+rYHB
SXQZnG/w9kMVkwYHPyRLaPZG6WW3weAMNqpFawKzFL69JMusRC06j/K16B0G y2fBkkFTi8Lg
Gu5tk9EGqwILBh9StQmD67nboLwfZNomDfJLmBGDOA/OY6N20XQXWDb4wK9k 4oK8EGW3kw8w
uICNW7a3/tUXGJxkW4Ob/2wPDE6C3iXvoIfXO1sYBC2BQe/AoHe26KMHLdnK oBn7Bg7i3lEW
tXTSxvQ0rfi0wfiQQpKbC5Cey8/WKsUyq6iwmsQKkoeQj1XGISqkPrV7ncZU /LXcO8rCpMNa
ui/E/o28FFeS3VyFx6vGWm5Q9KFVD4Z0tNFjLC/v7u/+/kGTjjIYAjt8IYLE piB3Z56plx62
TCK/9aOY9YoUl6UpImqD6VBIFBstPscuPpkvb5CPpN6Te0dZmHRYn32E5FRW iTmf8u7ETlVN
wNLLvtXWyrOZgwmnDbJaVNaccrckQhSXVLluUAbvN2jKYKkIxonIJxr+6Z0W VuQkxoNXAvEP
CjPI4/Ad8RO3SXFsvy0N2kPcx6DcHg3y5zgvMjjybObCs6GDPAQxJ3Y0tts+ DcpP5zqDFYGj
BlOIEYO1rUFlm8zD12Kwxh33gzIXgsy5Sj4JJeYEUwonzdQM3lcGKcgI+gcU xGHqX0TwZ9DE
kI+5DzLngryzS6HstaiQKS/0xFa1gme0vRYNOhF+JcOOWD1Imj1+Wl6LskkI +hD3lrhzu+ia
w6eRpQORhbI/OjVIooyuSmolqfp+pQbB7sCgd2DQOzDoHRj0Dgx6Z69RFuiz P4rdDOrAus8+
t2rwpWlI/hEzovmnmqpZVbrbk40pokEo9NV5v9UoC5PuVJ+9brCae8McD7EY nniYWqrLDZb7
9KeOd9Tgdq0DW42yMOmOGeRtmIXNlYbN3OqYN7fs0xeGc7CjO++36h806ao+ e66I2ApiEkLe
rnr7KGZJPEASm3IUCnKT2PnWffo5feLJheKS+EBx/WvZapSFSXekDAqDYiLC liYxO0WmlsKO
J2iTLgdKewq84qbx9Md2sL/Bu0dZmHRnGgxBvHkeNhUU1k+lDLbt0+/ToD2S zQ1SYcV4hueV
yqCOXzJY2xrUHszuXBpMebPeoLofrBlUbz5uKp5Z+B97kMf36ecDlqHF8eze eX9Ym4y5Ysn3
g2wSN90C6t9c1gbb9ulzpQ077w9uVZt91OWAo9FpZGkPZKFshiuD9dgN+vR1 fdAKtGx7Bwa9
A4PegUHvwKB3YNA7MOidvfroJzHfYq+30YzdbjW9FeuCVgZNK2NxIg6ims7r Zq9RFlOYJqlR
g9VSOnt4zctlr1EWUxSbhWsGqbBp2+Zhx+zVPzgFMzjiR4QtqoPBvUZZTLH0 PGg3sU6nV81e
oyymWG8wL71uOqhFw6RBnAdH2GuUxSTmW+xj94P1ELgWbdwm8+rzfz0w6B20 i3oHBr0Dg96B
Qe/AoHdg0Dsw6J1mBmt99KnHgrfJpEn+Aru+k6TCsO3KDscDTQZjDwLY/yna 0/TWR8++Hmsc
6Vbt0pHO2OFUqDlW5OE3pdk4maAMDrPsUy37Jm5DB4gtsdLLkyC+XuYvS1H2 KvMxCWmHOW1T
fkc+SYfTapRFCGWDoWyQTA+F6J7InRTmu+zEKsZab4dMXWxiCzmlaHVuid2V VqMs4qc77SKt
SKfHHFJlaLGDST1SQVa5YofFBGRadlkeOkujT4PBZNmOZZBVduIzvdRgjiW/ JW93uNigrkV1
Ok1pNcoiBOUoTXSNd4dBPluuRU0C4wZlSqYsN6W3URalims4DmGweh6Ux17J bNKpCmPm/StR
4ri7M2g/kzuVwVoffYgLJPNbPyNJxAwpI3lS8lqUlx8qp8r3O3ItSjbBhjQb ZXHjjve/KIoJ
vHmGd2awRk8GF8XZ3WBzga0NgtXAoHdg0Dsw6B0Y9A4MegcGvdNdH33pWYfj CbG/r5FWBmvt
orqVdEZKrDX1NdJ+lMWwNGaw/ADQOLEbAuujfvF4MCi7EFIbdFAGiQVlUV46 rUZZaEUh7ZH4
kthcmKTGdyu/i46DA2g1ysIYLPcf8bDJrH72vZiBQZkHcWlXg6K6zMsjZTDA YKLVKAtjatZ5
UJ0OczB7nnytBg8bZcHPd8ROgMX7wdQlH8SZkluSG16zwaNq0YHZWVwO+BoM TeFllEUxIAQG
tIv6Bwa9A4PegUHvwKB3YNA7exnE79EfxW4GdeAF35svf4k+NcKoFnEZKvDm Gf0uyitIryMb
RhzZ5G2oDqDTmIq/iN0MVn/FVTdfquaxUM5B+3vGoRhqrEXtLoMmwgyFowa3 boY4yuA1lfQ3
Z3jhe/Nk2j+JuMHCtrDTD9GnY+QVhCz7lI+Lf2OKf0DF16E2fwDGXn30+vfo c2LSYKnosda8
9D/O1baRihb4vsxWabqUJj9cWXPKHYjDC8Ul9cYPLoMrDOoyuPR782TnZDFU ocYM1oNXAkmD
/Cjtp46XuPoeDjIYs2j9KIt6LTr3e/O5L75g0G6baVB8xV7mLE+zanB0Bx0Y jPkTVo+yGDGY
50jPp1ni68tlMJQzrJT3VEi0WAZHUwkirkmoK4Nid9e51feDIktEtvA3mcLq bC99g1p8xEQ0
Hqbot2aQVLhgF5RBGVwckCzRRxksvPf7DBqWfW+eVAyVi4VrUSFTXv6JrWoF z/76tWjKdzkM
4PqJzx9Ffi3KJiHog9lU4sGjLLb+ABYS3WUXdoe26mjEwaMsNn/HhWcR7p6r qaLu0ODN244G
weagb8I7MOgdGPQODHoHBr0Dg95pZ5C1TFF1kkLeWluqt19UuC8UsQsbzarS LR5vQbEtBx3c
DrZ8EkKcCbzpSk5SiKnmqHpWylaw0ThTBsUm1c3UjlYGc3maNEip30f2sgfz jPpQeNI9cTMr
u+yZLz5upy3ta9G5ZVAF4K9sUISjQkJBxDErgljQ4YJ54H0HCvfqo59mpcEg XiQ7DeoJGTmm
ji4F4mnL44fB5QZFL7vM/FjhUT0hJWdhl33/BoeaYoNRFtOsKINB5qlda5Kt 7MOGLaQoDHZf
ix75iyFsutDgeBkM4sjVamuwVgZ5ID9lMBz4Leyct5P3g/mqkkIwZzxl0F6L 5tRWdtkLXawg
NuWwURZlluTA8twyub4Sm1Z/BvceZaFZlAOLs2vjYtKlwNbPsgCrwSgL76Bv wjsw6B0Y9A4M
egcGvdOwh5fkXP179bzJTDR+qfRqvfR6h+OBJoPFMLT513Hvol0Pb7kdkvV9 G0didWHrzB1O
hZpjRR5+U1rWosLgMIvfo19KbwZD2WBsiM65zmbT+mDWv77fo6+A36OXh87S 6N1gzOUdyyCr
7MRneqnBHEt145sdLjaoa1GdTlM6MBhE9hfOL4sN8tlyLWoSGDcoUzJluSmt Rlnk967rPFtx
DeqEwep5UKRoK06xINNJqag0jChx3J0ZDMeNslj2vXrTfy5jhpSRPCl5LcrL D5VT5fsduRYl
m2BDGvcP3vH+F0UxgTfP8N4MirqhT4OL4uxusLnA1qMswGowysI7GGXhHfQu eQcGvQOD3oFB
77T/Buj09yYqHfa2+c3uodLVX0rYHlhxRW1/qTH9aBqOsogzgbc9ykkOEdQC pQav+h6qMfka
G/8ug+y4D6bdKIvZBkm0gvLmzLwcb4P4D9FTNSbbs0ogFluzIh6KaY8V7+k1 GQzzDfL70vSf
G4wT/jJ3tCxmfrSCOgTSMfJSOhCVnu68Ol6hU4OB5H8ex6Rk5tQRjMXQBkur h40k0jwMRwb5
F9vzZI5BHVMdwViM+QY7LYOxfujBIF9YZlDFlLVoad85xpTB7mvRzgymOco5 OM+giBnkrsdi
aINmbEAhqWNpNcoiCghh+n6QeLjbXM4+tUW+KjFzyqJDPkYiuyJ+kuvXos16 7JuNsrix5zve
Mu25afViMJgPsUeDWyY+M6kGAluPsgCrwSgL72CUhXcwysI76B/0Dgx6Bwa9 A4PegUHvwKB3
YNA7MOgdGPQODHqnXR892AYY9E67URZgGxqPsgCrQf+gdzDKwjsYZeEd1KLe wSgL76BNxjsw
6B0Y9A4MegcGvQOD3oFB78Cgd2DQOzDoHfTRewcGvYNRFt7BKAvvoH/QOxhl 4R2MsvAOalHv
YJSFd9Am4x0Y9A4MegcGvQOD3oFB78Cgd2DQOzDoHRj0DvrovQOD3sEoC+9g lIV30D/oHYyy
8A5GWXgHtah3MMrCO2iT8Q4MegcGvQOD3oFB78Cgd2DQOzDoHRj0Dgx6B330 3oFB72CUhXcw
ysI76B/0DkZZeAejLLyDWtQ7GGXhHbTJeAcGvQOD3rnHIOiK5QZBn8Cgd2DQ OzDoHRj0Dgx6
Z34fPegTGPTO/FEWoE/mj7IAfTK/fxD0yfxRFqBP5o+yAH2CWtQ780dZgD55 6W0yCzranPLi
DW4Qom9g0PkbhEEY7BwYhMHeGTf4DfANDHoHBr0Dg96BQe/AoHdg0Dsw6B0Y 9A4MegcGvQOD
3oFB78Cgd/4PR0e672231D4AAAAASUVORK5CYII=
--------------040702020506050307050305
Content-Type: image/png;
name="hillo.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="hillo.png"

iVBORw0KGgoAAAANSUhEUgAAAbkAAAF7CAMAAAB4qgWlAAADAFBMVEUAAACA AAAAgACAgAAA
AICAAIAAgIDAwMDA3MCmyvBAIABgIACAIACgIADAIADgIAAAQAAgQABAQABg QACAQACgQADA
QADgQAAAYAAgYABAYABgYACAYACgYADAYADgYAAAgAAggABAgABggACAgACg gADAgADggAAA
oAAgoABAoABgoACAoACgoADAoADgoAAAwAAgwABAwABgwACAwACgwADAwADg wAAA4AAg4ABA
4ABg4ACA4ACg4ADA4ADg4AAAAEAgAEBAAEBgAECAAECgAEDAAEDgAEAAIEAg IEBAIEBgIECA
IECgIEDAIEDgIEAAQEAgQEBAQEBgQECAQECgQEDAQEDgQEAAYEAgYEBAYEBg YECAYECgYEDA
YEDgYEAAgEAggEBAgEBggECAgECggEDAgEDggEAAoEAgoEBAoEBgoECAoECg oEDAoEDgoEAA
wEAgwEBAwEBgwECAwECgwEDAwEDgwEAA4EAg4EBA4EBg4ECA4ECg4EDA4EDg 4EAAAIAgAIBA
AIBgAICAAICgAIDAAIDgAIAAIIAgIIBAIIBgIICAIICgIIDAIIDgIIAAQIAg QIBAQIBgQICA
QICgQIDAQIDgQIAAYIAgYIBAYIBgYICAYICgYIDAYIDgYIAAgIAggIBAgIBg gICAgICggIDA
gIDggIAAoIAgoIBAoIBgoICAoICgoIDAoIDgoIAAwIAgwIBAwIBgwICAwICg wIDAwIDgwIAA
4IAg4IBA4IBg4ICA4ICg4IDA4IDg4IAAAMAgAMBAAMBgAMCAAMCgAMDAAMDg AMAAIMAgIMBA
IMBgIMCAIMCgIMDAIMDgIMAAQMAgQMBAQMBgQMCAQMCgQMDAQMDgQMAAYMAg YMBAYMBgYMCA
YMCgYMDAYMDgYMAAgMAggMBAgMBggMCAgMCggMDAgMDggMAAoMAgoMBAoMBg oMCAoMCgoMDA
oMDgoMAAwMAgwMBAwMBgwMCAwMCgwMD/+/CgoKSAgID/AAAA/wD//wAAAP// AP8A//////9Y
0jREAAAACXBIWXMAAkVTAAJFUwAOoIj/AAAgAElEQVR4nO19Pa80uXIe14bQ 3HNl2BYgw4AS
yxAcKXIkKHLgQC8gBb6Z74b3Jg4EGE4cLuC/sU6MnV0nM3szp2+iv/PuOvCp joRyk/XN7vk4
5/TM9MxlnTMz/cEm2XxYRbKqSKbU6UHpn0wffAN9JK0/mT5/ysd/eirgAv3Z 9PkVH//xG5/9
Z+7ZX50KeIT+TfO7EQKAVP/rB6cfLN/TGZYr5Qux/GIut/TGdGnCcbqF9aTc owiwxDldxHoF
86f6CCWAiZ9HOEclWP2n3KHGUf9rPnOy3NCVmnlJmiOgFypXQbKYOGim/NJ7 X05SdP8x/a/0
D+nf//r/ffXH6f/++V//97/59Hd/+1+n37+dPn85ff719PlqCiefQv98+vzb RLVAPuXen3+l
HJT+4V/9i//5V7/6o3/3X/7ij/7sb/6q1PF/TH/9L7/6H//5L776b4nDl1JG KtH6Vp9AgLDi
sLdKkFHLj1BmqEGKjUq2FlwNR2VL9+RkgjxdUDyQpSrVSAmMlBhDqR8pM2RZ 7nNOSqVKCFLN
9K1QX84dvAm4o5Sprkgp1MxIBqzWaSXWKpekEF02JFP8XigxCYNgwS4Ro5T7 mZiQnpkKK4Pw
ZSmHepjRwiDFmRSkJJkrgajQhcVSLWVKOF/AcyCVisuA05AawBek2lDa9D7I 5ZSk0iVmE8kv
VVSGLrVl9n6qTCxyS7IIUr9TrUucJuehFqjKDQTPJSDRVGBAzwU5rSYsE30+ JK56P2O4TN8Z
kZ/mnPtTST9LzPXuxYWEzafGbJmUS1kzrwmi3OO8J30V4/Wsz67Db5IhpFLg RDi7lhC60mI4
0IoeMUTnqpQrV04nncs4+oNZ2BDZ/Bq6+oxNXOfIVZoQ3FWwNlkW3+gSY6YL uMZXwXxJbi4i
V2HchQYDmJXUkeLA2XWP6yUNTqcNUkfuUSkglyFnPng7veeZW8b3qJTtIBTJ As/1InsIYuQO
4/4wTn/1f/rUg04bo/EwR27MlRfrN/111rs3FQCyo+lsAbkDcCs33T/sv/nm N7sO3AYoexSm
4507NeQmVH/z691vJ54ccj4coNPdKYcma8wwupsFuZTSWPkt77757fT/DeRv dtTPzPZDNYCF
qZOt9OW/gYUth+/0XpoaMbDma2KmndNBFKNNxsqGhMIE3ZiHbxizTLjZEQzA ZxpguiYQSjup
GHP4Tu+gwkkOuHyoPGe6MNLPjiXor7+ZhGV5ZPjtPg+ExEtV1E4HAyiMKQtC g0ZbLhW1Lp9X
wAaC7l5v/vgEExpFIU3fEwMeUDTORXldFOi5Ipd3v5047vtdzt9U2ErJJ+Oq LLyWBJQaSPlv
SIPJRiDkO8d9gAqbFdNNNdfkSS4OI8FG9i2yzx2ohAf4/vvdmPc7enJCItFv +Unlrx5MHFUZ
cZguvEyBBo2+3i4nEjZ3lvsAHUpBktQrPFekZxIbHxJ+u6mAd9MYnHjvNyzk oPJRIUgTShWL
8j/kalMq+NFZDTCFGAqAuV6oWN7xpZ+CDpV5qLnKEzuNKMZP5rnSzk1hdt/v dt9MqA175pRh
wqY2dAUVwqUCCMMwVFBT+SkBGTN4KagNFHZ6aIq089y7aag8N1TkhklUDnkk z4DqVMDSchxq
GU///2kCd0eHQ5WHBZYiLwf+ZMKrRscoZT4bFE2Wrx22D1AZVnPZltKdpGVt 59grR8dzAyO1
29f+SYGrYpkKe+Ui/CpymdiJmW3giwTWIOARvIXnSkSd3klT2Y0VOOo6TCfD yN5C4ocy/RRw
C1jD96XBGwg3Fok1GpKW0pgNdpIZL8KMGjcD8K6v/vBU2KyyW2GcTNLS61CK b8iBsZqawSHv
v/9uN+7oYeLVgfuWFSACJbFwnD7j8JIYPbrFknV4uedrPzxNcOwG4qgqAwvP eR+g6jBZ2rka
dty9koxl5IRpcg2QNNIxD3YfjqU9XuF9/qCoFmBm8XcYhgOKaxmyB9HEc0RT Q/fNd9999/13
3+1iHBWiNLS0iE2eHXR6H41EO/pMyImkBLPPueCL5T3qzSWwcrjYAbsW7WM7 Vy75km+gGe13
lLNxUGk5No8YxF1arkSjMsM+W9/RkKuuDOTIsCOXhunzw46u1Zs/jHT5h7Hc GcvZ7gf1gODv
HzTw1FQWNj+Mnd5Fh1pyBzmc/pVjCnwFOSgCdfA9zk4bpIqcEfHcNIT70pHb OB2G8Uvtxn/t
kJsGDp3ntk7jxF0VN/oryFXt1+v+/LOd7knjl6JGGb7+mriuaJw7zz0EHZjn vv7660GQK337
sSO3cdqXIUCxsE1Skr0Zch0V7M4/2+meNFbRmIZPVUOcWVruX+fSMndn2U3R YXgdK8ORpp+R
m3ooo2DFc0aqPwKR91uX+1lcMeUYQL/sx7wz7T640ADm3+fO7VdiieHFxbBQ vZj19vNWt/1Y
dShiiCHkMrVzOgerFEr6/JlmCis85vzH07XUpdK5xvqJXDmWNTgPTnH2s7J2 uIYPeLRdOloB
LPTNCvEuVHWPme1synO717y3Vxee2xU0P2eHiavZjkucM7TjxywT8rz/7AAa NvBVzgtYl9/B
ONb/a4YcO4Ik8pxUuCuLtCTtF43nRl9phwLcobiow2ep7goTl5ahZVfCiXNQ Bx/USU/FVaWi
XfeCU74U0FBtQLxB9ZFnJOpbVo77D16H4tq5uoxA+vxt+iyikVe8Ue4qX9wK ah2X4icHF8+I
QVjW1lPCgJel1S+3aedcDNbOWZWh8IluVRfrp8WNdCik/YIvghxbyono3Sfg vv02SfXmBi+0
J0mkYiOxEjgOAjA2rZdSDc9r1Ahp9yd5ngky0L+C1ZXEkAmvPvWc9/HLMCEG rwU8qMjl/CXY
CmqJff6n6dvP6XdaIlTs9bB6L1PRJ+KgnGx5llSXb8m0Qkuu69hwHOVCDZIp TA3AK7lU1kkS
J12vaQy0EhE5QGl4jpdiy5qhZEvHPCGNr9XKU52Yhecg8lwpyM9/WYA7MEcl ZqGkyzPR2k50
q0LCUFa+oakhLmy2tZMIxYqDW21MQmcwYUoRcSxNeMsD8G3N0NPKy4MzVefa Qynvulee4yFS
+vbb3/1uJ4JOfNsTSNlmQZOh4WaLkSMulR9phfgW8StxCcFNkhIUjKTXNCwn kvUnC1KafnXy
fGLkxpk3Q72aZfY4IZf/fmrlSPDUdkkas0QnJMKqB6cUI+ObIbkS9iyVa0EL Isqh9BAQVi/C
x5laS49TtvCDwxH0dpJK8qR0WEbO2rkKXOlZ/v3/SdJ1TMAdw5fsqrgxlmef pDyTFGVwzCKS
MWeBNsu1rFxqDymXgw9vDDp4dkz5iaE7mO9XIUZun93VUtk/T5R2VQsd27ks rRGD5NoeavEq
32TX92fGyDT7p8afGlDkGotTep6bLktApO0L4ztIqwnaND6xsDyC3MRzepXa uQm4aSROnpky
K4H7lpC0KLnh4w8DCyxIIQsfcls5fb8QDyd6gKKW4UTK0vGkIBqQYtLwYPyd qHEV+Tudvzwt
dMvI0VWvt0zpdzvAAbJTnoCKNVVXRP2WxKodhSxK4SwqFDeqjvFSgMGuy1N6 T0foOWZABpDD
M8tK0lu6U53LM46q86NSnoArp58/u6KTYbSUW9SIuaIcQEbnTUkLYm5wbsN7 ASj7OHODlD2X
DXVVPz8xdHPkylS6XbGsKnKKQCaFs2OO3NzWP4UBwu3mJ5xbhBqrPG7JxYcc 3hrAon5i2GAR
OSA99HL4Jy+OB6KKXG3gacVjQa57EG2dDgOvzUDrWAty49C99jZO45fXoXZL eEV4mie+y53n
tk7Fg4jWqab9Fbq0fBSiOas0lmaeQ8SO3Pap9CJ1pwkM47lOmybuWzJ4IjP7 LKzt04HauUJI
q0eVwzHqxDptkI7Y53o7t3la0FvOr3baIC3z3L4jt3nq0vJR6ai0nPVQrrWG XKfL6P3IddoW
HfEgcnjeZeOSTkdJcFnkuTASnzHfT4V+/Eno5x9/+YkvlYNf9Lylnxcu/cif cjKOP/1+1Vr5
lOSQUz2XrPvVaL8Oci/zgnxXKt4S94/XifppCD1yY13fEmVn1bnGecZzlyD3 Tst5R+40ReSG
EeNOE9C0c+D2/yyI/DR9MrZbfjJ9zNnhf3/o6ecnj9xOVwNG22kCdi3P1YXC 9vsqQwtyyDsI
S4y5RptdCkvpZtlMOWQm69G1BPHTUOC5qW9ZN90GWkCd9ivw3gyV58ZMfpQF ORJp1Su1cl7Z
ZRwTb9ZdkU+y53iTKgRMbSNflJ2+f1n/ZZ+KGuRGmU6VeaeJ2M7Vgz07xJWT Ury8r3sh2lA9
iXmWr9P+PrJ/9xw2OuMNoGVr+85zZ6hFDsmqWlZwph4KzWRl+qE8cWDnxsKJ RVomQohYjvmV
PhUFOuENsJNgW53LZZJiQY3D8xf0Hso58sjVNWuoQyl+KOQpG6TlBCVNJZB2 LpFUJYss+43V
X2S5Z8JSIatwMlLkaBbvcdSdjlPkudcRZaeJukcINuO5enCAutUBSDvHPRlU DAOzoQMO+Abz
XUqKJcgRquTtyJ2mwHO1b4kQvBnCPJEfaOuJ6qw+CM9x0Vcx63gO0UEilFxL OAuMDCfWzk5v
505T4LnX4kFEfQdDzs/CKrfrVoJ1fxFgnsvEWzzxWDgKSfCCMhFFS+KxPANJ oeZuKfEcB+08
d5pmfUuk7n2W/QoCzx3KAwdeALrs9Fm77igtGzgwpOnCyHKMDiaVlt6hWtq5 T7n3UM5R5LlB
d+sknisDY69xHnW0nJ1y0bhsKnNp51haonRTgEPWU+1YiuDkgZwfU3RpeZpm OpRsxcztXA48
x0NuRuOnyp1VJZLkKdAosJ54XYltwEunGbx41p+SRB+JnyaP3DC1aDrLbdk+ p09xKWtjhAtq
ElOMgH8OA3hHn+o8d5pC33Js7XNYdw4cI895umI34qfI3ccIjwSYVxt/wWnb LshKG+aSZ65O
7ajA3eEdlU5bVn/+6ccff/qF7Ke/J5vq7501tVpWi+V1CvLLL9PBL3r6409z +oUssj+X/58l
f/SdFwtsZqZA/zXDJcDM1qxTOGBzuz1fysGtqLHy7Oh1sbZAlefyOAzHee4G 2dPyPVJEM3Ba
RfYRY4XFf56rj55fIBSuRbORuHQvUL0ZWpv4RZGumsWj8WH4AYeHNcWtarsB 9rS8PMt0Z3G/
GrUj8VxVzZRD3Wf1PM+pXe34m7TWuEW7q13MbYkvR4wzeaUhcZi3cYPj3/Jo xuOGYQ6JGY+f
35Fm47mat3pH9zbOUeMcnzbKJNrm2IUr/r3n4LXcw1XoRO5jckGwLrRj4caF 7HJaWuJlnZz1
KSBX58/p67GtYF/XlCVa5Llx3I/jYTfuhQMacTIr29ONS+CuPHt+FnjOcSGK aLC3G2gwHy/5
TXYqmbAZiRddc/4E6s0QV9VYRE7W567eR0DWHiXWX7KNvHyTieiI9JMn60x1 1OfBTOUxeMbY
UJG5KWnaKWTGx49V35oA2oFoIM31kfOoT78pYaO3RFti1DyIdI+QZZ7jtWZG iVGMPgC6DBgm
uU6XrcS1l2A9o8q4ihwBIZ+Id2pFFWm3tTDRI4PtgS3n5u44gcCRpwAczKvC BqRl8f0qRrmM
PNuYkDstLXHHSwCJY1iiWsl+KaVqA5eQOj1I4dAEWbYPkS0+V5U0oNhYkytd dpGoR6SgTnoB
JXh5NlNkAMxzwrAoBt+avORLBSsbeZPkh14gSUiyaryYZaQmONMe3YhanpMs AoD2UM5Iy4HW
2wPWnCHLLBJ5ym/TJ2uJScXWEvHLGap5nMq5lqyWLpkPeQVGEYbiICEsYCfy j5yn6ftFwZKI
E/nAsA8GyYYEEnuyLGhVQI3zXrJyoZ2zdQ7F9+uUp2x9rKz7nInniOhpRgTV FA5iOgftzSfy
EGR00UOB4EpKHF3Awsm6mVLEtXxfNH0DXsVt4WeJH0QKm2B2aGgornj2w48h hEsrAPFmaqUl
oF+bofVmmCFX8jzypCxZ7Vl5zpUTsVuijp5r4hP/Ifv2yRNV88YlY02ctXmC jTzor1Pz17Cd
1EWuEsidIF3+lHo2FVvUthWFJVWuovadTNTeqcMZkXvldb/yJ+QZ/me800sE h2Ijn/huzzIw
oyJXbeRZJGbtmGjfjNod5jouS1fMnuekg2j8oCUqaRFYyg+YTfRqc6oiz0Qn 1xPOj49c4rMI
nMQFJ063MJ6jdaK0v8428d0pHUrlud1I/yBuy9RwKPjacFo/Q8dQwo9WNqV/ pBVfmESbKuEF
a4awRVRYxAIkdGkz6NrGeYbWZjFbOnIx1IMgR1eC4o0UeyjjTuyiCKfsc7M4 FAnrN8sQDrSf
Jv0H95yVXNL2NSWTU9Q/0K4cWjjukErk1nNxbGuYandSpDE0aTI3cd9SH+EI gbuQSb8QpDNs
73Nbmvctbdijvl9v1TiDdEfemaNmvHfdouHO0fUTWpkWRgV6i3aaOGmfOxpt fl/bre4oOhgO
XLo2odQwExAPQw1y7WxjaueOapxPxfveOVim+JwpPa5Gd+sgfoDO8Bxc0s4t x/uxsrB+0lUL
FePXI9Fp5GrXcXyPTfx9HEeDiiUnhOsRQn5I7M7z3Gzm44XxrsN1eN0SdY3p o9E55Mqc1Td7
M3wkN1yQoY27XrHmR2zhiM4gN/XzTo7Ez0T9rvyE4yuXK/qjx8LQIzdfyaaI y3NWnja6qWEc
D+XvwFdONCKsq2luY/PbnixGGTBYwmE5tsV8HUFRIs6NH+gsIzepApHnXkdX bIpcPm1ZbSMk
nDNNHyk9lUTzQ0jvgKJTQZ7sqgM4kFdecNFpVDNm9NH7NHykppmsfDZTVocZ iRtPFINU8rGo
qqzeC6O77DMo8SaVCmYFNtzCHKYrkEeO5s/VLNhOE7h760h85K1xR46fFVN2 5PSPAKpsBi2c
RkryYg9i2hHll5UaxULPVqsNqFpRo0ULZImAQ47H/JlPUHDWYqqwOKeWagb2 ITD50O9VIV1M
GK08e6gbhNDcfrGsvl7ezpUX9jZyqddcQlkRANPyh/6IKh7R9I1J9YVkq2UV ImutgO3gGGzo
CN5/xd3l9QjM5F41j6KvlLTFps6UOHFIIjeqJjObQUgVqJbKtbV2s/lzdau3 RD7ORWtebT9M
53kO1UYu/ZrygvDClTgiwTOyUtK6LAZxEIso0hV+TL+Yt7zZWiGzmoJmg3Ca flFNixVHzAGY
xH5HYbIxkQQwU0PieYJiCZTIvE32ulznkZv6/3s0UzF77b3ZO33kNRhL4Mwt EJsyk8PGv2JC
lXlWvDlYx6gJEgTV2iPbOkrt1+D0ds7iigoeJpdQRslJdugiBqazNFwONRoO yLLEhb0qBZ57
lZ0mdG2GvLAG0Tka3Txy6TSwHAGHFbEEO4BoOwPSSyCZrX51xnCy1E699Uli MzclTa82kN6o
zfwZbegssEEjszrlkEN/XSzBsfZJomSXzVfun8x6KDvZlwfILFq9Gd4iLaF2 RitJYHnfWF+t
hyB9RWn02nJV5Apm0knhQlUmwuS5yopyVsKJjL7uuodXYtAA8gpiZAeXtRTO YvW8vsk18tzr
K5vymefq1TfwXGUgGs2NqnnhVyGZiaEYtWzFHifWUmCTqpYLmzu5D4cBCnPP ogistWk8gXyR
oyauFjplOHsYWWwY6tYEs+U+OJqBqwa37FueXQ34ovGcOyTXbzU9o/bLasy6 Ooqzx1FHsbjW
JQ2RkN0LpLnUp6Rf53iO4TC/6uRaLWdDpxFE7VuKo4z4nqGlq9ykD0VjOUcA vApF9YXX101w
TcKTOpTy86H5c6IyttHOrCa2gyZuLmIAnj+rcbqBXC1ZnX+ANtyYf+Q5DBGA zSCRQxqoaSeF
akzWHLrMuktupHfkVVelBrnV7HMUAToDiveSwvAjBcCnLy4CDWL1N8Qhy4Wh vxWdID1GIYL2
VoNFhStbf3ExmvA0gpt9eHVqpOXCrtT7dyMH82rtj9xpU13RwjlusACIseB8 jMbl8+fowpwl
ENE9HPLYABsiaHJsOZ89ew1qkDu3dvo74p+DpqXfSp4QKvuTGKB+/DSeCF28 n3melSSlOkvh
EwcqZGhKnmeCGiQYnvWVo8qY20hKTmF95Py7MwyeC7K+MEpJRXtcLI+mfPga xZZdk+Xqu95f
ZJBjWZ3nQxtGH7OcacMHMv8ocPi1scO1+5Yh6rlwmb0Rzg49gyzEOYfifBkd CREkcODp2VPc
rfH8GY9ux2yW0DmeG/P7+5YL6eHiW2rdnok+z3uxeFsZiQvXj5dkI6LtWZYB BkhbjWZo3YUC
cq/jnOeQ1togWgM5/afSQpU8IRCTzW1tDnzJZsfeHtsc3VgWHZMMLT3ykC1W BmDne5iL4xsS
RivP6PJ4yVye9ySoJuX6+hlpKrexwCku8QFCUc/Yt35Jb8SLxcUo3f1aAwQZ sWGYy77YfZdF
xw2pQW6nLTvI/LndudnGb0xPXfbB2bqcTgX84E30mqBaJrmIsjgZiPZZxFyW lJQxbJ66vXXb
J6oPUJYkG4iotcO9QZaZXzSUTEs2/BtQ0869gokitax+ZFSwkKDXCAe1bRZn hBTCAzrtFoID
lks/Sf+/uS58khz2Fm3gHeswsn70iE+YPGOK0WsruY4SBlvBuOfSDGszvMc7 /XhyxM1aLuzM
IQ4gpUSthOvMhkTOFaImVo0mcSs4g0Ny19nOKaIziR5dkiXjY+KkZa1NYFOh KC/dksb1R1d1
LGef+PD+0nKnazOQnLxwtvElxOygciXp8IcFZ+WqxFYBJy0Rg70bzZgQtPs1 bEK7nmnd2rKA
hxhPw8ySxrorBm+RqGJ8cEmQzUsEO4qwhHtBF9u5YolLYoghm/jHNM7z1Cp5 luMfdHad0M6p
4h2rlQyD1ab2d6TVAW/NgaDMnM2yak3blg7O0oXwpPFZsnjuQFFaDnuTINbO vdGyejZBbw5w
TZfnI22itHysqYPAc+AFrvQvXKMIHMQSk+YswBMO0U+9pFxbr8ohifbk7Ski 9zqKtAfzt3zN
qyHHRSnA6fRIsZ2S5Epk6OIbdDknnZVsPj7CSugLUVjCCTdp4EI753hXZ/0b z5ljhea8iN9P
Ns01gzaIHyyV91EzKtiTy0CtsMd2DvwwJe0ECnDopm2XXjdKX48sneJ5hFgB TL7gzfysLMnP
mPaYbXviKMuB5enAc/TmYlPVpo8RVlHAS8tvhecOk2CU6goAl6wp+/bkdMT0 wkf6c2w817pg
cqP4QnGh1HnUoaH0QLVVTdLjBFRHPZanHDlVEueaxFGJ4BFrvgwQaZDfumXe lOJ4bqw7B7Kt
wmZhrTcqcMl6Rw1T5Uo7BGqLcSPmxGux61U0U1Cw+KBMRKKISF3sRbXPiJ/P g/aQxS+xzrMK
RWhuYVRA2i8dba7gzTBPTt5XRZcDB5uPe0A7BlLzaxcKQqEZoADmwtOOqbWR lbQ1gZCsJkTn
ZtSz/OW2w3pTwnNWHnzfnNXTSbqfcARtSTqcGv4DbwbF8LypgwPsodzDjUXK YlKNiaI/qQd3
WmO2aed2/lZFLq/bQ9F63QgofykU7YytmpOGSTw1TiEzLl4+t1wuiAA9woU3 uS0F5LJilKsd
vwqnNfWWuIDTIjQYLoWLbUFdgsQzUsNzV5eWxle6aLfY4FBPQuhY652RyLGB 8gja2d2Y4UYU
2rnXcfRifQ0PollqwnQZl1koljnDkQWadsmHRoj5Z58bt4gc7dZp3QGRlid2 d3lHctaGNF0I
X+TZGUO9rPT7Vge3LWhge3bcGp6r8+es08Qj8ddV7XMm1pqOQwTITkLfo3Gy 84wVeDX7WJ6T
sB2JD26oubr2i8o6paTL74qCotw1C7lbWt1AxNCjAxStZ2r6lc/fxFVakpZ8 Q2Y+vh7faeLt
yaGpd/0cGhDbms7UWcAidOsRWDkupgKW8A0nPi810nLn31/9UNa1FXglbZgR BX42KeOlSksQ
zaab1q0Ld+vkG7LmA6aWEZ+PPHJFQ4k0Z0m8GXBl7VehyFR+nmOwldFdN2/c bDusdMZkCn2+
wcF5pvJTU+S5ap8T/4E1vRlccm42MCg3VZZ50RUSDDloJqQaTklnINo8UVRj DVtIn5gCcnUk
ruLpCh5ExbNSHBIYRuqTVASySL7skQs8ZY5EKl89skCmM5kt/NQUR+K1hyKm q2t47dV+T7Yp
/R4imYNa1G7mX4Su15LkovKcq2jGkzLZ9LkHdbGdKzqUJDOkr+EpqwKSziqA 6IUgwzFIb0ba
uWzLpNDD4nMHzY0EGiG2GpenonYkjlabr+WdbrOwxf6shmw/w1vC1rx8Mi9L VsoJQnT0SazT
LDjvZqm+Hc2kZfRmgLVnhNhwLPlTtW7HbzNdNsoSKDI3GKzb8d+T909mowLd iQxANc6rzsKy
8mwA0dJWxGTg7RxAbLydZnABzuB9amp4bu9ffgVbAR49ufxJnJ+2gF8S/Zwp Lwt7Sfj3PfIx
ats5f+t9yC1PU0N3ojqq+ewotI3Dmb2E2Ro9tWq84kS22ZQsDbxUske11xb/ iRjOpDF/Yl0w
G+QW5qy+ZW0GzZu6iCxMdjr5fnOnoOWzGOot/NTk5sgD84sfKvcrcOB55N6s /ZrX+AhfbsMe
KTpluthv8f0X9/SMfReiaxLGE+m3Mvksz511qlh7dOmR+/gaRA3PSblkVxIs AXHh3aApUL8f
OC2KY/uB66IMyBOjjtrYXVQOioVdEcIDs/uLUji8t8vvPP/v3cHhODXILaxk 81aeWxCGLT9o
G3MMQXQP8/2MsxuV1MErN08vR9hekPQRZ1L86Nn56JeSW3vj8YuQe9uasrTU 3m4cWUzi4AWT
r/zHRdssyAL+oV4oyicjPX/pyP1ju2gfj+sdyb2Nmnbuo8iVzEnoUa6Qkdtm iDsbOIVM9rj4
7/NlmtdLD9WoNJxCxgv12Yy2tKA+aS7J85Z+CmGwMbTrYqYnqQ3gzxGWsvUR wtOjgnetTBr3
F3d6StX8s7WNd9tyqyQmyYAH1DEAABTpSURBVBSVK19Lip/cd6yoKlCbgU6D fM+cbh1G+rUM
aSaPl6zLtyYbo5Ng/gY6Q9OJqefvJWy0X07qvHM1YFo7XfY6ZoekJCWJMk2R 19RDMAM28aRf
XzLT+pGkixQbrK1PqRuPG1fYFFM1kye05cyBVgGnpc2rcdbsSEmkAQLb/WT+ DutCdRKXLiVu
M9MxyVxfzqRIFn6ZlNZeS90jt/d7Ppofypt6KDjbX5yLsq6ShbIeuRQ53VMB KWuhy5FNC0fZ
R9dMcQkYMw0JssQimk2WAr6oEana+rPwXHKwmc0BqxGxJuwXurRpsEmTV1Sp Avp6wMHNnn/V
dm6n9ZvXZnjrqvcQ9xfnAYAKKwOOX7+sxwpJRZu8stubmH6cNRVDMTvHIxOn 4EUyT5qUQkW1
sqshz5DTvNqMZjQJnEQg2azIduI6J8e7b9vC7E7UrkQIjX2Ojcy15sk88ct5 jnooZZtq3l+c
eyYgLQKJTSRjDZV8vG2zD9GjY8ipXVw4k8ooSRmpfM7ocXWRaqOGbIb3/6CY qp1SJkZWpHiH
exGf3uibcjNl2SS3NYKrEc50KOon8L7dXbDuVzDAAAe0KippccHqDFI10k1D h3LtRSHQAuEm
J6M1dRgM5WiiFbgS0F1UFnOV3nFqZGDlOekqKQsL/E5acuRgUqEeIq/GI7kQ q8b1ea70UJDr
svmhvGFHpcpzZXPxA+0vTgymvUGGkC3uKI2+8hwaD1prwTVbBY/gVVGPgXlf j1CibrY3I5zr
otsiC5IHT/uqJvksPnWP4Ynr4i8qD0ueKDlp0uk1z48p3kqB50baaYJlwHt2 MZM4/aGtdCFH
ZgpXEcqhpcCSVJ8ku0uAsqrrW1oBy0I0cl/DsQiu+8tbT6N2BR0/KNsk6/tK MiCjTAGKPD6F
Pbk7qr1ibcN5tKMZhnXBi33LsVnJpqT6oXWcXTqrigsZG4n8ountSU6uQdbw qTi/KzWjgj1L
G0EOYJ3dOt+7v/jR6Ii5nGWceeE6XkM0NmDMtLm+LzUj8T24iYO1dcF19ll9 //7iJ+KcGf+u
Na0A4y+eV2Nen+YjcZA8rTrzcX3Vj4lJf34tQpbIzUadd6Q4KpjGcxllcXOZ P7fKvIJ1OY6B
mi/ufQ3W5rizZ/C8MWlZ5CLVKZGWU0G8e2/jJp1Vuc7tDQHR9+Ra3RN+A3SJ 3Be8VlrWKpt5
od0VpeW65HnOWAHj78rp0YGtf3RviuM5nuFPBbLG7i4xqdXVP/o7g+9ahOHn ntT0LUe7fG2e
E4njOQWhEUhai8Ij85LDGNI3SUtB5yczKDQ7i+lsALq5DkVtM2z3XKedk+Tq GyfBSfUPtY7Y
9AKuOay3LPoP9XSmO05osUZGUXXwrr+vuE74Cuu83YViD6Xa59RfjuZirb52 Otv1EeqOx05/
ZWcvUsiqkGc9lGyT5L4ksvqAbvkjwp6VXRzGogXHo+iUlXyVLHhcFH4qHtex HJvYe5BHbr7/
3BXm8oiGho7U6Kjq3jARR1aFlbXT0ws/73aqFxtANTJ8cvZpZhzRoacEb9hX nHNlC1gSVKSc
FCvjGqXxbpr1LaWDovPn1uc50TZS8dISssRzKJsUS41OYsJj86jqlsXcXU2b NaTap9mI4Ayt
aJVEUZE4xSjLcVBywWaR0RYW5hZkC9BFafk62nDOLKurrocCTsB5ntMleEWh LyFfQKwFBLSY
3NQwJ4yByrWIZpWlN3EGVWUpC4RwZF9xtf9a/kmipntz3Kxvua/69knyqDRa de10WcCGT531
Y/YjIaj6ZzLVeKu2WGGSNXdmT6qgZG0dnShWPtbItBWVWJf2FdeuT2wR70ge uV2uc1bFbcdm
+K8727hFzjsYmKWUQ5gziXX9MJSpXRVelhtoqv24rANdeMu+4iItwdla70wN z+24AxEsq2uv
TKqtj6vw7gfJ5Upcjzy0PpxzHQI902IXbysO5CBzzg3JkOM4RHp7nnPSUvOe 9F3uRtiOxFHa
D/Ha26+704S2FSzeqGdA1dk8oKWfxF6K0reQrp82hjLuEpzcrjySDMfGfUsG n8RlDVNXgkjH
9xXXkR3lnnK6Mftc9f3KSV9aeigrrvtFeNTxb7ILsxD+iBog3qMOeZAlYzFs AkrPJn9iiAHM
3qgffb5VVrvhPMcjzZ8PUoENe+neg9q+JQ1ZBDnyTl959SguO9/IY/hRjgMd VyfEeAdg9gg4
RhDWaEIEjGIkTZSov2EgLjJ8czxHazMQeChrM6w8Eke0xUXBKrpea5QTpdYz v/FXGwKCtRP9
ATY4+B9n+7eIYiStDtXVpfsvtYJRb7krmSRbfSa/unwNnhMzpRdw2F6wHHoW UUcCBAjIZFfQ
vuRP7iuOFk2w+OUA6Cz/s8pzB8K53hK4LbrG7i4uWcPD7y8uLBUrew0V2ShE 5Rsvjg89HthI
t3mhNzBF4exDUSW5N2zQSMtX4rla6cSX9W3e6ZemOS+qwG+zcI2M9I2ShsLZ U8spx6P5k03D
iG2WhIPvjN4RnqN6X/bKDGvhr9G3xAUArLMIsUAcoOZN4D8u4OL148XbiuQg f3VqsJevC5k6
ncRVqUFuaYZ/XnHtdJE3BpMK5xiIqe8nfpTOIIey6iXRKtJSeydv2E9ci6kR buiLF8L1eufq
+4kvwHojmktLu0XIHVa18lRdYVL111yHIjM/iHjQR/qWoO7t+4mfXz1q3b2w vErZaZJJt88D
6BTCg0yb4klBDgAqsiT9/ua68Ely2Fu0K+0nvvKEicvpPHKHdfefo2/TS4jC WBWQR/cTZ/Xw
RvYTR9lPPOpYbkdnkFvLm+Gi/cRJT4q+hDe6nziNl6Lh59Z0GrmSpzVXA1bg HMvxD4JyVWzn
zMST+n7iMRunkIO17XOUpqmCkwozNedooaMrQUwq2iDwHHiB21jFjRe0a+Oa swBPOAyWO8qy
9aockrgp5KhMgjfDynuEmA5fW3d1qErSuVveT5zdR7zZm3sgqEUvLHHl/cRx S/uJU/8/iR1T
fL/Gtfc2Pr6feGWU0/uJY99PnCjw3Pg61G4JVSO2rBbvFAmxQt9SR0yL+4mL D7RQLZi+n/gS
NdJyR5UNFbkrzStAcCULNnoy81vfT/wMzdo5GdVw33Jl73R573Y/8bkqGeMD 2jGQml8zGMfA
BiiAylBoAlkja2nz4yFZTYjO437iaJDjnViuQW60nSbQxnPrehB53tAjK7RY khjv648yBjZx
lXs32E/c6bK3sJ849y25qROZufpunbE2u/INkPn7kZsW48EFEG62n/hdoFto 5/iybKNyBW8G
S9v9yAk21+ZgSQYXY2tjUiVmi1d7aih4WxGfH1mMwfxSbk8NcssrcF9jV2q7 dno/ca7+Kv6i
MRrVy0HP6Uee5B6KNGwxbn2cYjYZrLdb2egfaOrUrdGbSUufl4rculae8LqL FXlJNtlB4501
B01iUJ8VtMc8J9tjFIorECOsT6qQnsna+d3bYnee51abJ87JaTGidzbV0qKi cWvYk+COped/
4hV0KViCTfB5+7RkLw9xtLdxHuzGdB65VXkuuk35Eg1268hHTpqK/PMmuIiL mywtbIMsbrFJ
2SJw2Phaghiy4oSk3698ZpS/DTXILa+dvq4fiiqDiyJLFBTlnlnIrUMgk8bL qSklk5zHmFE7
8kkN4ZVY/+EfSC/RIuqMCVYpJEkCJ/nQmiYrW9KtwcOZ3tJuXaVvORXtJxkM 29wZOLKfePLt
EdtKq4rKloQGbatAC09GpOCqCgaoRZlmxWB6F8ecCwYH8JdofVxwKwLcjBrk rty3rFRndHON
tom/qkpUVSDXZjFPmxKT5/jJHSQtuayhTlXCPYnypLfYyrdMBUedKyRpyfxx ecLHJ8u9C1+K
TeOWhOf6luv7OIuwMyNZg5yr3WIP8JaBxPYMMJiT/zThZXYxKavNgCcJWAQx RrUUCjzJ3QXw
cTXTNW9D2Gi/7PKq3gw+PbW6tJCFMyIuJdppOrm5kmJ9QcNeeItm/iSrBnIC ooRmKcxtF4fL
yUx1UKe08vMIBo3eNfHsTUK3pIDcaOud14ZhfY0zgO8IiJkUBQXUYuewvEwC W4MgFqDAbFXe
Gk6du5p0OQb0yFkCTeXRtFSQVzI2lvRA22KwqnNDisgNozOWXMXKwx0G6X+I l4IvFZTpcspP
SYvbMMEEvoADeubykEQsozReTlq6VtVM7ZaWNl4cg5el1NZZXILeDckjt2ON Mzf317CsQsNz
nmN8set+4qHdck0SatvkVgVwC3MUV6MXhlTApSEIStIql5MHhrs+0kBqb7VJ Tzq62UV1W6MB
tiNx3kYlCc+t7s2AWFeNYot0reLaYUvSodQhHBdM6FuCTsivdzAzamjoiRRW szWKo6YQRZll
unhZ0x5lMjpaw1c5G5G9PiU9UJ/q+ibcPb2jtBQ/FKj+xleziVutt/MFzWL9 9hu2ihUam1AY
HwQWeaqR9PH5J9E/7jSWLrQICD/w8yNHlPm0GxgV6MBY/C1X9trTgtQ3DYUh BRKG1rHQJYi7
PKvtyQUx5fSZnC3G5mzrTdiYj5v7NHjk9tWGKitXMHK4G9b2/eq0BkWee+U1 iKq4udZae51W
ocBzZV8e8w/XtRmuZRPv9BEKPPc6jq59sVlYnec2SAs9lNqHYCdeXHkWVqfV KPKc7dZJPFfG
lp3ntkmtDsWtMSM28dx5bovkkRvGgXe1dTtNrK5x7rQOhb7lOLfP1dWAO89t kNpRgb91Jctq
p1WosfLsVMuTacU2yL1vuU2ajcTdZl3SznUdyhapHYk7R8LrrUzaaQWajeeQ nY+dlWfN1YA7
rUVRh1K1X8py11mBu9M6NPdmQMifQL0Z1t1potN61OotxcqTgGf446o7TXRa jWa+X8UolzF5
36/Oc1ukuR+K+EFdbw2iTmvQrJ1zy9ddZRezTitRKy2rQVx5rngzHLrecpMU kXvldb/yCwB2
W8GmKUjLbJZVALGJd9+vbVIzEt85N8buh7Jp8sgdBuO5bDbxLi03SQ1y7Tzx 3Hluq9Qgt7Bf
QW/ntknNSHy+NkPvW26U5joUu0ULGa6/pmynNeg0cuVn13luk3SO5xB3XW+5 SZpbeewWeTN0
ntsmtbONI3J15uNrt/Jskdr5czxdFMHNWc3dsrpBms+fA1rKWbwZcNdH4puk wHNfSv8/8Z72
qDvBr73Paqc1aD5/ri6olmhv47KwSLX9MHXktkPRJj7udX8caef6bOON0txT NqzNkLGPxDdK
TQ9lZ/vy4LV2mui0CkWee33lVeNsbYbr7MvT6cN0Xm/Z27lt0hn7HHTktkrn ea57M2yTziO3
6k4TnVajVuPsb3We2zKdR673LbdJF7VzvYeyQbqA58bckdsgNSPx1jud1kPp 9rkN0mwuj1uD
t69MumVqV7KRhbBR58/t+mzjTVLTzr0CgO3bxpbV3rfcIkVbwbgH3tvYr83Q eW6LNFvfsi7i
jLI2wxX25em0Ds3mrKJfO518vzpyW6TGsrpH8mxO6Nq5Lx25DVJE7pW9GcCv h/KaO3IbpGZU
QDsqIQZvhj6e2yI1yL1C3GkC+5qyW6X5Wnu0qRr4WVh9/twGKYwKSPvVrs3Q bQWbpAs8iMaO
3BYpeBA5qwAIcrmP57ZJAbmsvci61aLsV9CR2yI1PDeCGujQ7HMduQ3SfBcz 2eMSux/Kpmm2
W6duTtp3d9k2zefP6ZptMhLvPLdJmo3EB7SGrmu/NkxL0pJv6GrAfaeJLVIj LWk8h40fSue5
DVJjE99j9GbArv3aKsVZWNU+V+esijdD76FslRbXToe4X0G3FWyRFvbC4hn+ 2L32Nk3Nqhpj
FZTovBm6p+xGaWFHpWaniT6e2ybNpOWSN0PnuQ3SfF8evtpnYW2fgu9XszIp 9PHchqnZaUKp
zxPfOp2Zs9rXZtgsnV+boUvLbdKZNYg6cpslj5yHpiO3dTqDXO9bbpbO9C27 3nKzdMrHuVmZ
dMz1xg0z12mRKgQ2O65qv+zmwmrAu8M4Tv/TV6c7UkVg+let5N7t+QiLK3BX yleqR53eQBGE
4odCK6fb2gxx1XvImT6d7ksNDrTrVZnhr2szNDtNyHO3zWanlloASIci3gy4 sLtLFrQ73ZcY
B8GF1kPhnSZsLyy3o1KXlZuhgByt2Fa7JQncXliunauB713h/uCJ2Mex0F7b ObWJT+O5fdu3
7LQ52pOnrPdmAOm3dNoyTSPxfbMyKZZ9Vl87chsntaHaLCyY6cQ6bZDqLKzM y1uimz/X27mN
U/WsZLcvYJ7LZazQkds4FWlZu5o0ZuvS8mGoqKBthj/tBB89iDptk5yVR6Xl o/NcvkjJSqEe
VztEOhTNP/VQHrqdI9l/gcErB2XSw9Ho7XO208TD89x4FpIDQXz97FyJ5n4o PJfnYXmOwDif
/QM8Mm7ctwwr2aRH57kKx+48zz24DYRWJi0kc3kSX71nrj5I+SKeyxL2Mekw DvtcNc45odtp
4nGRIygOl/AcPDLb7XKds8reDLiwR8gjUs7jWYPXIV86ftgmTeO5nXoz2Kr3 j2wroB6KM0lO
Xa5ykOooIClyLvQjkqzN4HaamA73T4RcaQvyS/kdch5SfhbkdsOXETPvNGE9 lNe8P/PgxsmQ
S/JdeM6Ae3jkRlmDKHgzPLS0rBSRK0Jyer/pe3ga5KofOvkPyR4hdTz3uH1L okWeq/LyWZCr
ez4CvwBmXju9mQ/5gOSQGwpaBbmX4Zl4TvSWNFHE7ZD7yDyXI8/VnglU2NLw NDy3Y54rlP06
zo/Mc7nqY5kqdIRaHgp8TI+O3PIeIQ9tWc3Ec4rcMHW5ykGiE0WOXO7vndt3 0/kZ/g9IRRYO
gUrPZMwFOaWRg945r++mZeQe2VZAWIweNgIse9yI5x4cuTPzxB+NyP++5bnZ wfD4Vp4jazM8
LHJQpeU4nCOyrD4udkd2MXtg5IjnjiFn1x/dm2ERuYe2idMUQVuQYDzsxnHc 04VR6Sk8iBZX
SXxY5KDxxsv2G4Tjw3vtPSFyfxj0fO3cHwp15B6VOnKPSh25R6XjyC24S3Xa EHWee1Q6jtz1
lo3rtAbNkUPSoXTaPo26P67bI+Temep0nsZWWiLC2OkhiJZl8DzX6eGoI/eo 1JF7VGL73L2z
0ekymll5OnIPQnP7XKeHozIS7/SY1JF7VOrIPSr9fwf8si1NBKbvAAAAAElF TkSuQmCC
--------------040702020506050307050305--
Re: "tolerant" search problem [message #563805 is a reply to message #722] Fri, 20 February 2009 05:30 Go to previous message
Georg Schmidt is currently offline Georg Schmidt
Messages: 9
Registered: July 2009
Junior Member
Hi Andreas,

sorry i did not realized this question on the newsgroup.

The tolerant lucene search does set a matching hit and a fault tolerant hit
equal.

The chance for a fault tolerant hit is just "better" because its fault
tolerant.

The result is from my point of view a strage behaving search.

There are ways to improve this behavior... you could use a arithmetic mean
in conjunction with search templates. (exact hit and a tolerant hit will
lead to a higher ranking of a exact hit).

From my point of view. Its a behavior of the Lucene search algorithm. To get
rid of this behaviour you need to dig into lucene or get extensions to
lucene. Then you may get e.g. extensions like a quality based search or
lingustics.

Sorry... i am monitoring the mailing list more frequently than the
newsgroup.

Kind regards,

Georg


"Andreas Weber" <Andreas.Weber@empolis.com> wrote in message
news:b9a9b2627451ccc8d5cf8789129f80ac$1@www.eclipse.org...
> Hi again,
>
> I tried to use a search configuration (DataDictionary.xml) which uses
> Tolerance="tolerant".
>
> But this delivers strange result orders, e.g. the documents which contain
> the exact term are less equal(scored) than those containing the misspelled
> term.
>
> I proved that by indexing 75 text documents containing only one word:
> - 50 docs containing the word "hallo"
> - 22 docs containing the word "hillo"
> - 3 docs containing the word "hello"
>
> I made a (tolerant) search for "hillo". But the first three hits were the
> docs with "hello" with a score of 15%. Than followed by "hillo" hits (8%).
> So - why are the "hello" hits better scored than the "hillo" hits?
>
> Best regards,
> Andreas
>
>
>
>
>
>
>
>
>
Re: "tolerant" search problem [message #563824 is a reply to message #728] Fri, 20 February 2009 07:08 Go to previous message
Andreas Weber is currently offline Andreas Weber
Messages: 23
Registered: July 2009
Junior Member
This is a multi-part message in MIME format.
--------------040702020506050307050305
Content-Type: text/plain; charset=ISO-8859-15; format=flowed
Content-Transfer-Encoding: 7bit

Hi Georg,

thanx for your answer.
I think you are right, it's normal Lucene default behavior for a
fuzzy search caused by the tf-idf algorithm and how Lucene handles it.

I analyzed the described "hillo" query and the results with the LUKE tool.
Find attached the explanation of the best hit (hello.png), and a worser
hit (hillo.png) - which I expected to be the best hit in my first posting.

As you can see, the boost factor for the misspelling (0.6) ist more
than compensated by the idf - which is caused by the fact that the
misspelled "hello" term is only in three documents, whereas the correct
term "hillo" is contained in much more (21 documents).

Not really a nice (and expected) behaviour by Lucene at this point...

Best regards,
Andreas























> Georg Schmidt wrote:
> Hi Andreas,
>
> sorry i did not realized this question on the newsgroup.
>
> The tolerant lucene search does set a matching hit and a fault tolerant
> hit equal.
>
> The chance for a fault tolerant hit is just "better" because its fault
> tolerant.
>
> The result is from my point of view a strage behaving search.
>
> There are ways to improve this behavior... you could use a arithmetic
> mean in conjunction with search templates. (exact hit and a tolerant hit
> will lead to a higher ranking of a exact hit).
>
> From my point of view. Its a behavior of the Lucene search algorithm.
> To get rid of this behaviour you need to dig into lucene or get
> extensions to lucene. Then you may get e.g. extensions like a quality
> based search or lingustics.
>
> Sorry... i am monitoring the mailing list more frequently than the
> newsgroup.
>
> Kind regards,
>
> Georg
>
>
> "Andreas Weber" <Andreas.Weber@empolis.com> wrote in message
> news:b9a9b2627451ccc8d5cf8789129f80ac$1@www.eclipse.org...
>> Hi again,
>>
>> I tried to use a search configuration (DataDictionary.xml) which uses
>> Tolerance="tolerant".
>>
>> But this delivers strange result orders, e.g. the documents which
>> contain the exact term are less equal(scored) than those containing
>> the misspelled term.
>>
>> I proved that by indexing 75 text documents containing only one word:
>> - 50 docs containing the word "hallo"
>> - 22 docs containing the word "hillo"
>> - 3 docs containing the word "hello"
>>
>> I made a (tolerant) search for "hillo". But the first three hits were
>> the docs with "hello" with a score of 15%. Than followed by "hillo"
>> hits (8%).
>> So - why are the "hello" hits better scored than the "hillo" hits?
>>
>> Best regards,
>> Andreas
>>
>>
>>
>>
>>
>>
>>
>>
>>
>


--------------040702020506050307050305
Content-Type: image/png;
name="hello.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="hello.png"

iVBORw0KGgoAAAANSUhEUgAAAcEAAAFpCAMAAADTKmNZAAADAFBMVEUAAACA AAAAgACAgAAA
AICAAIAAgIDAwMDA3MCmyvBAIABgIACAIACgIADAIADgIAAAQAAgQABAQABg QACAQACgQADA
QADgQAAAYAAgYABAYABgYACAYACgYADAYADgYAAAgAAggABAgABggACAgACg gADAgADggAAA
oAAgoABAoABgoACAoACgoADAoADgoAAAwAAgwABAwABgwACAwACgwADAwADg wAAA4AAg4ABA
4ABg4ACA4ACg4ADA4ADg4AAAAEAgAEBAAEBgAECAAECgAEDAAEDgAEAAIEAg IEBAIEBgIECA
IECgIEDAIEDgIEAAQEAgQEBAQEBgQECAQECgQEDAQEDgQEAAYEAgYEBAYEBg YECAYECgYEDA
YEDgYEAAgEAggEBAgEBggECAgECggEDAgEDggEAAoEAgoEBAoEBgoECAoECg oEDAoEDgoEAA
wEAgwEBAwEBgwECAwECgwEDAwEDgwEAA4EAg4EBA4EBg4ECA4ECg4EDA4EDg 4EAAAIAgAIBA
AIBgAICAAICgAIDAAIDgAIAAIIAgIIBAIIBgIICAIICgIIDAIIDgIIAAQIAg QIBAQIBgQICA
QICgQIDAQIDgQIAAYIAgYIBAYIBgYICAYICgYIDAYIDgYIAAgIAggIBAgIBg gICAgICggIDA
gIDggIAAoIAgoIBAoIBgoICAoICgoIDAoIDgoIAAwIAgwIBAwIBgwICAwICg wIDAwIDgwIAA
4IAg4IBA4IBg4ICA4ICg4IDA4IDg4IAAAMAgAMBAAMBgAMCAAMCgAMDAAMDg AMAAIMAgIMBA
IMBgIMCAIMCgIMDAIMDgIMAAQMAgQMBAQMBgQMCAQMCgQMDAQMDgQMAAYMAg YMBAYMBgYMCA
YMCgYMDAYMDgYMAAgMAggMBAgMBggMCAgMCggMDAgMDggMAAoMAgoMBAoMBg oMCAoMCgoMDA
oMDgoMAAwMAgwMBAwMBgwMCAwMCgwMD/+/CgoKSAgID/AAAA/wD//wAAAP// AP8A//////9Y
0jREAAAACXBIWXMAAAAAAAAAAACdYiYyAAAR20lEQVR4nO2du44sORnHv4O0 mhG7KwHSCgQJ
iwh5gBUxAUiLkE64G+4LkPEEPAAZ0kRoWyLhRLABxMS8Ae9AgidYoaUvZfu7 2HXputjfzP93
Tk/dbFe1f21Xle2uJgLO+f3334TL9M359c2Zbw3TuazZ9/fOr4+G+Y/GAhb4 0fn1/jD/wcK4
H7K4748FrPBjNW1LAJsR8/QX9Cf6J/3tN/968wH95+Of/+6Xv/r1p789Tz89 v352fv3g/LqU
mPi68O3z6yd0+1TE12Xbx29SiaI/fvidf/zhp+/9+4fffe+vn3xy+cz/j/4O g96hZ+CCEYMH
flzA3cw0+Hw6ff72tP/hgMVMGnz72en0l3dfPT4+fgWDPaCr0DGDj1eePv/i wuPjF6dH0B5h
7FktD+qkwTOn09O5ED41PGyQeFYLUwbfnovfu2vgXARvtykyXbXI19c2gbt4 vgi4zFz+Xg3S
Vdr5H4Xr67LisjSUwdPT6cLj4+cpjZKSEYNgU64GafhzK4MUBnfXV0hLqbie vvjyUpOmNChP
6PKP4sIwFz8iw27sJrCCi5ZUC3KDIb3i0iXol+/eXa9DeRFM5eoqhyhWlYNI kkuFTWAN14IV
T2PDeZBC1eDjtQ492/svuxCNnwCSph4fua28JAPB4EoKBmnM4JW358LIDfIZ LoeIaUpLMLgp
S2rRh4HrdcxDhuKUhgWK/4sTsw6sQV7JnJfTteiIwbPsE0sjGbxa4ZpIqoPB HXgeis7179Vg
vU0mxrkafHo6PQ8ab2V48EGsKBLXRFHwbYGVV7CGZ7Uwy+DtavTxq6dCgjBy MPcYfDhdmkaf
zq9CgjB4MLJle6ZB0DEw6J1xg8cNFQD3MWmwuhV0AQx6Bwa9A4PeKTtKffQw 2D0w6B3Rsm1H
WcBg99wcVUdZwGD3cIOh1LtkDOIbTX0xOKr10VuD9PXXUNgTQxmcb/Ac9oSx 9x2xuBaFwM6Y
HGWhDIpKtPRF31oVS/VNt6RGwiyttonHmtixexa2yZwFMoWlnBkxOELK8+0N 3hHfFUtb1U6X
Qhir0fwpT7eTt4Vh7lY+6XabQoVNfGsMwyINAVhEccZmN7Ai3Rg0pHX0giUu NngRqAyy28lc
AfMVobIp8K2lSDJ0MZXaLvUBvViW16KnfCUTz4MkTYWgLNi8T5uMwZEAJe12 cyEUDGYuRbBw
ftF5ScQzmGzxDAUZsjDFanSmQbFLGIwYg9eT4IMQd51Kg7VysbAMBh1gogwW UoPBgsF550F1
6lpXi5bOg6KQT3mGQbaGC4znwVtWiWtRUUSi4KFKDYEJYitymLSar2TXonoH Ot14Lcp0v1yJ
S69F600yLzeP+mbxKItqmxoMtgF99N6BQe9glIV3MMrCO8tHWYC+WDzKAnTG 8lEWoC9Qi3pn
6SgL0Bv45ot3YNA7MOgdGPQODHoHBr0Dg96Zb7D1Y1OA5A6Deuufd+SeD+Pr YhOD+z1mCgYn
mTBY6qOHwa6AQe9Ig7NGWVxn+HkUBluiyuCcURbPPF40SLdnL+fHNlNcE/8u enxsDA6DkxQN
htHepZvB+Lz8cDVIFFVlacNDt+NTtZcoTGFhcBJ9HpzRR18yKLJdCTT28rpr YRX6UwG+rYHB
SXQZnG/w9kMVkwYHPyRLaPZG6WW3weAMNqpFawKzFL69JMusRC06j/K16B0G y2fBkkFTi8Lg
Gu5tk9EGqwILBh9StQmD67nboLwfZNomDfJLmBGDOA/OY6N20XQXWDb4wK9k 4oK8EGW3kw8w
uICNW7a3/tUXGJxkW4Ob/2wPDE6C3iXvoIfXO1sYBC2BQe/AoHe26KMHLdnK oBn7Bg7i3lEW
tXTSxvQ0rfi0wfiQQpKbC5Cey8/WKsUyq6iwmsQKkoeQj1XGISqkPrV7ncZU /LXcO8rCpMNa
ui/E/o28FFeS3VyFx6vGWm5Q9KFVD4Z0tNFjLC/v7u/+/kGTjjIYAjt8IYLE piB3Z56plx62
TCK/9aOY9YoUl6UpImqD6VBIFBstPscuPpkvb5CPpN6Te0dZmHRYn32E5FRW iTmf8u7ETlVN
wNLLvtXWyrOZgwmnDbJaVNaccrckQhSXVLluUAbvN2jKYKkIxonIJxr+6Z0W VuQkxoNXAvEP
CjPI4/Ad8RO3SXFsvy0N2kPcx6DcHg3y5zgvMjjybObCs6GDPAQxJ3Y0tts+ DcpP5zqDFYGj
BlOIEYO1rUFlm8zD12Kwxh33gzIXgsy5Sj4JJeYEUwonzdQM3lcGKcgI+gcU xGHqX0TwZ9DE
kI+5DzLngryzS6HstaiQKS/0xFa1gme0vRYNOhF+JcOOWD1Imj1+Wl6LskkI +hD3lrhzu+ia
w6eRpQORhbI/OjVIooyuSmolqfp+pQbB7sCgd2DQOzDoHRj0Dgx6Z69RFuiz P4rdDOrAus8+
t2rwpWlI/hEzovmnmqpZVbrbk40pokEo9NV5v9UoC5PuVJ+9brCae8McD7EY nniYWqrLDZb7
9KeOd9Tgdq0DW42yMOmOGeRtmIXNlYbN3OqYN7fs0xeGc7CjO++36h806ao+ e66I2ApiEkLe
rnr7KGZJPEASm3IUCnKT2PnWffo5feLJheKS+EBx/WvZapSFSXekDAqDYiLC liYxO0WmlsKO
J2iTLgdKewq84qbx9Md2sL/Bu0dZmHRnGgxBvHkeNhUU1k+lDLbt0+/ToD2S zQ1SYcV4hueV
yqCOXzJY2xrUHszuXBpMebPeoLofrBlUbz5uKp5Z+B97kMf36ecDlqHF8eze eX9Ym4y5Ysn3
g2wSN90C6t9c1gbb9ulzpQ077w9uVZt91OWAo9FpZGkPZKFshiuD9dgN+vR1 fdAKtGx7Bwa9
A4PegUHvwKB3YNA7MOidvfroJzHfYq+30YzdbjW9FeuCVgZNK2NxIg6ims7r Zq9RFlOYJqlR
g9VSOnt4zctlr1EWUxSbhWsGqbBp2+Zhx+zVPzgFMzjiR4QtqoPBvUZZTLH0 PGg3sU6nV81e
oyymWG8wL71uOqhFw6RBnAdH2GuUxSTmW+xj94P1ELgWbdwm8+rzfz0w6B20 i3oHBr0Dg96B
Qe/AoHdg0Dsw6J1mBmt99KnHgrfJpEn+Aru+k6TCsO3KDscDTQZjDwLY/yna 0/TWR8++Hmsc
6Vbt0pHO2OFUqDlW5OE3pdk4maAMDrPsUy37Jm5DB4gtsdLLkyC+XuYvS1H2 KvMxCWmHOW1T
fkc+SYfTapRFCGWDoWyQTA+F6J7InRTmu+zEKsZab4dMXWxiCzmlaHVuid2V VqMs4qc77SKt
SKfHHFJlaLGDST1SQVa5YofFBGRadlkeOkujT4PBZNmOZZBVduIzvdRgjiW/ JW93uNigrkV1
Ok1pNcoiBOUoTXSNd4dBPluuRU0C4wZlSqYsN6W3URalims4DmGweh6Ux17J bNKpCmPm/StR
4ri7M2g/kzuVwVoffYgLJPNbPyNJxAwpI3lS8lqUlx8qp8r3O3ItSjbBhjQb ZXHjjve/KIoJ
vHmGd2awRk8GF8XZ3WBzga0NgtXAoHdg0Dsw6B0Y9A4MegcGvdNdH33pWYfj CbG/r5FWBmvt
orqVdEZKrDX1NdJ+lMWwNGaw/ADQOLEbAuujfvF4MCi7EFIbdFAGiQVlUV46 rUZZaEUh7ZH4
kthcmKTGdyu/i46DA2g1ysIYLPcf8bDJrH72vZiBQZkHcWlXg6K6zMsjZTDA YKLVKAtjatZ5
UJ0OczB7nnytBg8bZcHPd8ROgMX7wdQlH8SZkluSG16zwaNq0YHZWVwO+BoM TeFllEUxIAQG
tIv6Bwa9A4PegUHvwKB3YNA7exnE79EfxW4GdeAF35svf4k+NcKoFnEZKvDm Gf0uyitIryMb
RhzZ5G2oDqDTmIq/iN0MVn/FVTdfquaxUM5B+3vGoRhqrEXtLoMmwgyFowa3 boY4yuA1lfQ3
Z3jhe/Nk2j+JuMHCtrDTD9GnY+QVhCz7lI+Lf2OKf0DF16E2fwDGXn30+vfo c2LSYKnosda8
9D/O1baRihb4vsxWabqUJj9cWXPKHYjDC8Ul9cYPLoMrDOoyuPR782TnZDFU ocYM1oNXAkmD
/Cjtp46XuPoeDjIYs2j9KIt6LTr3e/O5L75g0G6baVB8xV7mLE+zanB0Bx0Y jPkTVo+yGDGY
50jPp1ni68tlMJQzrJT3VEi0WAZHUwkirkmoK4Nid9e51feDIktEtvA3mcLq bC99g1p8xEQ0
Hqbot2aQVLhgF5RBGVwckCzRRxksvPf7DBqWfW+eVAyVi4VrUSFTXv6JrWoF z/76tWjKdzkM
4PqJzx9Ffi3KJiHog9lU4sGjLLb+ABYS3WUXdoe26mjEwaMsNn/HhWcR7p6r qaLu0ODN244G
weagb8I7MOgdGPQODHoHBr0Dg95pZ5C1TFF1kkLeWluqt19UuC8UsQsbzarS LR5vQbEtBx3c
DrZ8EkKcCbzpSk5SiKnmqHpWylaw0ThTBsUm1c3UjlYGc3maNEip30f2sgfz jPpQeNI9cTMr
u+yZLz5upy3ta9G5ZVAF4K9sUISjQkJBxDErgljQ4YJ54H0HCvfqo59mpcEg XiQ7DeoJGTmm
ji4F4mnL44fB5QZFL7vM/FjhUT0hJWdhl33/BoeaYoNRFtOsKINB5qlda5Kt 7MOGLaQoDHZf
ix75iyFsutDgeBkM4sjVamuwVgZ5ID9lMBz4Leyct5P3g/mqkkIwZzxl0F6L 5tRWdtkLXawg
NuWwURZlluTA8twyub4Sm1Z/BvceZaFZlAOLs2vjYtKlwNbPsgCrwSgL76Bv wjsw6B0Y9A4M
egcGvdOwh5fkXP179bzJTDR+qfRqvfR6h+OBJoPFMLT513Hvol0Pb7kdkvV9 G0didWHrzB1O
hZpjRR5+U1rWosLgMIvfo19KbwZD2WBsiM65zmbT+mDWv77fo6+A36OXh87S 6N1gzOUdyyCr
7MRneqnBHEt145sdLjaoa1GdTlM6MBhE9hfOL4sN8tlyLWoSGDcoUzJluSmt Rlnk967rPFtx
DeqEwep5UKRoK06xINNJqag0jChx3J0ZDMeNslj2vXrTfy5jhpSRPCl5LcrL D5VT5fsduRYl
m2BDGvcP3vH+F0UxgTfP8N4MirqhT4OL4uxusLnA1qMswGowysI7GGXhHfQu eQcGvQOD3oFB
77T/Buj09yYqHfa2+c3uodLVX0rYHlhxRW1/qTH9aBqOsogzgbc9ykkOEdQC pQav+h6qMfka
G/8ug+y4D6bdKIvZBkm0gvLmzLwcb4P4D9FTNSbbs0ogFluzIh6KaY8V7+k1 GQzzDfL70vSf
G4wT/jJ3tCxmfrSCOgTSMfJSOhCVnu68Ol6hU4OB5H8ex6Rk5tQRjMXQBkur h40k0jwMRwb5
F9vzZI5BHVMdwViM+QY7LYOxfujBIF9YZlDFlLVoad85xpTB7mvRzgymOco5 OM+giBnkrsdi
aINmbEAhqWNpNcoiCghh+n6QeLjbXM4+tUW+KjFzyqJDPkYiuyJ+kuvXos16 7JuNsrix5zve
Mu25afViMJgPsUeDWyY+M6kGAluPsgCrwSgL72CUhXcwysI76B/0Dgx6Bwa9 A4PegUHvwKB3
YNA7MOgdGPQODHqnXR892AYY9E67URZgGxqPsgCrQf+gdzDKwjsYZeEd1KLe wSgL76BNxjsw
6B0Y9A4MegcGvQOD3oFB78Cgd2DQOzDoHfTRewcGvYNRFt7BKAvvoH/QOxhl 4R2MsvAOalHv
YJSFd9Am4x0Y9A4MegcGvQOD3oFB78Cgd2DQOzDoHRj0DvrovQOD3sEoC+9g lIV30D/oHYyy
8A5GWXgHtah3MMrCO2iT8Q4MegcGvQOD3oFB78Cgd2DQOzDoHRj0Dgx6B330 3oFB72CUhXcw
ysI76B/0DkZZeAejLLyDWtQ7GGXhHbTJeAcGvQOD3rnHIOiK5QZBn8Cgd2DQ OzDoHRj0Dgx6
Z34fPegTGPTO/FEWoE/mj7IAfTK/fxD0yfxRFqBP5o+yAH2CWtQ780dZgD55 6W0yCzranPLi
DW4Qom9g0PkbhEEY7BwYhMHeGTf4DfANDHoHBr0Dg96BQe/AoHdg0Dsw6B0Y 9A4MegcGvQOD
3oFB78Cgd/4PR0e672231D4AAAAASUVORK5CYII=
--------------040702020506050307050305
Content-Type: image/png;
name="hillo.png"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="hillo.png"

iVBORw0KGgoAAAANSUhEUgAAAbkAAAF7CAMAAAB4qgWlAAADAFBMVEUAAACA AAAAgACAgAAA
AICAAIAAgIDAwMDA3MCmyvBAIABgIACAIACgIADAIADgIAAAQAAgQABAQABg QACAQACgQADA
QADgQAAAYAAgYABAYABgYACAYACgYADAYADgYAAAgAAggABAgABggACAgACg gADAgADggAAA
oAAgoABAoABgoACAoACgoADAoADgoAAAwAAgwABAwABgwACAwACgwADAwADg wAAA4AAg4ABA
4ABg4ACA4ACg4ADA4ADg4AAAAEAgAEBAAEBgAECAAECgAEDAAEDgAEAAIEAg IEBAIEBgIECA
IECgIEDAIEDgIEAAQEAgQEBAQEBgQECAQECgQEDAQEDgQEAAYEAgYEBAYEBg YECAYECgYEDA
YEDgYEAAgEAggEBAgEBggECAgECggEDAgEDggEAAoEAgoEBAoEBgoECAoECg oEDAoEDgoEAA
wEAgwEBAwEBgwECAwECgwEDAwEDgwEAA4EAg4EBA4EBg4ECA4ECg4EDA4EDg 4EAAAIAgAIBA
AIBgAICAAICgAIDAAIDgAIAAIIAgIIBAIIBgIICAIICgIIDAIIDgIIAAQIAg QIBAQIBgQICA
QICgQIDAQIDgQIAAYIAgYIBAYIBgYICAYICgYIDAYIDgYIAAgIAggIBAgIBg gICAgICggIDA
gIDggIAAoIAgoIBAoIBgoICAoICgoIDAoIDgoIAAwIAgwIBAwIBgwICAwICg wIDAwIDgwIAA
4IAg4IBA4IBg4ICA4ICg4IDA4IDg4IAAAMAgAMBAAMBgAMCAAMCgAMDAAMDg AMAAIMAgIMBA
IMBgIMCAIMCgIMDAIMDgIMAAQMAgQMBAQMBgQMCAQMCgQMDAQMDgQMAAYMAg YMBAYMBgYMCA
YMCgYMDAYMDgYMAAgMAggMBAgMBggMCAgMCggMDAgMDggMAAoMAgoMBAoMBg oMCAoMCgoMDA
oMDgoMAAwMAgwMBAwMBgwMCAwMCgwMD/+/CgoKSAgID/AAAA/wD//wAAAP// AP8A//////9Y
0jREAAAACXBIWXMAAkVTAAJFUwAOoIj/AAAgAElEQVR4nO19Pa80uXIe14bQ 3HNl2BYgw4AS
yxAcKXIkKHLgQC8gBb6Z74b3Jg4EGE4cLuC/sU6MnV0nM3szp2+iv/PuOvCp joRyk/XN7vk4
5/TM9MxlnTMz/cEm2XxYRbKqSKbU6UHpn0wffAN9JK0/mT5/ysd/eirgAv3Z 9PkVH//xG5/9
Z+7ZX50KeIT+TfO7EQKAVP/rB6cfLN/TGZYr5Qux/GIut/TGdGnCcbqF9aTc owiwxDldxHoF
86f6CCWAiZ9HOEclWP2n3KHGUf9rPnOy3NCVmnlJmiOgFypXQbKYOGim/NJ7 X05SdP8x/a/0
D+nf//r/ffXH6f/++V//97/59Hd/+1+n37+dPn85ff719PlqCiefQv98+vzb RLVAPuXen3+l
HJT+4V/9i//5V7/6o3/3X/7ij/7sb/6q1PF/TH/9L7/6H//5L776b4nDl1JG KtH6Vp9AgLDi
sLdKkFHLj1BmqEGKjUq2FlwNR2VL9+RkgjxdUDyQpSrVSAmMlBhDqR8pM2RZ 7nNOSqVKCFLN
9K1QX84dvAm4o5Sprkgp1MxIBqzWaSXWKpekEF02JFP8XigxCYNgwS4Ro5T7 mZiQnpkKK4Pw
ZSmHepjRwiDFmRSkJJkrgajQhcVSLWVKOF/AcyCVisuA05AawBek2lDa9D7I 5ZSk0iVmE8kv
VVSGLrVl9n6qTCxyS7IIUr9TrUucJuehFqjKDQTPJSDRVGBAzwU5rSYsE30+ JK56P2O4TN8Z
kZ/mnPtTST9LzPXuxYWEzafGbJmUS1kzrwmi3OO8J30V4/Wsz67Db5IhpFLg RDi7lhC60mI4
0IoeMUTnqpQrV04nncs4+oNZ2BDZ/Bq6+oxNXOfIVZoQ3FWwNlkW3+gSY6YL uMZXwXxJbi4i
V2HchQYDmJXUkeLA2XWP6yUNTqcNUkfuUSkglyFnPng7veeZW8b3qJTtIBTJ As/1InsIYuQO
4/4wTn/1f/rUg04bo/EwR27MlRfrN/111rs3FQCyo+lsAbkDcCs33T/sv/nm N7sO3AYoexSm
4507NeQmVH/z691vJ54ccj4coNPdKYcma8wwupsFuZTSWPkt77757fT/DeRv dtTPzPZDNYCF
qZOt9OW/gYUth+/0XpoaMbDma2KmndNBFKNNxsqGhMIE3ZiHbxizTLjZEQzA ZxpguiYQSjup
GHP4Tu+gwkkOuHyoPGe6MNLPjiXor7+ZhGV5ZPjtPg+ExEtV1E4HAyiMKQtC g0ZbLhW1Lp9X
wAaC7l5v/vgEExpFIU3fEwMeUDTORXldFOi5Ipd3v5047vtdzt9U2ErJJ+Oq LLyWBJQaSPlv
SIPJRiDkO8d9gAqbFdNNNdfkSS4OI8FG9i2yzx2ohAf4/vvdmPc7enJCItFv +Unlrx5MHFUZ
cZguvEyBBo2+3i4nEjZ3lvsAHUpBktQrPFekZxIbHxJ+u6mAd9MYnHjvNyzk oPJRIUgTShWL
8j/kalMq+NFZDTCFGAqAuV6oWN7xpZ+CDpV5qLnKEzuNKMZP5rnSzk1hdt/v dt9MqA175pRh
wqY2dAUVwqUCCMMwVFBT+SkBGTN4KagNFHZ6aIq089y7aag8N1TkhklUDnkk z4DqVMDSchxq
GU///2kCd0eHQ5WHBZYiLwf+ZMKrRscoZT4bFE2Wrx22D1AZVnPZltKdpGVt 59grR8dzAyO1
29f+SYGrYpkKe+Ui/CpymdiJmW3giwTWIOARvIXnSkSd3klT2Y0VOOo6TCfD yN5C4ocy/RRw
C1jD96XBGwg3Fok1GpKW0pgNdpIZL8KMGjcD8K6v/vBU2KyyW2GcTNLS61CK b8iBsZqawSHv
v/9uN+7oYeLVgfuWFSACJbFwnD7j8JIYPbrFknV4uedrPzxNcOwG4qgqAwvP eR+g6jBZ2rka
dty9koxl5IRpcg2QNNIxD3YfjqU9XuF9/qCoFmBm8XcYhgOKaxmyB9HEc0RT Q/fNd9999/13
3+1iHBWiNLS0iE2eHXR6H41EO/pMyImkBLPPueCL5T3qzSWwcrjYAbsW7WM7 Vy75km+gGe13
lLNxUGk5No8YxF1arkSjMsM+W9/RkKuuDOTIsCOXhunzw46u1Zs/jHT5h7Hc GcvZ7gf1gODv
HzTw1FQWNj+Mnd5Fh1pyBzmc/pVjCnwFOSgCdfA9zk4bpIqcEfHcNIT70pHb OB2G8Uvtxn/t
kJsGDp3ntk7jxF0VN/oryFXt1+v+/LOd7knjl6JGGb7+mriuaJw7zz0EHZjn vv7660GQK337
sSO3cdqXIUCxsE1Skr0Zch0V7M4/2+meNFbRmIZPVUOcWVruX+fSMndn2U3R YXgdK8ORpp+R
m3ooo2DFc0aqPwKR91uX+1lcMeUYQL/sx7wz7T640ADm3+fO7VdiieHFxbBQ vZj19vNWt/1Y
dShiiCHkMrVzOgerFEr6/JlmCis85vzH07XUpdK5xvqJXDmWNTgPTnH2s7J2 uIYPeLRdOloB
LPTNCvEuVHWPme1synO717y3Vxee2xU0P2eHiavZjkucM7TjxywT8rz/7AAa NvBVzgtYl9/B
ONb/a4YcO4Ik8pxUuCuLtCTtF43nRl9phwLcobiow2ep7goTl5ahZVfCiXNQ Bx/USU/FVaWi
XfeCU74U0FBtQLxB9ZFnJOpbVo77D16H4tq5uoxA+vxt+iyikVe8Ue4qX9wK ah2X4icHF8+I
QVjW1lPCgJel1S+3aedcDNbOWZWh8IluVRfrp8WNdCik/YIvghxbyono3Sfg vv02SfXmBi+0
J0mkYiOxEjgOAjA2rZdSDc9r1Ahp9yd5ngky0L+C1ZXEkAmvPvWc9/HLMCEG rwU8qMjl/CXY
CmqJff6n6dvP6XdaIlTs9bB6L1PRJ+KgnGx5llSXb8m0Qkuu69hwHOVCDZIp TA3AK7lU1kkS
J12vaQy0EhE5QGl4jpdiy5qhZEvHPCGNr9XKU52Yhecg8lwpyM9/WYA7MEcl ZqGkyzPR2k50
q0LCUFa+oakhLmy2tZMIxYqDW21MQmcwYUoRcSxNeMsD8G3N0NPKy4MzVefa Qynvulee4yFS
+vbb3/1uJ4JOfNsTSNlmQZOh4WaLkSMulR9phfgW8StxCcFNkhIUjKTXNCwn kvUnC1KafnXy
fGLkxpk3Q72aZfY4IZf/fmrlSPDUdkkas0QnJMKqB6cUI+ObIbkS9iyVa0EL Isqh9BAQVi/C
x5laS49TtvCDwxH0dpJK8qR0WEbO2rkKXOlZ/v3/SdJ1TMAdw5fsqrgxlmef pDyTFGVwzCKS
MWeBNsu1rFxqDymXgw9vDDp4dkz5iaE7mO9XIUZun93VUtk/T5R2VQsd27ks rRGD5NoeavEq
32TX92fGyDT7p8afGlDkGotTep6bLktApO0L4ztIqwnaND6xsDyC3MRzepXa uQm4aSROnpky
K4H7lpC0KLnh4w8DCyxIIQsfcls5fb8QDyd6gKKW4UTK0vGkIBqQYtLwYPyd qHEV+Tudvzwt
dMvI0VWvt0zpdzvAAbJTnoCKNVVXRP2WxKodhSxK4SwqFDeqjvFSgMGuy1N6 T0foOWZABpDD
M8tK0lu6U53LM46q86NSnoArp58/u6KTYbSUW9SIuaIcQEbnTUkLYm5wbsN7 ASj7OHODlD2X
DXVVPz8xdHPkylS6XbGsKnKKQCaFs2OO3NzWP4UBwu3mJ5xbhBqrPG7JxYcc 3hrAon5i2GAR
OSA99HL4Jy+OB6KKXG3gacVjQa57EG2dDgOvzUDrWAty49C99jZO45fXoXZL eEV4mie+y53n
tk7Fg4jWqab9Fbq0fBSiOas0lmaeQ8SO3Pap9CJ1pwkM47lOmybuWzJ4IjP7 LKzt04HauUJI
q0eVwzHqxDptkI7Y53o7t3la0FvOr3baIC3z3L4jt3nq0vJR6ai0nPVQrrWG XKfL6P3IddoW
HfEgcnjeZeOSTkdJcFnkuTASnzHfT4V+/Eno5x9/+YkvlYNf9Lylnxcu/cif cjKOP/1+1Vr5
lOSQUz2XrPvVaL8Oci/zgnxXKt4S94/XifppCD1yY13fEmVn1bnGecZzlyD3 Tst5R+40ReSG
EeNOE9C0c+D2/yyI/DR9MrZbfjJ9zNnhf3/o6ecnj9xOVwNG22kCdi3P1YXC 9vsqQwtyyDsI
S4y5RptdCkvpZtlMOWQm69G1BPHTUOC5qW9ZN90GWkCd9ivw3gyV58ZMfpQF ORJp1Su1cl7Z
ZRwTb9ZdkU+y53iTKgRMbSNflJ2+f1n/ZZ+KGuRGmU6VeaeJ2M7Vgz07xJWT Ury8r3sh2lA9
iXmWr9P+PrJ/9xw2OuMNoGVr+85zZ6hFDsmqWlZwph4KzWRl+qE8cWDnxsKJ RVomQohYjvmV
PhUFOuENsJNgW53LZZJiQY3D8xf0Hso58sjVNWuoQyl+KOQpG6TlBCVNJZB2 LpFUJYss+43V
X2S5Z8JSIatwMlLkaBbvcdSdjlPkudcRZaeJukcINuO5enCAutUBSDvHPRlU DAOzoQMO+Abz
XUqKJcgRquTtyJ2mwHO1b4kQvBnCPJEfaOuJ6qw+CM9x0Vcx63gO0UEilFxL OAuMDCfWzk5v
505T4LnX4kFEfQdDzs/CKrfrVoJ1fxFgnsvEWzzxWDgKSfCCMhFFS+KxPANJ oeZuKfEcB+08
d5pmfUuk7n2W/QoCzx3KAwdeALrs9Fm77igtGzgwpOnCyHKMDiaVlt6hWtq5 T7n3UM5R5LlB
d+sknisDY69xHnW0nJ1y0bhsKnNp51haonRTgEPWU+1YiuDkgZwfU3RpeZpm OpRsxcztXA48
x0NuRuOnyp1VJZLkKdAosJ54XYltwEunGbx41p+SRB+JnyaP3DC1aDrLbdk+ p09xKWtjhAtq
ElOMgH8OA3hHn+o8d5pC33Js7XNYdw4cI895umI34qfI3ccIjwSYVxt/wWnb LshKG+aSZ65O
7ajA3eEdlU5bVn/+6ccff/qF7Ke/J5vq7501tVpWi+V1CvLLL9PBL3r6409z +oUssj+X/58l
f/SdFwtsZqZA/zXDJcDM1qxTOGBzuz1fysGtqLHy7Oh1sbZAlefyOAzHee4G 2dPyPVJEM3Ba
RfYRY4XFf56rj55fIBSuRbORuHQvUL0ZWpv4RZGumsWj8WH4AYeHNcWtarsB 9rS8PMt0Z3G/
GrUj8VxVzZRD3Wf1PM+pXe34m7TWuEW7q13MbYkvR4wzeaUhcZi3cYPj3/Jo xuOGYQ6JGY+f
35Fm47mat3pH9zbOUeMcnzbKJNrm2IUr/r3n4LXcw1XoRO5jckGwLrRj4caF 7HJaWuJlnZz1
KSBX58/p67GtYF/XlCVa5Llx3I/jYTfuhQMacTIr29ONS+CuPHt+FnjOcSGK aLC3G2gwHy/5
TXYqmbAZiRddc/4E6s0QV9VYRE7W567eR0DWHiXWX7KNvHyTieiI9JMn60x1 1OfBTOUxeMbY
UJG5KWnaKWTGx49V35oA2oFoIM31kfOoT78pYaO3RFti1DyIdI+QZZ7jtWZG iVGMPgC6DBgm
uU6XrcS1l2A9o8q4ihwBIZ+Id2pFFWm3tTDRI4PtgS3n5u44gcCRpwAczKvC BqRl8f0qRrmM
PNuYkDstLXHHSwCJY1iiWsl+KaVqA5eQOj1I4dAEWbYPkS0+V5U0oNhYkytd dpGoR6SgTnoB
JXh5NlNkAMxzwrAoBt+avORLBSsbeZPkh14gSUiyaryYZaQmONMe3YhanpMs AoD2UM5Iy4HW
2wPWnCHLLBJ5ym/TJ2uJScXWEvHLGap5nMq5lqyWLpkPeQVGEYbiICEsYCfy j5yn6ftFwZKI
E/nAsA8GyYYEEnuyLGhVQI3zXrJyoZ2zdQ7F9+uUp2x9rKz7nInniOhpRgTV FA5iOgftzSfy
EGR00UOB4EpKHF3Awsm6mVLEtXxfNH0DXsVt4WeJH0QKm2B2aGgornj2w48h hEsrAPFmaqUl
oF+bofVmmCFX8jzypCxZ7Vl5zpUTsVuijp5r4hP/Ifv2yRNV88YlY02ctXmC jTzor1Pz17Cd
1EWuEsidIF3+lHo2FVvUthWFJVWuovadTNTeqcMZkXvldb/yJ+QZ/me800sE h2Ijn/huzzIw
oyJXbeRZJGbtmGjfjNod5jouS1fMnuekg2j8oCUqaRFYyg+YTfRqc6oiz0Qn 1xPOj49c4rMI
nMQFJ063MJ6jdaK0v8428d0pHUrlud1I/yBuy9RwKPjacFo/Q8dQwo9WNqV/ pBVfmESbKuEF
a4awRVRYxAIkdGkz6NrGeYbWZjFbOnIx1IMgR1eC4o0UeyjjTuyiCKfsc7M4 FAnrN8sQDrSf
Jv0H95yVXNL2NSWTU9Q/0K4cWjjukErk1nNxbGuYandSpDE0aTI3cd9SH+EI gbuQSb8QpDNs
73Nbmvctbdijvl9v1TiDdEfemaNmvHfdouHO0fUTWpkWRgV6i3aaOGmfOxpt fl/bre4oOhgO
XLo2odQwExAPQw1y7WxjaueOapxPxfveOVim+JwpPa5Gd+sgfoDO8Bxc0s4t x/uxsrB+0lUL
FePXI9Fp5GrXcXyPTfx9HEeDiiUnhOsRQn5I7M7z3Gzm44XxrsN1eN0SdY3p o9E55Mqc1Td7
M3wkN1yQoY27XrHmR2zhiM4gN/XzTo7Ez0T9rvyE4yuXK/qjx8LQIzdfyaaI y3NWnja6qWEc
D+XvwFdONCKsq2luY/PbnixGGTBYwmE5tsV8HUFRIs6NH+gsIzepApHnXkdX bIpcPm1ZbSMk
nDNNHyk9lUTzQ0jvgKJTQZ7sqgM4kFdecNFpVDNm9NH7NHykppmsfDZTVocZ iRtPFINU8rGo
qqzeC6O77DMo8SaVCmYFNtzCHKYrkEeO5s/VLNhOE7h760h85K1xR46fFVN2 5PSPAKpsBi2c
RkryYg9i2hHll5UaxULPVqsNqFpRo0ULZImAQ47H/JlPUHDWYqqwOKeWagb2 ITD50O9VIV1M
GK08e6gbhNDcfrGsvl7ezpUX9jZyqddcQlkRANPyh/6IKh7R9I1J9YVkq2UV ImutgO3gGGzo
CN5/xd3l9QjM5F41j6KvlLTFps6UOHFIIjeqJjObQUgVqJbKtbV2s/lzdau3 RD7ORWtebT9M
53kO1UYu/ZrygvDClTgiwTOyUtK6LAZxEIso0hV+TL+Yt7zZWiGzmoJmg3Ca flFNixVHzAGY
xH5HYbIxkQQwU0PieYJiCZTIvE32ulznkZv6/3s0UzF77b3ZO33kNRhL4Mwt EJsyk8PGv2JC
lXlWvDlYx6gJEgTV2iPbOkrt1+D0ds7iigoeJpdQRslJdugiBqazNFwONRoO yLLEhb0qBZ57
lZ0mdG2GvLAG0Tka3Txy6TSwHAGHFbEEO4BoOwPSSyCZrX51xnCy1E699Uli MzclTa82kN6o
zfwZbegssEEjszrlkEN/XSzBsfZJomSXzVfun8x6KDvZlwfILFq9Gd4iLaF2 RitJYHnfWF+t
hyB9RWn02nJV5Apm0knhQlUmwuS5yopyVsKJjL7uuodXYtAA8gpiZAeXtRTO YvW8vsk18tzr
K5vymefq1TfwXGUgGs2NqnnhVyGZiaEYtWzFHifWUmCTqpYLmzu5D4cBCnPP ogistWk8gXyR
oyauFjplOHsYWWwY6tYEs+U+OJqBqwa37FueXQ34ovGcOyTXbzU9o/bLasy6 Ooqzx1FHsbjW
JQ2RkN0LpLnUp6Rf53iO4TC/6uRaLWdDpxFE7VuKo4z4nqGlq9ykD0VjOUcA vApF9YXX101w
TcKTOpTy86H5c6IyttHOrCa2gyZuLmIAnj+rcbqBXC1ZnX+ANtyYf+Q5DBGA zSCRQxqoaSeF
akzWHLrMuktupHfkVVelBrnV7HMUAToDiveSwvAjBcCnLy4CDWL1N8Qhy4Wh vxWdID1GIYL2
VoNFhStbf3ExmvA0gpt9eHVqpOXCrtT7dyMH82rtj9xpU13RwjlusACIseB8 jMbl8+fowpwl
ENE9HPLYABsiaHJsOZ89ew1qkDu3dvo74p+DpqXfSp4QKvuTGKB+/DSeCF28 n3melSSlOkvh
EwcqZGhKnmeCGiQYnvWVo8qY20hKTmF95Py7MwyeC7K+MEpJRXtcLI+mfPga xZZdk+Xqu95f
ZJBjWZ3nQxtGH7OcacMHMv8ocPi1scO1+5Yh6rlwmb0Rzg49gyzEOYfifBkd CREkcODp2VPc
rfH8GY9ux2yW0DmeG/P7+5YL6eHiW2rdnok+z3uxeFsZiQvXj5dkI6LtWZYB BkhbjWZo3YUC
cq/jnOeQ1togWgM5/afSQpU8IRCTzW1tDnzJZsfeHtsc3VgWHZMMLT3ykC1W BmDne5iL4xsS
RivP6PJ4yVye9ySoJuX6+hlpKrexwCku8QFCUc/Yt35Jb8SLxcUo3f1aAwQZ sWGYy77YfZdF
xw2pQW6nLTvI/LndudnGb0xPXfbB2bqcTgX84E30mqBaJrmIsjgZiPZZxFyW lJQxbJ66vXXb
J6oPUJYkG4iotcO9QZaZXzSUTEs2/BtQ0869gokitax+ZFSwkKDXCAe1bRZn hBTCAzrtFoID
lks/Sf+/uS58khz2Fm3gHeswsn70iE+YPGOK0WsruY4SBlvBuOfSDGszvMc7 /XhyxM1aLuzM
IQ4gpUSthOvMhkTOFaImVo0mcSs4g0Ny19nOKaIziR5dkiXjY+KkZa1NYFOh KC/dksb1R1d1
LGef+PD+0nKnazOQnLxwtvElxOygciXp8IcFZ+WqxFYBJy0Rg70bzZgQtPs1 bEK7nmnd2rKA
hxhPw8ySxrorBm+RqGJ8cEmQzUsEO4qwhHtBF9u5YolLYoghm/jHNM7z1Cp5 luMfdHad0M6p
4h2rlQyD1ab2d6TVAW/NgaDMnM2yak3blg7O0oXwpPFZsnjuQFFaDnuTINbO vdGyejZBbw5w
TZfnI22itHysqYPAc+AFrvQvXKMIHMQSk+YswBMO0U+9pFxbr8ohifbk7Ski 9zqKtAfzt3zN
qyHHRSnA6fRIsZ2S5Epk6OIbdDknnZVsPj7CSugLUVjCCTdp4EI753hXZ/0b z5ljhea8iN9P
Ns01gzaIHyyV91EzKtiTy0CtsMd2DvwwJe0ECnDopm2XXjdKX48sneJ5hFgB TL7gzfysLMnP
mPaYbXviKMuB5enAc/TmYlPVpo8RVlHAS8tvhecOk2CU6goAl6wp+/bkdMT0 wkf6c2w817pg
cqP4QnGh1HnUoaH0QLVVTdLjBFRHPZanHDlVEueaxFGJ4BFrvgwQaZDfumXe lOJ4bqw7B7Kt
wmZhrTcqcMl6Rw1T5Uo7BGqLcSPmxGux61U0U1Cw+KBMRKKISF3sRbXPiJ/P g/aQxS+xzrMK
RWhuYVRA2i8dba7gzTBPTt5XRZcDB5uPe0A7BlLzaxcKQqEZoADmwtOOqbWR lbQ1gZCsJkTn
ZtSz/OW2w3pTwnNWHnzfnNXTSbqfcARtSTqcGv4DbwbF8LypgwPsodzDjUXK YlKNiaI/qQd3
WmO2aed2/lZFLq/bQ9F63QgofykU7YytmpOGSTw1TiEzLl4+t1wuiAA9woU3 uS0F5LJilKsd
vwqnNfWWuIDTIjQYLoWLbUFdgsQzUsNzV5eWxle6aLfY4FBPQuhY652RyLGB 8gja2d2Y4UYU
2rnXcfRifQ0PollqwnQZl1koljnDkQWadsmHRoj5Z58bt4gc7dZp3QGRlid2 d3lHctaGNF0I
X+TZGUO9rPT7Vge3LWhge3bcGp6r8+es08Qj8ddV7XMm1pqOQwTITkLfo3Gy 84wVeDX7WJ6T
sB2JD26oubr2i8o6paTL74qCotw1C7lbWt1AxNCjAxStZ2r6lc/fxFVakpZ8 Q2Y+vh7faeLt
yaGpd/0cGhDbms7UWcAidOsRWDkupgKW8A0nPi810nLn31/9UNa1FXglbZgR BX42KeOlSksQ
zaab1q0Ld+vkG7LmA6aWEZ+PPHJFQ4k0Z0m8GXBl7VehyFR+nmOwldFdN2/c bDusdMZkCn2+
wcF5pvJTU+S5ap8T/4E1vRlccm42MCg3VZZ50RUSDDloJqQaTklnINo8UVRj DVtIn5gCcnUk
ruLpCh5ExbNSHBIYRuqTVASySL7skQs8ZY5EKl89skCmM5kt/NQUR+K1hyKm q2t47dV+T7Yp
/R4imYNa1G7mX4Su15LkovKcq2jGkzLZ9LkHdbGdKzqUJDOkr+EpqwKSziqA 6IUgwzFIb0ba
uWzLpNDD4nMHzY0EGiG2GpenonYkjlabr+WdbrOwxf6shmw/w1vC1rx8Mi9L VsoJQnT0SazT
LDjvZqm+Hc2kZfRmgLVnhNhwLPlTtW7HbzNdNsoSKDI3GKzb8d+T909mowLd iQxANc6rzsKy
8mwA0dJWxGTg7RxAbLydZnABzuB9amp4bu9ffgVbAR49ufxJnJ+2gF8S/Zwp Lwt7Sfj3PfIx
ats5f+t9yC1PU0N3ojqq+ewotI3Dmb2E2Ro9tWq84kS22ZQsDbxUske11xb/ iRjOpDF/Yl0w
G+QW5qy+ZW0GzZu6iCxMdjr5fnOnoOWzGOot/NTk5sgD84sfKvcrcOB55N6s /ZrX+AhfbsMe
KTpluthv8f0X9/SMfReiaxLGE+m3Mvksz511qlh7dOmR+/gaRA3PSblkVxIs AXHh3aApUL8f
OC2KY/uB66IMyBOjjtrYXVQOioVdEcIDs/uLUji8t8vvPP/v3cHhODXILaxk 81aeWxCGLT9o
G3MMQXQP8/2MsxuV1MErN08vR9hekPQRZ1L86Nn56JeSW3vj8YuQe9uasrTU 3m4cWUzi4AWT
r/zHRdssyAL+oV4oyicjPX/pyP1ju2gfj+sdyb2Nmnbuo8iVzEnoUa6Qkdtm iDsbOIVM9rj4
7/NlmtdLD9WoNJxCxgv12Yy2tKA+aS7J85Z+CmGwMbTrYqYnqQ3gzxGWsvUR wtOjgnetTBr3
F3d6StX8s7WNd9tyqyQmyYAH1DEAABTpSURBVBSVK19Lip/cd6yoKlCbgU6D fM+cbh1G+rUM
aSaPl6zLtyYbo5Ng/gY6Q9OJqefvJWy0X07qvHM1YFo7XfY6ZoekJCWJMk2R 19RDMAM28aRf
XzLT+pGkixQbrK1PqRuPG1fYFFM1kye05cyBVgGnpc2rcdbsSEmkAQLb/WT+ DutCdRKXLiVu
M9MxyVxfzqRIFn6ZlNZeS90jt/d7Ppofypt6KDjbX5yLsq6ShbIeuRQ53VMB KWuhy5FNC0fZ
R9dMcQkYMw0JssQimk2WAr6oEana+rPwXHKwmc0BqxGxJuwXurRpsEmTV1Sp Avp6wMHNnn/V
dm6n9ZvXZnjrqvcQ9xfnAYAKKwOOX7+sxwpJRZu8stubmH6cNRVDMTvHIxOn 4EUyT5qUQkW1
sqshz5DTvNqMZjQJnEQg2azIduI6J8e7b9vC7E7UrkQIjX2Ojcy15sk88ct5 jnooZZtq3l+c
eyYgLQKJTSRjDZV8vG2zD9GjY8ipXVw4k8ooSRmpfM7ocXWRaqOGbIb3/6CY qp1SJkZWpHiH
exGf3uibcjNl2SS3NYKrEc50KOon8L7dXbDuVzDAAAe0KippccHqDFI10k1D h3LtRSHQAuEm
J6M1dRgM5WiiFbgS0F1UFnOV3nFqZGDlOekqKQsL/E5acuRgUqEeIq/GI7kQ q8b1ea70UJDr
svmhvGFHpcpzZXPxA+0vTgymvUGGkC3uKI2+8hwaD1prwTVbBY/gVVGPgXlf j1CibrY3I5zr
otsiC5IHT/uqJvksPnWP4Ynr4i8qD0ueKDlp0uk1z48p3kqB50baaYJlwHt2 MZM4/aGtdCFH
ZgpXEcqhpcCSVJ8ku0uAsqrrW1oBy0I0cl/DsQiu+8tbT6N2BR0/KNsk6/tK MiCjTAGKPD6F
Pbk7qr1ibcN5tKMZhnXBi33LsVnJpqT6oXWcXTqrigsZG4n8ountSU6uQdbw qTi/KzWjgj1L
G0EOYJ3dOt+7v/jR6Ii5nGWceeE6XkM0NmDMtLm+LzUj8T24iYO1dcF19ll9 //7iJ+KcGf+u
Na0A4y+eV2Nen+YjcZA8rTrzcX3Vj4lJf34tQpbIzUadd6Q4KpjGcxllcXOZ P7fKvIJ1OY6B
mi/ufQ3W5rizZ/C8MWlZ5CLVKZGWU0G8e2/jJp1Vuc7tDQHR9+Ra3RN+A3SJ 3Be8VlrWKpt5
od0VpeW65HnOWAHj78rp0YGtf3RviuM5nuFPBbLG7i4xqdXVP/o7g+9ahOHn ntT0LUe7fG2e
E4njOQWhEUhai8Ij85LDGNI3SUtB5yczKDQ7i+lsALq5DkVtM2z3XKedk+Tq GyfBSfUPtY7Y
9AKuOay3LPoP9XSmO05osUZGUXXwrr+vuE74Cuu83YViD6Xa59RfjuZirb52 Otv1EeqOx05/
ZWcvUsiqkGc9lGyT5L4ksvqAbvkjwp6VXRzGogXHo+iUlXyVLHhcFH4qHtex HJvYe5BHbr7/
3BXm8oiGho7U6Kjq3jARR1aFlbXT0ws/73aqFxtANTJ8cvZpZhzRoacEb9hX nHNlC1gSVKSc
FCvjGqXxbpr1LaWDovPn1uc50TZS8dISssRzKJsUS41OYsJj86jqlsXcXU2b NaTap9mI4Ayt
aJVEUZE4xSjLcVBywWaR0RYW5hZkC9BFafk62nDOLKurrocCTsB5ntMleEWh LyFfQKwFBLSY
3NQwJ4yByrWIZpWlN3EGVWUpC4RwZF9xtf9a/kmipntz3Kxvua/69knyqDRa de10WcCGT531
Y/YjIaj6ZzLVeKu2WGGSNXdmT6qgZG0dnShWPtbItBWVWJf2FdeuT2wR70ge uV2uc1bFbcdm
+K8727hFzjsYmKWUQ5gziXX9MJSpXRVelhtoqv24rANdeMu+4iItwdla70wN z+24AxEsq2uv
TKqtj6vw7gfJ5Upcjzy0PpxzHQI902IXbysO5CBzzg3JkOM4RHp7nnPSUvOe 9F3uRtiOxFHa
D/Ha26+704S2FSzeqGdA1dk8oKWfxF6K0reQrp82hjLuEpzcrjySDMfGfUsG n8RlDVNXgkjH
9xXXkR3lnnK6Mftc9f3KSV9aeigrrvtFeNTxb7ILsxD+iBog3qMOeZAlYzFs AkrPJn9iiAHM
3qgffb5VVrvhPMcjzZ8PUoENe+neg9q+JQ1ZBDnyTl959SguO9/IY/hRjgMd VyfEeAdg9gg4
RhDWaEIEjGIkTZSov2EgLjJ8czxHazMQeChrM6w8Eke0xUXBKrpea5QTpdYz v/FXGwKCtRP9
ATY4+B9n+7eIYiStDtXVpfsvtYJRb7krmSRbfSa/unwNnhMzpRdw2F6wHHoW UUcCBAjIZFfQ
vuRP7iuOFk2w+OUA6Cz/s8pzB8K53hK4LbrG7i4uWcPD7y8uLBUrew0V2ShE 5Rsvjg89HthI
t3mhNzBF4exDUSW5N2zQSMtX4rla6cSX9W3e6ZemOS+qwG+zcI2M9I2ShsLZ U8spx6P5k03D
iG2WhIPvjN4RnqN6X/bKDGvhr9G3xAUArLMIsUAcoOZN4D8u4OL148XbiuQg f3VqsJevC5k6
ncRVqUFuaYZ/XnHtdJE3BpMK5xiIqe8nfpTOIIey6iXRKtJSeydv2E9ci6kR buiLF8L1eufq
+4kvwHojmktLu0XIHVa18lRdYVL111yHIjM/iHjQR/qWoO7t+4mfXz1q3b2w vErZaZJJt88D
6BTCg0yb4klBDgAqsiT9/ua68Ely2Fu0K+0nvvKEicvpPHKHdfefo2/TS4jC WBWQR/cTZ/Xw
RvYTR9lPPOpYbkdnkFvLm+Gi/cRJT4q+hDe6nziNl6Lh59Z0GrmSpzVXA1bg HMvxD4JyVWzn
zMST+n7iMRunkIO17XOUpqmCkwozNedooaMrQUwq2iDwHHiB21jFjRe0a+Oa swBPOAyWO8qy
9aockrgp5KhMgjfDynuEmA5fW3d1qErSuVveT5zdR7zZm3sgqEUvLHHl/cRx S/uJU/8/iR1T
fL/Gtfc2Pr6feGWU0/uJY99PnCjw3Pg61G4JVSO2rBbvFAmxQt9SR0yL+4mL D7RQLZi+n/gS
NdJyR5UNFbkrzStAcCULNnoy81vfT/wMzdo5GdVw33Jl73R573Y/8bkqGeMD 2jGQml8zGMfA
BiiAylBoAlkja2nz4yFZTYjO437iaJDjnViuQW60nSbQxnPrehB53tAjK7RY khjv648yBjZx
lXs32E/c6bK3sJ849y25qROZufpunbE2u/INkPn7kZsW48EFEG62n/hdoFto 5/iybKNyBW8G
S9v9yAk21+ZgSQYXY2tjUiVmi1d7aih4WxGfH1mMwfxSbk8NcssrcF9jV2q7 dno/ca7+Kv6i
MRrVy0HP6Uee5B6KNGwxbn2cYjYZrLdb2egfaOrUrdGbSUufl4rculae8LqL FXlJNtlB4501
B01iUJ8VtMc8J9tjFIorECOsT6qQnsna+d3bYnee51abJ87JaTGidzbV0qKi cWvYk+COped/
4hV0KViCTfB5+7RkLw9xtLdxHuzGdB65VXkuuk35Eg1268hHTpqK/PMmuIiL mywtbIMsbrFJ
2SJw2Phaghiy4oSk3698ZpS/DTXILa+dvq4fiiqDiyJLFBTlnlnIrUMgk8bL qSklk5zHmFE7
8kkN4ZVY/+EfSC/RIuqMCVYpJEkCJ/nQmiYrW9KtwcOZ3tJuXaVvORXtJxkM 29wZOLKfePLt
EdtKq4rKloQGbatAC09GpOCqCgaoRZlmxWB6F8ecCwYH8JdofVxwKwLcjBrk rty3rFRndHON
tom/qkpUVSDXZjFPmxKT5/jJHSQtuayhTlXCPYnypLfYyrdMBUedKyRpyfxx ecLHJ8u9C1+K
TeOWhOf6luv7OIuwMyNZg5yr3WIP8JaBxPYMMJiT/zThZXYxKavNgCcJWAQx RrUUCjzJ3QXw
cTXTNW9D2Gi/7PKq3gw+PbW6tJCFMyIuJdppOrm5kmJ9QcNeeItm/iSrBnIC ooRmKcxtF4fL
yUx1UKe08vMIBo3eNfHsTUK3pIDcaOud14ZhfY0zgO8IiJkUBQXUYuewvEwC W4MgFqDAbFXe
Gk6du5p0OQb0yFkCTeXRtFSQVzI2lvRA22KwqnNDisgNozOWXMXKwx0G6X+I l4IvFZTpcspP
SYvbMMEEvoADeubykEQsozReTlq6VtVM7ZaWNl4cg5el1NZZXILeDckjt2ON Mzf317CsQsNz
nmN8set+4qHdck0SatvkVgVwC3MUV6MXhlTApSEIStIql5MHhrs+0kBqb7VJ Tzq62UV1W6MB
tiNx3kYlCc+t7s2AWFeNYot0reLaYUvSodQhHBdM6FuCTsivdzAzamjoiRRW szWKo6YQRZll
unhZ0x5lMjpaw1c5G5G9PiU9UJ/q+ibcPb2jtBQ/FKj+xleziVutt/MFzWL9 9hu2ihUam1AY
HwQWeaqR9PH5J9E/7jSWLrQICD/w8yNHlPm0GxgV6MBY/C1X9trTgtQ3DYUh BRKG1rHQJYi7
PKvtyQUx5fSZnC3G5mzrTdiYj5v7NHjk9tWGKitXMHK4G9b2/eq0BkWee+U1 iKq4udZae51W
ocBzZV8e8w/XtRmuZRPv9BEKPPc6jq59sVlYnec2SAs9lNqHYCdeXHkWVqfV KPKc7dZJPFfG
lp3ntkmtDsWtMSM28dx5bovkkRvGgXe1dTtNrK5x7rQOhb7lOLfP1dWAO89t kNpRgb91Jctq
p1WosfLsVMuTacU2yL1vuU2ajcTdZl3SznUdyhapHYk7R8LrrUzaaQWajeeQ nY+dlWfN1YA7
rUVRh1K1X8py11mBu9M6NPdmQMifQL0Z1t1potN61OotxcqTgGf446o7TXRa jWa+X8UolzF5
36/Oc1ukuR+K+EFdbw2iTmvQrJ1zy9ddZRezTitRKy2rQVx5rngzHLrecpMU kXvldb/yCwB2
W8GmKUjLbJZVALGJd9+vbVIzEt85N8buh7Jp8sgdBuO5bDbxLi03SQ1y7Tzx 3Hluq9Qgt7Bf
QW/ntknNSHy+NkPvW26U5joUu0ULGa6/pmynNeg0cuVn13luk3SO5xB3XW+5 SZpbeewWeTN0
ntsmtbONI3J15uNrt/Jskdr5czxdFMHNWc3dsrpBms+fA1rKWbwZcNdH4puk wHNfSv8/8Z72
qDvBr73Paqc1aD5/ri6olmhv47KwSLX9MHXktkPRJj7udX8caef6bOON0txT NqzNkLGPxDdK
TQ9lZ/vy4LV2mui0CkWee33lVeNsbYbr7MvT6cN0Xm/Z27lt0hn7HHTktkrn ea57M2yTziO3
6k4TnVajVuPsb3We2zKdR673LbdJF7VzvYeyQbqA58bckdsgNSPx1jud1kPp 9rkN0mwuj1uD
t69MumVqV7KRhbBR58/t+mzjTVLTzr0CgO3bxpbV3rfcIkVbwbgH3tvYr83Q eW6LNFvfsi7i
jLI2wxX25em0Ds3mrKJfO518vzpyW6TGsrpH8mxO6Nq5Lx25DVJE7pW9GcCv h/KaO3IbpGZU
QDsqIQZvhj6e2yI1yL1C3GkC+5qyW6X5Wnu0qRr4WVh9/twGKYwKSPvVrs3Q bQWbpAs8iMaO
3BYpeBA5qwAIcrmP57ZJAbmsvci61aLsV9CR2yI1PDeCGujQ7HMduQ3SfBcz 2eMSux/Kpmm2
W6duTtp3d9k2zefP6ZptMhLvPLdJmo3EB7SGrmu/NkxL0pJv6GrAfaeJLVIj LWk8h40fSue5
DVJjE99j9GbArv3aKsVZWNU+V+esijdD76FslRbXToe4X0G3FWyRFvbC4hn+ 2L32Nk3Nqhpj
FZTovBm6p+xGaWFHpWaniT6e2ybNpOWSN0PnuQ3SfF8evtpnYW2fgu9XszIp 9PHchqnZaUKp
zxPfOp2Zs9rXZtgsnV+boUvLbdKZNYg6cpslj5yHpiO3dTqDXO9bbpbO9C27 3nKzdMrHuVmZ
dMz1xg0z12mRKgQ2O65qv+zmwmrAu8M4Tv/TV6c7UkVg+let5N7t+QiLK3BX yleqR53eQBGE
4odCK6fb2gxx1XvImT6d7ksNDrTrVZnhr2szNDtNyHO3zWanlloASIci3gy4 sLtLFrQ73ZcY
B8GF1kPhnSZsLyy3o1KXlZuhgByt2Fa7JQncXliunauB713h/uCJ2Mex0F7b ObWJT+O5fdu3
7LQ52pOnrPdmAOm3dNoyTSPxfbMyKZZ9Vl87chsntaHaLCyY6cQ6bZDqLKzM y1uimz/X27mN
U/WsZLcvYJ7LZazQkds4FWlZu5o0ZuvS8mGoqKBthj/tBB89iDptk5yVR6Xl o/NcvkjJSqEe
VztEOhTNP/VQHrqdI9l/gcErB2XSw9Ho7XO208TD89x4FpIDQXz97FyJ5n4o PJfnYXmOwDif
/QM8Mm7ctwwr2aRH57kKx+48zz24DYRWJi0kc3kSX71nrj5I+SKeyxL2Mekw DvtcNc45odtp
4nGRIygOl/AcPDLb7XKds8reDLiwR8gjUs7jWYPXIV86ftgmTeO5nXoz2Kr3 j2wroB6KM0lO
Xa5ykOooIClyLvQjkqzN4HaamA73T4RcaQvyS/kdch5SfhbkdsOXETPvNGE9 lNe8P/PgxsmQ
S/JdeM6Ae3jkRlmDKHgzPLS0rBSRK0Jyer/pe3ga5KofOvkPyR4hdTz3uH1L okWeq/LyWZCr
ez4CvwBmXju9mQ/5gOSQGwpaBbmX4Zl4TvSWNFHE7ZD7yDyXI8/VnglU2NLw NDy3Y54rlP06
zo/Mc7nqY5kqdIRaHgp8TI+O3PIeIQ9tWc3Ec4rcMHW5ykGiE0WOXO7vndt3 0/kZ/g9IRRYO
gUrPZMwFOaWRg945r++mZeQe2VZAWIweNgIse9yI5x4cuTPzxB+NyP++5bnZ wfD4Vp4jazM8
LHJQpeU4nCOyrD4udkd2MXtg5IjnjiFn1x/dm2ERuYe2idMUQVuQYDzsxnHc 04VR6Sk8iBZX
SXxY5KDxxsv2G4Tjw3vtPSFyfxj0fO3cHwp15B6VOnKPSh25R6XjyC24S3Xa EHWee1Q6jtz1
lo3rtAbNkUPSoXTaPo26P67bI+Temep0nsZWWiLC2OkhiJZl8DzX6eGoI/eo 1JF7VGL73L2z
0ekymll5OnIPQnP7XKeHozIS7/SY1JF7VOrIPSr9fwf8si1NBKbvAAAAAElF TkSuQmCC
--------------040702020506050307050305--
Previous Topic:"tolerant" search problem
Next Topic:short introduction...
Goto Forum:
  


Current Time: Thu Apr 17 11:34:45 EDT 2014

Powered by FUDForum. Page generated in 0.10498 seconds