Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Modeling » UML2 » There may not be two classifiers names 'xyz'
There may not be two classifiers names 'xyz' [message #507148] Tue, 12 January 2010 10:15 Go to next message
No real name is currently offline No real nameFriend
Messages: 14
Registered: December 2009
Junior Member
Hi all,
thanks for the possibility to create UML within Eclipse platform,
including roundtrip engeneering and re-engeneering. You did a great
work. Sadly, I'm relatively new to eclipse uml and emf, and it's a
gigantic package you can get lost in very fast. In the past I was used
to take Poseidon to model my applications...but Poseidon absolutely
s..cks and the support is disgusting.
What I'm trying at the moment is to model an application (of course) by
starting with Use Cases, afterwards creating state machines, activities
and classes. My problem is now, that if I create e.g. a state machine of
the name 'MeasurementService', afterwards an activity with the same name
(= 'MeasurementService') and the class with that name (by using UML
tools, see post there: 'Class and State Machine Diagrams'), I'll get the
error 'There may not be two classifiers names 'MeasurementService'' when
reloading with genmodel, of course, because everything tries to generate
an interface 'MeasurementService' + Implementation.
My question is now, how to handle this problem. How can I take the same
classifier for different activities, state machines etc. It is not
necessary for me to take UML tools, it would be enough for me to work
within UML file.
Maybe this is a very trivial problem (then I'm really sorry), but as I
said, you did a great work and this uml package is very huge with many
options (and I already got lost in for many, many times)

I'd be really grateful for your help...

greets
bde
Re: There may not be two classifiers names 'xyz' [message #507250 is a reply to message #507148] Tue, 12 January 2010 11:07 Go to previous messageGo to next message
Rafael Chaves is currently offline Rafael ChavesFriend
Messages: 161
Registered: July 2009
Senior Member
There can't be two elements of the same name in a same namespace when one is a type of the other. A state machine is a behavior which is a class, thus you cannot have both a class and a state machine with the same name. The same is true for activity (also subclass of class).

What are you trying to achieve by naming things the same? UML elements are connected by association, not by name.

But more importantly, one would expect behaviors (SMs, activities) for a behaviored classifier (such as Class) to be children of that class, not siblings, as the classifier is the context for the Behavior. If you do that, the name clashing problem should go away.

See javadoc for Behavior#getContext() at http://bit.ly/4HZYRo .

"The classifier that is the context for the execution of the behavior. If the behavior is owned by a BehavioredClassifier, that classifier is the context. Otherwise, the context is the first BehavioredClassifier reached by following the chain of owner relationships. For example, following this algorithm, the context of an entry action in a state machine is the classifier that owns the state machine. The features of the context classifier as well as the elements visible to the context classifier are visible to the behavior. "

Cheers,

Rafael
http://abstratt.com/blog/



Re: There may not be two classifiers names 'xyz' [message #507398 is a reply to message #507148] Wed, 13 January 2010 11:20 Go to previous messageGo to next message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
You can create same model elements name for a state and activity diagram related to a class if you directly use the Eclipse UML Model Editor.

Click on the class in the UML Editor > New Child > Owned Behavior > StateMachine

See my test : url= http://www.eclipsedownload.com/metamodeling_pictures/stateMa chine_creation.png]

Once the model has been created you need to drag and drop your model elements within an UML Editor in order to visualize it graphically.

[Updated on: Wed, 13 January 2010 11:24]

Report message to a moderator

Re: There may not be two classifiers names 'xyz' [message #507537 is a reply to message #507398] Wed, 13 January 2010 18:54 Go to previous messageGo to next message
No real name is currently offline No real nameFriend
Messages: 14
Registered: December 2009
Junior Member
This is a multi-part message in MIME format.
--------------050801040307090508060802
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

Thanks a lot for your responses!
Vlad, you've got the point, your suggestion describes exactly the stuff
I want to do.
I don't want to model too fine grained, so, just for an overview now:
Suppose I've got a waiter, a guest and a restaurant. Within a class
diagram I create these three classes with one navigable association
between restaurant-waiter and one between restaurant-guest (I choose
bottom-up for demonstration)(that means, there's a global variable in
restaurant both for waiter and for guest. The next step is to create a
state machine with the name restaurant to model the states of waiter and
guest (ordering, eating, drinking etc.) -> (duplicate names = error).
What I don't want to do is: Creating new 'classes' within my hierarchy
for describing the states (or activities) = behaviors of the restaurant
(e.g. class restaurant_order, class restaurant_guest_eating), no, I just
want these three mentioned classes (= restaurant, waiter, guest) (+
interfaces, factories etc. of course).
I work with uml2 tools to view my uml stuff graphically. Sadly,
drag'N'drop isn't possible from uml file to state machine diagram (see
attached picture, arrow bottom). Furthermore, if I create a state
machine as owned (like you described) there's a class generated (see
picture, arrow top and middle). But I don't want this class to be
generated by genmodel.
I just want my three classes, modeled in the class diagram (with
operations, attributes), take these classes and model their interaction
behavior in other diagrams (state machines, activities).
This must be possible! I think, I'm just a little bit stupid at the
moment. As I mentioned, you created a fascinating framework and I
understand not enough about it yet.
Thanks for you patience with me and your work to reproduce my problem,
thanks a lot.

Greets

--------------050801040307090508060802
Content-Type: image/jpeg;
name="uml.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="uml.jpg"

/9j/4AAQSkZJRgABAgEASABIAAD/4RHZRXhpZgAATU0AKgAAAAgABwESAAMA AAABAAEAAAEa
AAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAA cgEyAAIAAAAU
AAAAjodpAAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhv dG9zaG9wIENT
MyBXaW5kb3dzADIwMTA6MDE6MTMgMTk6NDg6MjYAAAAAA6ABAAMAAAABAAEA AKACAAQAAAAB
AAACv6ADAAQAAAABAAADDwAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEA AAEeARsABQAA
AAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIABAAAAAEAABCjAAAA AAAAAEgAAAAB
AAAASAAAAAH/2P/gABBKRklGAAECAABIAEgAAP/tAAxBZG9iZV9DTQAB/+4A DkFkb2JlAGSA
AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwR DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwM DAwREQwMDAwM
DBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoACQAwEiAAIR AQMRAf/dAAQA
Cf/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEA AAAAAAAAAQAC
AwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIG FJGhsUIjJBVS
wWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePz RieUpIW0lcTU
5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYH BwYFNQEAAhED
ITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcm NcLSRJNUoxdk
RVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//a
AAwDAQACEQMRAD8A9RvrrtqfXaxtlbhDmPAc0j+U130llZzmNOc5xoI/R6Xs dZXM1wH1M930
v3fz/TWu/wCifgsy972ZGW5jrQ4enrVWHv8AzPzPdvb/AGUDuPP9imm0U5Nh pxT059lm1zWH
Hd7q3AWPdZ7/AM5v0Fr4VefWC3KNGwD2Noa5sGXc73v/ADNqzRkZdY9R1+dY KjucxuI0bw0l
zmx6W93qtb6f6JaWNntyLDWKb6yJ1trcxum3893t/P8A9diKm0koveythfY4 MY0S5zjAA8SS
o0ZFOTULqHiyp07Xt1aYO32u/OakmjV0aur6WkSSSSQpJJJJSkkkklKSSSSU pJJJJSkkkklP
/9D1N/0T8Fg9YtzGHKGDUb7i+prmNc4ua1w3eptxrKchnuZ++t8iQR4rOyOn 3225RNWPbVd6
ZYy1pIJZDv0v0t36RrNns9iIoEEi6N0eqDtW1uAzrH1wopcyvp4IYC6vfXfY X6F23e/Ida39
L+j/AEv5i3M2vrOdh1V4uRX083VA337S+1riAXMoZuYxn5/6T1Hv/wDPiAzo ZawMOB08gODt
A7RwH09WO9yk7ovqWF78DAdO2SWkEk7PV02O3fQ/Ro5JRmKERD+5xa/85dhM sUhMHjI29wRn
H/E+WX+E26Ol4/sflu+3ZNcbrbdQHgCX1Y8uoxXf8SxXpAIBOp4WPZ0ixznR iYe0exk759It
9B1boa3/AADnN9L+aUR0QkHdg4H0CzQOiHbdzXM2e7dt+mmAAbJnOUzcjfbt H+7H9F2pA5SB
BEgyNRp4jQqlR0fprBXYcOhlzYcXMYBD+XOYfpfS+inZ0bpTKzUzEqFZcHlg YILh+eW/ve5F
a3JjlLc2JkR4/DlUn9D6PYQX4dLiA1olg4YNlbf6tbf5v9xO/o3SX2m5+JU6 1zi8vLBJcY3P
P8v2/TSU2w9jtA4Hvoeyfc2QJEngeMKl+xOkekKvsdPptJLWhjYBcIcW6e1E xul9OxbPUxse
ul55dW0Nmf3tv0klNpJJJJSkkkklKSSSSU//0fVUlkPz3sc5oflvc0ge3FJB nX2Wen6bv6+9
Tbl2PsNbbsgwwv3nH2s/NOxtllbGOsd6n0P/ACCVjup1ElneplAAnII3CRLW D+ydPpp9+T/3
IP8Ams/uQ4h3VRdBJZ+/J/7kH/NZ/clvyf8AuQf81n9yXEO6qPZ0Eln78n/u Qf8ANZ/clvyf
+5B/zWf3JcQ7qo9nQSWfvyf+5B/zWf3Jb8n/ALkH/NZ/clxDuqj2dBJZ+/J/ 7kH/ADWf3Jb8
n/uQf81n9yXEO6qPZ0Eln78n/uQf81n9yW/J/wC5B/zWf3JcQ7qo9nQSWfvy f+5B/wA1n9yW
/J/7kH/NZ/clxDuqj2dBJZ+/J/7kH/NZ/clvyf8AuQf81n9yXEO6qPZ//9L0 zPG3DudX6jXB
ujqGB9g/4utwc17lXv8AUF1205IG0bdjGuYDNf8ANbg79J/6l3qx1Fpdg3ND HWEt0Y2z0nH+
rfLfS/rKtfXOTkFtRcSwSW3ljjrXywH2f1//AEsiBofJB3DT9TKNNk3ZxMsg /ZawRLZd7PR/
TM/0+z3+r/MomJ6jrYe/KcIPtsxq2D8zb+kbU3b/AK/6JD+y5HouBxsn3Fmw HOdOjf8AAP8A
U+kz9x38/wDzliPi0ZDLNz6MljQDJflmxv5nLTZ5e7/rqCUVDnnZufmOJa8H diMbqfoOP6Da
3Z/00TAxsm525+TeW1kBzbseqvfDjuj9E12123b7f8GhfZchrNjcTKhhLmk5 hiHBm/3m3c5u
6n2VP/R/8X6i2qXE1M3tLH7QXMJ3Fpj6Jd+ckpXoU/6Nv3BL0Kf9G37gppJK YehT/o2/cEvQ
p/0bfuCmkkph6FP+jb9wS9Cn/Rt+4KaSSmHoU/6Nv3BL0Kf9G37gppJKYehT /o2/cEvQp/0b
fuCmkkph6FP+jb9wS9Cn/Rt+4KaSSn//0/Ts2n18W2rZXZvbGy4TWfKwD81U ck0C7KNgx3OY
Gbg/3ENeWPb6jGM3t/mXv+n/AINXc91jMO11bnseG+11bPVeD/Ip19T+qqlz 7GuygH2VkNDm
gNN79XfTopmzc13/ABX6L+onR6oPRzT+x6PWpym9LpFgDhIgERFDnte1jfa1 9X0X+ytGwcn6
u0FzrnYFV7HbCaobGjW+91m13ufV7XJ33W7r3Ovv9tYLS7Ac4AzW1z27aw61 +136Wv8Al/ov
5lM2+1zWu+03GXOG4dOs1aAzaP5t36Nk/o/3/wDrSZr4JSsP1ToNb2jErnWl 4DADOn6J35/9
hTzOndDwaDkHpotIJIrx8f1Hlzj6joZW327nD6T/AGKN9jmlrPVtaHNGwjCe 8AzbOjGO2O9n
5/8A6NTNy7y6u1uTlei10vYcNwkS7dUf0TbNv6PZW+v/AMFS1TExBBIsdRfD f1TYXVc/NoFt
fTbqHFzhtynCnQH2OIi273N/4D/txW6P2k6wOyPRrq1mpm57vL9O70W/+y6n i5LMqr1WMsYJ
LS21jq3AtO0+y1rfb/L/AJt6MgAepJZJ5IkngxxgD/emQP8ADkpJJJOYlJJJ JKUkkkkpSSSS
SlJJJJKf/9TvTXeLs2K8qXejs9O1hc6GMDvs/qubXS1rv5/e/wB/85+eoVVZ THVbquoshrt2
66mxo9h/nf0tlrv5Oxn88pHCuL8txwmObkGra0Pczd6bWM/WHt37duzbV6bf 5v6aHT019bqy
enVM9MEbqrniJaWe2ra1rv7diRKIjT6n81ejmBtoNGb72MaAcoHcQK5ayxln 6s9m3+f9n2j9
L6n6S2tTdTmizcKcyPH7Swgw0csc523b+bt/nLf51Db03JrbaasLHrsfWxjC 1z2hxaKxsyHN
O70Gen+r7PoV/wDXFEdIsY4engYwYwe10vDtwPrN9u521vrNY/8AnErSlFeb WwAY/UHGsO27
b6HTO9vN1zN9m33t9Vv+jSfVls9R1dXUHPLPTj16dsE/Tr9S3Y2/ZW337P8A DfT/AJ30x2dJ
u2NczAxnXhhbusL4mXv2zufY6v3+p/x/6b6akcRldrvQ6fTsBLmF1rw4kwHP 9ldrGua39x9n
+D/m0LCnSxLLmuGO6i5rGtn17n1uk+12z2W2Wud73fmf4JW1z4wwGlv2Ckhj 22Ug22GHAek5
9jnM+l6b7P8AjFbrxsBrKA7FduoIcwAkta72+5u6z+R+clxDuqnVSVb7a3/R Wfc3/wAkl9tb
/orPub/5JLiHdVNlJVvtrf8ARWfc3/ySX21v+is+5v8A5JLiHdVNlJVvtrf9 FZ9zf/JJfbW/
6Kz7m/8AkkuId1U2UlW+2t/0Vn3N/wDJJfbW/wCis+5v/kkuId1U2UlW+2t/ 0Vn3N/8AJJfb
W/6Kz7m/+SS4h3VT/9X0O7onTXF1j6Gvc9wLy7cQTo2XN3bVJ3Qumvf6jqQX 6e7c6faNreH/
AJrVeeGlpDuFCG/vWfcf/IoUFNNnQelMe17KGtc0hzSN2hBa5rh7vzXVsSZ0 Hpdb2vZQ1r2G
Wul2hnd3f+8rkN/es+4/+RShv71n3H/yKVBTUr6F0yqxttdDW2sdua/UkOH5 3uc5JppGQcNt
dzYef0gYdgOxtvqet9H8/wBL/jFbhv71n3H/AMilDf3rPuP/AJFKgpF9nHqG v1DIAdwO5I8P
JS+yf8IfuCfY3fu3P+4z98KUN/es+4/+RS4R2VbD7J/wh+4JfZP+EP3BThv7 1n3H/wAilDf3
rPuP/kUuEdlWw+yf8IfuCX2T/hD9wU4b+9Z9x/8AIpQ396z7j/5FLhHZVom4 27d7zoY4CTMY
uYHbzr5BWGBob7fnPM+aj6QHDnAeAOiXCOyrR/ZP+EP3BL7J/wAIfuCL6X8t 33pel/Ld96XC
OyrRfZP+EP3BVsxzcQAubfdLXOApr9Q+zb7Ib+fZv/Rq96X8t33pel/Ld96X COyrf//W9StM
MkeI/KE8P8R93/mSjc2Waa6jTnuiJKYw/wAR93/mSUP8R93/AJkpJJKYw/xH 3f8AmSq29Mx7
Xue4va9xDi6t72GRu42PH77lcSSU02dMoZvh9rt8bt1tjvowRt3We36PuQ6u i4lRBY++WuDw
XXWu1B3+7dZ7t+39J/I/R/za0EklMYf4j7v/ADJKH+I+7/zJSSSUxh/iPu/8 ySh/iPu/8yUk
klMKyTunnd+QBRBaSZ3Egkabv++qVf5/9YpqZ9087tfjCSlez+V/0kvZ/K/6 SIkkpH7P5X/S
Va92eHO+zVMsbB2Cx72EugbQ5wbZtY52/wBR+z9F/OVsyf5hXUklP//X9Fs6 P08NB2O9rmuA
9R8SHts3bd+36Y9ytYuJRiVmuhpawmYLnO7R/hC5Ee3c0iY8D8NU0W/vD/N/ 8ySUzSUIt/eH
+b/5klFv7w/zf/MklM0lCLf3h/m/+ZJRb+8P83/zJJTNJQi394f5v/mSaL9w 1EeMf7UlJElC
Lf3h/m/+ZJRb+8P83/zJJTNJQi394f5v/mSUW/vD/N/8ySU1bR1PfZ9ldQG7 vaLA8n6P52w/
6T/wNNjt6oLf0j6HV7z6ga14dHba7dt/6KuMaWgyZJMnso1cv/rH+CSkiSSS SlJJJJKf/9D1
VJQ9QHUA/cn3jwP3JKZJKO8eB+5LePA/ckpBm4j8mpza77MewtIZZWfouIhr 9n0X7P3XKnh9
Upx8qromY9/28MHp2PBIyA1pL763t3bfoO9Wuz+b/wCE/nFp7x4H7kHIx8TJ LXX1B7q/5t5H
ubq1/wCjsHvr91bPoIEyoUdu6/H7YJ9yJIIIBifVCX6Mv639aLYQshlz64os FT5B3Fu4QD7m
7dPpKe8eB+5LePA/cisYY7Lq6Wtvs9awTus2hkySR7G/ut9qKo7x4H7kt48D 9ySmSSjvHgfu
S3jwP3JKZIdX5/8AWKlvHgfuUGHbukHVxI0SUlSUd48D9yW8eB+5JTJJR3jw P3Jbx4H7klP/
2f/tFrZQaG90b3Nob3AgMy4wADhCSU0EJQAAAAAAEAAAAAAAAAAAAAAAAAAA AAA4QklNA+0A
AAAAABAASAAAAAEAAgBIAAAAAQACOEJJTQQmAAAAAAAOAAAAAAAAAAAAAD+A AAA4QklNBA0A
AAAAAAQAAAB4OEJJTQQZAAAAAAAEAAAAHjhCSU0D8wAAAAAACQAAAAAAAAAA AQA4QklNBAoA
AAAAAAEAADhCSU0nEAAAAAAACgABAAAAAAAAAAI4QklNA/UAAAAAAEgAL2Zm AAEAbGZmAAYA
AAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEAWgAAAAYAAAAAAAEANQAA AAEALQAAAAYA
AAAAAAE4QklNA/gAAAAAAHAAAP////////////////////////////8D6AAA AAD/////////
////////////////////A+gAAAAA/////////////////////////////wPo AAAAAP//////
//////////////////////8D6AAAOEJJTQQAAAAAAAACAAA4QklNBAIAAAAA AAIAADhCSU0E
MAAAAAAAAQEAOEJJTQQtAAAAAAAGAAEAAAACOEJJTQQIAAAAAAAQAAAAAQAA AkAAAAJAAAAA
ADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA0sAAAAGAAAAAAAAAAAAAAMP AAACvwAAAAsA
VQBuAGIAZQBuAGEAbgBuAHQALQA0AAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAB AAAAAAAAAAAA
AAK/AAADDwAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAABAA AAABAAAAAAAA
bnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABU b3AgbG9uZwAA
AAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAADDwAAAABSZ2h0bG9u ZwAAAr8AAAAG
c2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAAEgAAAAdzbGlj ZUlEbG9uZwAA
AAAAAAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAMRVNsaWNl T3JpZ2luAAAA
DWF1dG9HZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAAAABJ bWcgAAAABmJv
dW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAA AExlZnRsb25n
AAAAAAAAAABCdG9tbG9uZwAAAw8AAAAAUmdodGxvbmcAAAK/AAAAA3VybFRF WFQAAAABAAAA
AAAAbnVsbFRFWFQAAAABAAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFn VEVYVAAAAAEA
AAAAAA5jZWxsVGV4dElzSFRNTGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEA AAAAAAlob3J6
QWxpZ25lbnVtAAAAD0VTbGljZUhvcnpBbGlnbgAAAAdkZWZhdWx0AAAACXZl cnRBbGlnbmVu
dW0AAAAPRVNsaWNlVmVydEFsaWduAAAAB2RlZmF1bHQAAAALYmdDb2xvclR5 cGVlbnVtAAAA
EUVTbGljZUJHQ29sb3JUeXBlAAAAAE5vbmUAAAAJdG9wT3V0c2V0bG9uZwAA AAAAAAAKbGVm
dE91dHNldGxvbmcAAAAAAAAADGJvdHRvbU91dHNldGxvbmcAAAAAAAAAC3Jp Z2h0T3V0c2V0
bG9uZwAAAAAAOEJJTQQoAAAAAAAMAAAAAT/wAAAAAAAAOEJJTQQUAAAAAAAE AAAACDhCSU0E
DAAAAAAQvwAAAAEAAACQAAAAoAAAAbAAAQ4AAAAQowAYAAH/2P/gABBKRklG AAECAABIAEgA
AP/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJ DBELCgsRFQ8M
DA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAENCwsNDg0Q
Dg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwM DAwMDAwMDAwM
DAwM/8AAEQgAoACQAwEiAAIRAQMRAf/dAAQACf/EAT8AAAEFAQEBAQEBAAAA AAAAAAMAAQIE
BQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQC BQcGCAUDDDMB
AAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1 FqKygyZEk1Rk
RcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm 9jdHV2d3h5en
t8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFC I8FS0fAzJGLh
coKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSF tJXE1OT0pbXF
1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A9Rvrrtqf XaxtlbhDmPAc
0j+U130llZzmNOc5xoI/R6XsdZXM1wH1M930v3fz/TWu/wCifgsy972ZGW5j rQ4enrVWHv8A
zPzPdvb/AGUDuPP9imm0U5NhpxT059lm1zWHHd7q3AWPdZ7/AM5v0Fr4VefW C3KNGwD2Noa5
sGXc73v/ADNqzRkZdY9R1+dYKjucxuI0bw0lzmx6W93qtb6f6JaWNntyLDWK b6yJ1trcxum3
893t/P8A9diKm0koveythfY4MY0S5zjAA8SSo0ZFOTULqHiyp07Xt1aYO32u /OakmjV0aur6
WkSSSSQpJJJJSkkkklKSSSSUpJJJJSkkkklP/9D1N/0T8Fg9YtzGHKGDUb7i +prmNc4ua1w3
eptxrKchnuZ++t8iQR4rOyOn3225RNWPbVd6ZYy1pIJZDv0v0t36RrNns9iI oEEi6N0eqDtW
1uAzrH1wopcyvp4IYC6vfXfYX6F23e/Ida39L+j/AEv5i3M2vrOdh1V4uRX0 83VA337S+1ri
AXMoZuYxn5/6T1Hv/wDPiAzoZawMOB08gODtA7RwH09WO9yk7ovqWF78DAdO 2SWkEk7PV02O
3fQ/Ro5JRmKERD+5xa/85dhMsUhMHjI29wRnH/E+WX+E26Ol4/sflu+3ZNcb rbdQHgCX1Y8u
oxXf8SxXpAIBOp4WPZ0ixznRiYe0exk759It9B1boa3/AADnN9L+aUR0QkHd g4H0CzQOiHbd
zXM2e7dt+mmAAbJnOUzcjfbtH+7H9F2pA5SBBEgyNRp4jQqlR0fprBXYcOhl zYcXMYBD+XOY
fpfS+inZ0bpTKzUzEqFZcHlgYILh+eW/ve5Fa3JjlLc2JkR4/DlUn9D6PYQX 4dLiA1olg4YN
lbf6tbf5v9xO/o3SX2m5+JU61zi8vLBJcY3PP8v2/TSU2w9jtA4Hvoeyfc2Q JEngeMKl+xOk
ekKvsdPptJLWhjYBcIcW6e1Exul9OxbPUxseul55dW0Nmf3tv0klNpJJJJSk kkklKSSSSU//
0fVUlkPz3sc5oflvc0ge3FJBnX2Wen6bv6+9Tbl2PsNbbsgwwv3nH2s/NOxt llbGOsd6n0P/
ACCVjup1ElneplAAnII3CRLWD+ydPpp9+T/3IP8Ams/uQ4h3VRdBJZ+/J/7k H/NZ/clvyf8A
uQf81n9yXEO6qPZ0Eln78n/uQf8ANZ/clvyf+5B/zWf3JcQ7qo9nQSWfvyf+ 5B/zWf3Jb8n/
ALkH/NZ/clxDuqj2dBJZ+/J/7kH/ADWf3Jb8n/uQf81n9yXEO6qPZ0Eln78n /uQf81n9yW/J
/wC5B/zWf3JcQ7qo9nQSWfvyf+5B/wA1n9yW/J/7kH/NZ/clxDuqj2dBJZ+/ J/7kH/NZ/clv
yf8AuQf81n9yXEO6qPZ//9L0zPG3DudX6jXBujqGB9g/4utwc17lXv8AUF12 05IG0bdjGuYD
Nf8ANbg79J/6l3qx1Fpdg3NDHWEt0Y2z0nH+rfLfS/rKtfXOTkFtRcSwSW3l jjrXywH2f1//
AEsiBofJB3DT9TKNNk3ZxMsg/ZawRLZd7PR/TM/0+z3+r/MomJ6jrYe/KcIP tsxq2D8zb+kb
U3b/AK/6JD+y5HouBxsn3FmwHOdOjf8AAP8AU+kz9x38/wDzliPi0ZDLNz6M ljQDJflmxv5n
LTZ5e7/rqCUVDnnZufmOJa8HdiMbqfoOP6Da3Z/00TAxsm525+TeW1kBzbse qvfDjuj9E121
23b7f8GhfZchrNjcTKhhLmk5hiHBm/3m3c5u6n2VP/R/8X6i2qXE1M3tLH7Q XMJ3Fpj6Jd+c
kpXoU/6Nv3BL0Kf9G37gppJKYehT/o2/cEvQp/0bfuCmkkph6FP+jb9wS9Cn /Rt+4KaSSmHo
U/6Nv3BL0Kf9G37gppJKYehT/o2/cEvQp/0bfuCmkkph6FP+jb9wS9Cn/Rt+ 4KaSSn//0/Ts
2n18W2rZXZvbGy4TWfKwD81Uck0C7KNgx3OYGbg/3ENeWPb6jGM3t/mXv+n/ AINXc91jMO11
bnseG+11bPVeD/Ip19T+qqlz7GuygH2VkNDmgNN79XfTopmzc13/ABX6L+on R6oPRzT+x6PW
pym9LpFgDhIgERFDnte1jfa19X0X+ytGwcn6u0FzrnYFV7HbCaobGjW+91m1 3ufV7XJ33W7r
3Ovv9tYLS7Ac4AzW1z27aw61+136Wv8Al/ov5lM2+1zWu+03GXOG4dOs1aAz aP5t36Nk/o/3
/wDrSZr4JSsP1ToNb2jErnWl4DADOn6J35/9hTzOndDwaDkHpotIJIrx8f1H lzj6joZW327n
D6T/AGKN9jmlrPVtaHNGwjCe8AzbOjGO2O9n5/8A6NTNy7y6u1uTlei10vYc NwkS7dUf0TbN
v6PZW+v/AMFS1TExBBIsdRfDf1TYXVc/NoFtfTbqHFzhtynCnQH2OIi273N/ 4D/txW6P2k6w
OyPRrq1mpm57vL9O70W/+y6ni5LMqr1WMsYJLS21jq3AtO0+y1rfb/L/AJt6 MgAepJZJ5Ikn
gxxgD/emQP8ADkpJJJOYlJJJJKUkkkkpSSSSSlJJJJKf/9TvTXeLs2K8qXej s9O1hc6GMDvs
/qubXS1rv5/e/wB/85+eoVVZTHVbquoshrt266mxo9h/nf0tlrv5Oxn88pHC uL8txwmObkGr
a0Pczd6bWM/WHt37duzbV6bf5v6aHT019bqyenVM9MEbqrniJaWe2ra1rv7d iRKIjT6n81ej
mBtoNGb72MaAcoHcQK5ayxln6s9m3+f9n2j9L6n6S2tTdTmizcKcyPH7Swgw 0csc523b+bt/
nLf51Db03JrbaasLHrsfWxjC1z2hxaKxsyHNO70Gen+r7PoV/wDXFEdIsY4e ngYwYwe10vDt
wPrN9u521vrNY/8AnErSlFebWwAY/UHGsO27b6HTO9vN1zN9m33t9Vv+jSfV ls9R1dXUHPLP
Tj16dsE/Tr9S3Y2/ZW337P8ADfT/AJ30x2dJu2NczAxnXhhbusL4mXv2zufY 6v3+p/x/6b6a
kcRldrvQ6fTsBLmF1rw4kwHP9ldrGua39x9n+D/m0LCnSxLLmuGO6i5rGtn1 7n1uk+12z2W2
Wud73fmf4JW1z4wwGlv2Ckhj22Ug22GHAek59jnM+l6b7P8AjFbrxsBrKA7F duoIcwAkta72
+5u6z+R+clxDuqnVSVb7a3/RWfc3/wAkl9tb/orPub/5JLiHdVNlJVvtrf8A RWfc3/ySX21v
+is+5v8A5JLiHdVNlJVvtrf9FZ9zf/JJfbW/6Kz7m/8AkkuId1U2UlW+2t/0 Vn3N/wDJJfbW
/wCis+5v/kkuId1U2UlW+2t/0Vn3N/8AJJfbW/6Kz7m/+SS4h3VT/9X0O7on TXF1j6Gvc9wL
y7cQTo2XN3bVJ3Qumvf6jqQX6e7c6faNreH/AJrVeeGlpDuFCG/vWfcf/IoU FNNnQelMe17K
Gtc0hzSN2hBa5rh7vzXVsSZ0Hpdb2vZQ1r2GWul2hnd3f+8rkN/es+4/+RSh v71n3H/yKVBT
Ur6F0yqxttdDW2sdua/UkOH53uc5JppGQcNtdzYef0gYdgOxtvqet9H8/wBL /jFbhv71n3H/
AMilDf3rPuP/AJFKgpF9nHqGv1DIAdwO5I8PJS+yf8IfuCfY3fu3P+4z98KU N/es+4/+RS4R
2VbD7J/wh+4JfZP+EP3BThv71n3H/wAilDf3rPuP/kUuEdlWw+yf8IfuCX2T /hD9wU4b+9Z9
x/8AIpQ396z7j/5FLhHZVom427d7zoY4CTMYuYHbzr5BWGBob7fnPM+aj6QH DnAeAOiXCOyr
R/ZP+EP3BL7J/wAIfuCL6X8t33pel/Ld96XCOyrRfZP+EP3BVsxzcQAubfdL XOApr9Q+zb7I
b+fZv/Rq96X8t33pel/Ld96XCOyrf//W9StMMkeI/KE8P8R93/mSjc2Waa6j TnuiJKYw/wAR
93/mSUP8R93/AJkpJJKYw/xH3f8AmSq29Mx7Xue4va9xDi6t72GRu42PH77l cSSU02dMoZvh
9rt8bt1tjvowRt3We36PuQ6ui4lRBY++WuDwXXWu1B3+7dZ7t+39J/I/R/za 0EklMYf4j7v/
ADJKH+I+7/zJSSSUxh/iPu/8ySh/iPu/8yUkklMKyTunnd+QBRBaSZ3Egkab v++qVf5/9Ypq
Z9087tfjCSlez+V/0kvZ/K/6SIkkpH7P5X/SVa92eHO+zVMsbB2Cx72EugbQ 5wbZtY52/wBR
+z9F/OVsyf5hXUklP//X9Fs6P08NB2O9rmuA9R8SHts3bd+36Y9ytYuJRiVm uhpawmYLnO7R
/hC5Ee3c0iY8D8NU0W/vD/N/8ySUzSUIt/eH+b/5klFv7w/zf/MklM0lCLf3 h/m/+ZJRb+8P
83/zJJTNJQi394f5v/mSaL9w1EeMf7UlJElCLf3h/m/+ZJRb+8P83/zJJTNJ Qi394f5v/mSU
W/vD/N/8ySU1bR1PfZ9ldQG7vaLA8n6P52w/6T/wNNjt6oLf0j6HV7z6ga14 dHba7dt/6KuM
aWgyZJMnso1cv/rH+CSkiSSSSlJJJJKf/9D1VJQ9QHUA/cn3jwP3JKZJKO8e B+5LePA/ckpB
m4j8mpza77MewtIZZWfouIhr9n0X7P3XKnh9Upx8qromY9/28MHp2PBIyA1p L763t3bfoO9W
uz+b/wCE/nFp7x4H7kHIx8TJLXX1B7q/5t5Hubq1/wCjsHvr91bPoIEyoUdu 6/H7YJ9yJIII
BifVCX6Mv639aLYQshlz64osFT5B3Fu4QD7m7dPpKe8eB+5LePA/cisYY7Lq 6Wtvs9awTus2
hkySR7G/ut9qKo7x4H7kt48D9ySmSSjvHgfuS3jwP3JKZIdX5/8AWKlvHgfu UGHbukHVxI0S
UlSUd48D9yW8eB+5JTJJR3jwP3Jbx4H7klP/2QA4QklNBCEAAAAAAFUAAAAB AQAAAA8AQQBk
AG8AYgBlACAAUABoAG8AdABvAHMAaABvAHAAAAATAEEAZABvAGIAZQAgAFAA aABvAHQAbwBz
AGgAbwBwACAAQwBTADMAAAABADhCSU0EBgAAAAAABwABAAAAAQEA/+EPzmh0 dHA6Ly9ucy5h
ZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJX NU0wTXBDZWhp
SHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpu czptZXRhLyIg
eDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNC4xLWMwMzYgNDYuMjc2NzIwLCBN b24gRmViIDE5
IDIwMDcgMjI6NDA6MDggICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0i aHR0cDovL3d3
dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVz Y3JpcHRpb24g
cmRmOmFib3V0PSIiIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxl bWVudHMvMS4x
LyIgeG1sbnM6eGFwPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4 bWxuczp4YXBN
TT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RS ZWY9Imh0dHA6
Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHht bG5zOnBob3Rv
c2hvcD0iaHR0cDovL25zLmFkb2JlLmNvbS9waG90b3Nob3AvMS4wLyIgeG1s bnM6dGlmZj0i
aHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iIHhtbG5zOmV4aWY9Imh0 dHA6Ly9ucy5h
ZG9iZS5jb20vZXhpZi8xLjAvIiBkYzpmb3JtYXQ9ImltYWdlL2pwZWciIHhh cDpDcmVhdG9y
VG9vbD0iQWRvYmUgUGhvdG9zaG9wIENTMyBXaW5kb3dzIiB4YXA6Q3JlYXRl RGF0ZT0iMjAx
MC0wMS0xM1QxOTo0ODoyNiswMTowMCIgeGFwOk1vZGlmeURhdGU9IjIwMTAt MDEtMTNUMTk6
NDg6MjYrMDE6MDAiIHhhcDpNZXRhZGF0YURhdGU9IjIwMTAtMDEtMTNUMTk6 NDg6MjYrMDE6
MDAiIHhhcE1NOkRvY3VtZW50SUQ9InV1aWQ6Njg3NDlDMjQ3NDAwREYxMTlF OTY4NTc3RTRB
NEMyMDgiIHhhcE1NOkluc3RhbmNlSUQ9InV1aWQ6Njk3NDlDMjQ3NDAwREYx MTlFOTY4NTc3
RTRBNEMyMDgiIHBob3Rvc2hvcDpDb2xvck1vZGU9IjMiIHBob3Rvc2hvcDpJ Q0NQcm9maWxl
PSJzUkdCIElFQzYxOTY2LTIuMSIgcGhvdG9zaG9wOkhpc3Rvcnk9IiIgdGlm ZjpPcmllbnRh
dGlvbj0iMSIgdGlmZjpYUmVzb2x1dGlvbj0iNzIwMDAwLzEwMDAwIiB0aWZm OllSZXNvbHV0
aW9uPSI3MjAwMDAvMTAwMDAiIHRpZmY6UmVzb2x1dGlvblVuaXQ9IjIiIHRp ZmY6TmF0aXZl
RGlnZXN0PSIyNTYsMjU3LDI1OCwyNTksMjYyLDI3NCwyNzcsMjg0LDUzMCw1 MzEsMjgyLDI4
MywyOTYsMzAxLDMxOCwzMTksNTI5LDUzMiwzMDYsMjcwLDI3MSwyNzIsMzA1 LDMxNSwzMzQz
MjszMDI1M0JGNjlCRDAzN0M1RUUyQTlERTg0MTI2MTI2RiIgZXhpZjpQaXhl bFhEaW1lbnNp
b249IjcwMyIgZXhpZjpQaXhlbFlEaW1lbnNpb249Ijc4MyIgZXhpZjpDb2xv clNwYWNlPSIx
IiBleGlmOk5hdGl2ZURpZ2VzdD0iMzY4NjQsNDA5NjAsNDA5NjEsMzcxMjEs MzcxMjIsNDA5
NjIsNDA5NjMsMzc1MTAsNDA5NjQsMzY4NjcsMzY4NjgsMzM0MzQsMzM0Mzcs MzQ4NTAsMzQ4
NTIsMzQ4NTUsMzQ4NTYsMzczNzcsMzczNzgsMzczNzksMzczODAsMzczODEs MzczODIsMzcz
ODMsMzczODQsMzczODUsMzczODYsMzczOTYsNDE0ODMsNDE0ODQsNDE0ODYs NDE0ODcsNDE0
ODgsNDE0OTIsNDE0OTMsNDE0OTUsNDE3MjgsNDE3MjksNDE3MzAsNDE5ODUs NDE5ODYsNDE5
ODcsNDE5ODgsNDE5ODksNDE5OTAsNDE5OTEsNDE5OTIsNDE5OTMsNDE5OTQs NDE5OTUsNDE5
OTYsNDIwMTYsMCwyLDQsNSw2LDcsOCw5LDEwLDExLDEyLDEzLDE0LDE1LDE2 LDE3LDE4LDIw
LDIyLDIzLDI0LDI1LDI2LDI3LDI4LDMwOzhCMkI3ODk3M0UyMTI0MENFQ0Ey NkM3RTlBQUNC
RDIxIj4gPHhhcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InV1 aWQ6M0MwNkU1
RDg3MzAwREYxMTlFOTY4NTc3RTRBNEMyMDgiIHN0UmVmOmRvY3VtZW50SUQ9 InV1aWQ6M0Mw
NkU1RDg3MzAwREYxMTlFOTY4NTc3RTRBNEMyMDgiLz4gPC9yZGY6RGVzY3Jp cHRpb24+IDwv
cmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iDFhJQ0Nf UFJPRklMRQAB
AQAADEhMaW5vAhAAAG1udHJSR0IgWFlaIAfOAAIACQAGADEAAGFjc3BNU0ZU AAAAAElFQyBz
UkdCAAAAAAAAAAAAAAABAAD21gABAAAAANMtSFAgIAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWNwcnQAAAFQAAAAM2Rlc2MAAAGE AAAAbHd0cHQA
AAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIYAAAAFGdYWVoAAAIsAAAAFGJY WVoAAAJAAAAA
FGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQAAANMAAAAhnZpZXcAAAPU AAAAJGx1bWkA
AAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJUUkMAAAQ8AAAIDGdU UkMAAAQ8AAAI
DGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAxOTk4IEhld2xl dHQtUGFja2Fy
ZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAA AAAAAAAAEnNS
R0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAA AAAAAAAAWFla
IAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAA AAAkoAAAD4QA
ALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAA AAAWSUVDIGh0
dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0Ig Y29sb3VyIHNw
YWNlIC0gc1JHQgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBS R0IgY29sb3Vy
IHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAA ACxSZWZlcmVu
Y2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAA AAAsUmVmZXJl
bmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAdmlldwAAAAAAE6T+ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAAB WFlaIAAAAAAA
TAlWAFAAAABXH+dtZWFzAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAACjwAA AAJzaWcgAAAA
AENSVCBjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADcAOwBA AEUASgBPAFQA
WQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8ApACpAK4AsgC3ALwAwQDG AMsA0ADVANsA
4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFn AW4BdQF8AYMB
iwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJB AksCVAJdAmcC
cQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNa A2YDcgN+A4oD
lgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2 BMQE0wThBPAE
/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZ BmoGewaMBp0G
rwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghG CFoIbgiCCJYI
qgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqB CpgKrgrFCtwK
8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0N DSYNQA1aDXQN
jg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/s EAkQJhBDEGEQ
fhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMj E0MTYxODE6QT
xRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxay FtYW+hcdF0EX
ZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqe GsUa7BsUGzsb
YxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7p HxMfPh9pH5Qf
vx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOU I8Ij8CQfJE0k
fCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSii KNQpBik4KWsp
nSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4W Lkwugi63Lu4v
JC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPx NCs0ZTSeNNg1
EzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2 OnQ6sjrvOy07
azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDn QSlBakGsQe5C
MEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgF SEtIkUjXSR1J
Y0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+T T91QJ1BxULtR
BlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeS V+BYL1h9WMtZ
GllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AF YFdgqmD8YU9h
omH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjs aUNpmmnxakhq
n2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJL cqZzAXNdc7h0
FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwh fIF84X1BfaF+
AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZy hteHO4efiASI
aYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/ kaiSEZJ6kuOT
TZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJ nPedZJ3SnkCe
rp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhS qMSpN6mpqhyq
j6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSc tRO1irYBtnm2
8Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFn wePCX8Lbw1jD
1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62 zzfPuNA50LrR
PNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK 3RDdlt4c3qLf
Kd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl 63Dr++yG7RHt
nO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH +lf65/t3/Af8
mP0p/br+S/7c/23////uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwR CwoLERUPDAwP
FRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwB DQsLDQ4NEA4O
EBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwM DAwMDAwMDAwM
DP/AABEIAw8CvwMBIgACEQEDEQH/3QAEACz/xAE/AAABBQEBAQEBAQAAAAAA AAADAAECBAUG
BwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUH BggFAwwzAQAC
EQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRai soMmRJNUZEXC
o3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3 R1dnd4eXp7fH
1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPB UtHwMyRi4XKC
kkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSV xNTk9KW1xdXl
9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/APVUkkklKQcu k34t1DTBtrcw
E8AuBajJJKeUP1SnqeR1BmNh1ZWQwNfa1sFpcb/Uvrs+zMd9pv8AtFn2p/q/ pWej6i6S+iv0
rC2tu/a6CAJkh/8A6Us/7cU2n9O8TwxpifOz83d/6L/t2f4J7XllT3jlrSRP kEkPPNyq6cvM
FmRkUh9rXMFNJsY4elQ3f6n2bI/Pa5n84rHRn+rlX2NdZY11+5r7WGt5aKKq 95r9On2+p+j/
AJpI5+Uci+s59GOKnhjWWsaXEFldu/8AnafzrP3FY6bm5F11jLL2ZDWW+mLK 2hrSPTZfIh1n
ua52z+cUcTH3DV3cv7VxBofRB9YelZXVNtNWJiOitzaOpXPIycSyz2nKwaW4 tv6WjbTfVszs
R9l1f06dnrLPP1RtdfktuqrysZ9mZez1czLaHnMGUHY37Pr/AFLp/tz7Md+f T9rt9L1Lfsn2
jK/Vt3N6xg4Nopu9ay0t3mvHouyXNaSWsfazCqyHUsscyz0vW2et6V3pfzNq vKRDy7+hfWF9
VL25DWZ9brWY+Wcl73YdFox2fZ2h+F6XX2O+zes/9q1UZH82z7X9p/yioP8A qx1VtPUsep2O
9nWa8jGyHue9portyepZdWRTW2mz7Zb6PWP0mM+zDZ6uN/SX+t6lXVpJKeX6 p9V+oZnRTgVW
Ui05PU79zi4N251fVascSK3O3sd1TH9f2/6b0/U/whep9D6v1qmw5bqcG19J wQzGsNw+y5Fu
NZ1V7sjIxav1i7ExfQxK/sn6B/6T17fX/U9jJ6pgYv2r17dn2DHGXle1x2Uu 9bbb7Wu3/wBE
yPZX+k/R/wBRT6jm1dP6fk59wc6rEpsvsayC4tra614YHFrd+1v7ySnEZ9W+ o4+ddmV5zsxw
uqzscZXpt3ZTacjpmWy/7FjY/pY9/Tn4lVNlbLfQyKvtPoXe+jK0+nYeU3Ky OpZwrry8muqg
0UONlbK6De+r9NZXRZda+zLvsss9Ghmz0qPS/Q/ackuZ1KjD6bldSsbYacOu 62xuwteRRv8A
V9Nl3pbt3pO9F/8ANXfzldnpfpEXLyqMLFuzMl3p4+NW6258E7WMBssdtYHP dtY381JSZJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKS SSSUpJJJJSkk
kklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSU pJJJJSkkkklK
SSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSU/wD/ 0PVUkkklKSSS
SUhLQ+57SToxphri3n1W/mP/APRf9v2foWyKmim10una4/ScRw/83dt/wn+v p1qbQfXeZMbG
wNdvNnHt27v7f/mcrH7K3PidoLo+AlIKLz1edXj5mbW7OxcU+s0+nf8ASP6H H94/T0ez+wj9
IuF+XkWNtryAcn+dp+gYx6vo++36P/GKbbcy225lGLiubS8MLnlzSSWMt+i2 u3/S/vo/T8m1
19lVtNVVjH+k70pI+gzIne5rP3/o7FHHg9w1KzctOGvP1JN0NO3Vp/WDFyrr Sen4eT+0DTtx
+pUXMporsl/2b9oVfa6Ls3HxLnev6FuDn0+nbd6VNvrX0rCzvqt1S2zqz21Z FuZk19QDcjdi
MptryGZNeBh+u2r9s5Potvw6vsufdRgY9mN6lV3pYeFXb2tmXi1er6t1df2e sXX7nAenWd8X
W7j+jq/Q3fpH+z9FZ+4hO6t0plF+S/Mx24+LYacm42sDKrAWsdTfZu2VWte9 jfTs96kQ5XUP
q5L6qMAenh5tf2LqrZ3F+OHPzDbZba/1n23+pn4N1tbvtdtvWv2jdc+3CYsT O+q3VLbOrPbV
kW5mTX1ANyN2Iym2vIZk14GH67av2zk+i2/Dq+y591GBj2Y3qVXelh4VdvZ3 dR6fRivzLsmm
rFqcWWXvsa2trmv+zvY+1ztjXtv/AEP/AB36NKrqPT7sI59WTTZhBrnnKbY1 1W1k+q/12u9L
ZXsf6nu9iSnH6l9XN12FXgD08R36v1Fkz6lItr6k5+Y6x/qZ3r2Y+VgWtu9a yz9u5uVb/wBq
q8nE690DrmZm5t2PiWfacqvMptuqGHXj20PxcrG6fSb/ANH1q631P2d69eY/ 7EzLrstq/V6M
R9fZ29R6fThDPtyaa8Ita8ZTrGtq2vj0n+u53pbLN7PT93vRabqr6mXUvbbV a0PrsYQ5rmuG
5j2Pb7XMc1JTw/Uvq51C3C6lVf0r9pPy681nTROO77LddldTyW5f65dT9n+1 05vTn+pierkf
qv6wyv0KFPrP1c611DqWU6qh1V+Y3Lx7stoxK8V2PZi5WLgMtuqH7eve2x3T vtNWR62N9qqt
toq9GjDXcJJKePz+h3X1vGJ0b7OLcT0Ol1/qzf2blB+W6zqH6K9zMX1n5GFk +v0n7Vl/qn6S
v1qaFtfV/pf2CnKstq2ZWVl5Vr3F28mt+Tk34ga7c/06vRv9ZtDPZXbffZ6f 2i7IWskkpSSS
SSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKU kkkkpSSSSSlJ
JJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkk pSSSSSlJJJJK
UkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKf/9H1VJJJ JSkkkklISwuu
fDiz2NG5oGv873fWfo7t/wDOf2P9M2QxwptPqOI2uO32xw/T6O787/wP/jPU k3+k2aj6DNIE
82d59T/O9n7n+EU7HNbW5zxLQCXDmQAkFFwaKHW5WaRi4+RFzRvudDh+hxzt /mLvbr+8i9Ka
WZuQw1sp25P83WZaP1eo+32Vf+e0K7HwMjItJ6OMqxjgyy0urMnax4G69zLH ba3sVrpP2Ot7
6acIYRY8tdWC0+8sbbu21l1fuqd9NRxEfcNHW5JN0Po1ev0Ptyn2V4dl1WLj tt6g1u4fbKCb
tvSqmVhzMy2p9dmV6Nv/AAfTf6H1zPsqxM76s5V3Rer2Nrs2X/tW6zBAM3ZL b88dKubjen+n
9anK9b1P56y3B6FZjf0Zd2kpEPHuyHM6RfhHGy/tGN1c5djRiZBBpHV25nq0 WtoNWT+qv+0b
MZ9tnpf1FPqVfU86263pmI44vVbsOl9eULcZrhjHJy+o5GZQce66vH6hi0Yv Q92VjMfk/wA3
ZW/C+yfaetSSU8l02vqeDbTb1PEcMXpV2ZSyvFFuS1oyTjZfTsjDoGPTdZj9 Pxb8roe7Fxnv
xv5uutmF9r+zbXRKbWjNyCx1OPmZJyMSh4LHMrdXSyxz6D/R35WXXk53pfz3 616mUyrMsyKa
9NJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkk lKSSSSUpJJJJ
SkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSS SSUpJJJJSkkk
klKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUp JJJJSkkkklP/
0vVUkkklKSSSSUhPqG54Y4AhjT7hu59WPaLG/nfyP7f+hbIFvo2y5pbtdptM xD++/wD4v/Wz
9HNu713z9HY2PpczZu/4P/M9/wDpP8EpWbPTd6n0IO74R7uEgouFSC7Kzf0G RbFzRuptFbf5
nH0LftFHu/sIvSv6ZkDY+uMj6Njt7x+r1fSfvu/8+IFtfTDkXH/KAtLh63oG 4N3bGbZ+yn0t
/pekrfSW4DbH/Z/tG82Ev+0Fxd6mxn0vW/TfzGz6X6NRxiBkJ4onWWgPqSbo aHo1esfsr9qu
/wCcn2f9k/Z6vsX23Z9m+078j7bu9f8AV/tf2f7F9n9f9N6P2v7D/wB6Kyr+ v5/SemdT+3Zf
2RzcCy3on2stbY94u6n9lDftf6fKy2YLOjevRk+rlMe+r7ZX9pyLfU7VJSIe Hbnfs9ox7OtO
6cLusZbcxjjitOLVY7q2di/0vHsdSzqTqsa+uzM9b1mf0P06rFO/61ZmJ0zq d+Xm10EYFjuj
X2+mz7RbVd1OmrKxtzW1ZluTi09JyXsoZ9m/WabaMeqnKrXX3YtF9lFtrdz8 Ww20GSNryyzG
Lvafd+hyLme9GSU8IQ2r0/W6rZh/ZetZd2VJx2/Ya7v2z9luf9ox3+jV1P7R R6dnUfXZd9oq
+x+n6laWd9YfrBVZ1axuXj1Pxq+oFuDva+6qvHZknAzP2e3A9bG9b0MO/wC1 Z/U78DIryf0V
P65hU1d2kkpDi131UNZk3faLtTZbtDASSXba62zsqZPp0te+230v56++39M8 ySSSlJJJJKUk
kkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSS lJJJJKUkkkkp
SSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJ JKUkkkkpSSSS
SlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSn//T9VSS SSUpJJJJSE+o
LnljQSWNHuO3j1Y9wrd+d/L/ALH+mbINvo2y1obtdruMxD+2z/i/9a/0km/0 mzQfQZrInmzt
Hqf53s/c/wAIp2Na6tzXmGkEOPEAhIKLhU2huVmj1civ9M3Smo2N/maPzvQv 939tF6U/fmZB
3Pf+sfSsbscf1er6Veyrb/22gWnEoybiOsHFfa4PsqDK9HbGVzF9dljd1dbP zlb6TXi+o+2v
NOa6ywvdYQ0S8MZTt/RNZV7amN9m1RxjWQmxvLr3SToPo1frNTk1ep1O02Xd MxMc2X0U5d+F
ZWKvUuyb6fsO39oW307GV4+XdjVUPxv0d363fsr1fWP6wWZtpq6c23DN2Xi4 jHPppNluJ9pa
wV5dmbZdc/KuwXs9D9kY/wBnZb632i2nC9TJ3cjpPSsrKrzcnDx78ujb6ORZ Ux9jNh9Sv07X
tNjNlh3s2/npO6T0p99+S/Dx3ZGVWacm41ML7ayGsdTfZt321OYxjfTs9ikQ 8/b9YusVYT7n
vra3Essb1TLODbGIa66LmY9/TWZ78nJ9RuR6v7R6fk5eGyr/AAf2Z/22qI+s XU2Y/U7aBS2v
o7crLyGWi2117GZfU6GY9Fz8hv2J/pdK/nXMzKf1j9BiU0Y3oWb46H0VrcZj en4wbhOL8Nop
rilznC1z8YbP0D3Wt9T9F+ep2dJ6Va+my3Dx7H41jrsdzqmE12Pd69t1LnN/ RW23fprLGe99
v6RJThP6h1rOqdjvyKaKuq5Of0vFfRVYy/HdQOoNozTkfantyHtb03+arpxP 0l2/1v0P6SFH
XepZNN3Uaa7KMrM+zYWD097fWb69dVnUeo7W239Kp9Wr18vAyvUyMX07+je9 9mR+orpW4mK3
ZtprHp2PurhoG2yz1PWuZp7bbfXv9Sz6b/Wt/wBIo3dO6ffivw7sam3FtcX2 UPra6tznP+0P
e+pzdjnuv/Tf8d+kSU8O760ZVOfZ1a/Gi6rHFeTj7zXLsFv1p3/zFt9TfWt6 d/NWP6hRj+p/
2otppylp25fV8DrWeyy2nK6pk42BVhNoxi1riLOrXvrOPkdQrZvbj4+Xb6tn UsVn9e39FkdF
j9J6Vi+n9lw8ej0f5r06mM2R6383sa3Z/S8v6P8A3KyP9NYhV/V7oFVF2NV0 zErx8nb9opbR
WGWbDvq9atrNlvpP91e/6CSnnMT6xdXdZ1LqtoayrpvTjZl9PeDL7ca/rOM9 2PZXkXUYD734
DPX9vUvZ6dH2i30PtFl3I6x1/G6nT0bdiX5d9lX6z6VlVba76ep2/wBG+0ZV j7cazo/q/wBJ
YzLZb9l/U/6YtunpPSqPs/oYePV9j3/ZNlTG+l6v8/8AZ9rf0Prf4X0/5xLF 6T0rCY2vDw8f
GZXYbmNqqYwNsLTQ65ra2t22upd6PqfT9L9GkptpJJJKUkkkkpSSYkNBJMAa klYfUvrp0LAJ
YLvtVw09Oj36+dn81/002U4xFyIHmy4eXzZpcOKEsh/qi/8AG/dd1QdbWxzW Pe1rrDDGkgFx
An2j85cp+0frp1rTAxm9KxXf4a76cf227v8Atuj/AK4rXTPqbVj5dfUeoZd2 dnVkOa9zi1oI
+brH/wDbn/W0wZDI+iJI/el6A2JcljxRJz54RyUaw4v6Rk4v3Zyh+qx/+GPS JJJKVpKSSSSU
pJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkk klKSSSSUpJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKS SSSUpJJJJSkk
kklKSSSSUpJJJJSkkkklP//U9VSSSSUpJJJJSEvLbnw0v9jTtaRp/O9n2D6W 3Z/N/wBv/Qtk
PcabR6bgNrhu9scP1+lu/N/8E/4z05tJ9d4gxsbB1282ce7bu/sf+YSsZvrc yY3Atn4iEgou
FTltqys1hy8fH/TNOy4e4/oaPd/PU+3+yi9LtFuZe8WMunI/nK/oH9Xq+j7r P+rTCjPquvfj
ZeI1l7xYW2Nc8ghldP02XU/6H9xH6bi3Mvttvvpusts9V3oggCK2Ywbsc6x3 5m7d6ijjjImZ
EaXI7/vKJ0ryQddb1D9odLZi9RyMOrMyHY11dTMdwhuPmZvqtOVi5NjbXWY1 Vf0/S9L/AAXq
fpFXZ9brH5uRWzpmTdi0Oya220VXve5+J6otb7sWrp+y63FtoxvR6pkXWXWY tb8er1L/ALKX
M+sv1WOYxmTkzkdPyHbIZcQy4Ndg2++tnpP2MzLan/4P+e/7i2+jRHV/qO69 2QMi1r7txAH2
xjGPuDW25GPQNtODl2fa3ermY1dGV+lzd939OUtHsUWE2H1/qud1XBqoZiOq sryvtlFeQ93p
+i/pzd1htwacmrqGO3MuY/pl9ON/OfrF1di6ZcnT1f6js9A15FrbarBa28/b PWc5/oSMrLf+
s5NT2/ZGXUZlttHp4rK7q/T6d+r6Dfrr9WnRGWfdETTcPpenzup9v8+z+p+m /wC4+R6S4T2K
rHd3Elht+uv1adEZZ90RNNw+l6fO6n2/z7P6n6b/ALj5HpJv11+rTojLPuiJ puH0vT53U+3+
fZ/U/Tf9x8j0lwnsVWO7uJLC/wCe/wBWA3c7MLWwCXOquaAD6er91Q2fz7N+ 7+b/AE3/AHHy
PS3UCCN0qSSWX1v6xdO6LVuyX7rnCa8dmr3f+QZ/LchKQiLJoBfixZMsxDHE znLaMXRuuqoq
ddc9tdTBL3uMADzcVkdJ+tXTurdRvwcXcRUzey12gsg7bNjPpe2WLzvrn1k6 j1q2b3enjtM1
47PoDzd/pH/y3KjhX20ZLH13vxiTtddXO5rXe2wjaW/mqnLnPWOEem9f6z0W D/i4PYmc0/18
o+gR1hiP9b/OPr3Uet9K6Y2c3JZU7kVzLz8KmbrFgP8Arj1HqLzT9XunPv7f aLhDB8gQxv8A
buVzpv1J6Hixdc059zvcbLzuaSe4qHs/7c9Rb7GMrYGVtDGN0a1ogAeQCsVl luRAdo+qX+M5
PHyOH5IS5qY/TzfqcH0ww/WS/wAPI8mPqp1vqpD/AKwdSd6Z1+y0aN/I2r/w KxbvTfq90fpg
BxMZjbB/hXe6z/tx8ub/AGFopJ0cUIm6uX70vVJizc/zGWPAZcGP/NYh7WL/ ABIfN/hKSSST
2qpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJT//1fVUkkklKSSSSUhLgy57iDqx olrS7j1XfmM/
9Gf2Pf8ApmyLWmm1sOna4fRcBw/87bt/wf8Ar6lak0t+02DTcGMnxibI/N/9 Gf8Abf8AhJWs
L6nsHLmkCfMJBRcOrFbflZjjiY+QRc0b7j7h+hoO3+Zu9uv7yL0usV5l9YrZ SG5H83V9ATj1
O9vtr/6hCd07MGTkWHp2PlNueHsfdYGvAFdVWyPRv/Oqc7+cVnpWBk0W2vto rxmvt9VtVTg5
jR6TKNohlXuc9nqfzaihjrIZV1l/zkmWgHk8PkV9Pu6h1qzJZda/GvvsBrua 0EfaGY3pe9md
t2et/pf+B+zY381UAfVzqbsarIYzd63plrIeNLi1lDvXsYzEd6jravZXkvsZ 6n6T+bu9Kx1D
B60Op9UbXg5NjMu62veabXAsN9V9b67N1zNn8x7/AFPT9H1v0WP6FtWKI0dZ tZW2zo9r3xWx
1r8e8OdWz0W1Uv8Aosp9j6K32Usx8jZXd6l36PNWzhzQjixj3YD0wsSlHpCP p4eL0/pNHJjk
Zz9EjrLaP9byRv6VRVi5T35TPVxn1sjba0Fzhkl+OWWY7LW5G7GZ9P06f37F QpNLbQb2Osq1
3NY4McdNIscy5rfd/wAGte39v5LPSs6XeaHMrrqpdRkRXt/mHse8+v8Aoft9 ntyLbKq/03qV
+nh/qwrOh2+lOPj9RfaduxtmC6tvuNX07PWtdX7b2/4P/S/6DI9GWPM4hYll jrt6o/8AcrDh
yfowlp/VP/dM7OhHI6hl4/T2vbThPNNj7N9xLg6xjXbMLHdYz1G1f6HYz/T+ +tQx+g2jJxq8
54oGRkCgVe4vcG2jFyDVayu3F/RP3/zl39j9JV6kxX1y27Isu6TdczNtF9lL 6MhrBYTLHg1+
jcz0/trm++3/AE/rf0W30JY5+sVNe3F6bfRZa9lllrce5pcWvryKd9Dx9jr9 K26r6GNV6Xp3
V/QqzU3341QzY+n6cO2vq4k+0bv25df0Zfk42U1lBsDLm2NYJFzC5jeN0h1p wrGbf+Mxv+OZ
/Or2deSX9M6va51lPS8mjcBsrrpvABIrjabXsub/ADzPpZVWz9N+lo+zXeh6 2qfPZITnExkJ
1HWiJf8ARbHLRlGMuIGOvUV/0nP6t+2n1ej0kU12OHuyL3GG/wDF1sZZvf8A 1/YuUP8Ai76j
lWuvzuotNthl7w11hJ+L3VLu0lQnhjM3Kz4Xo6fLfEc/LRMcHBjJ+afBGWSX +FPieOp/xa9O
H8/mXP8A6gaz/qhar1P1A+rlf067Lv69hH/nr0l0aSAwYh+gPrqmfxXnp78x Mf3T7f8A6T4W
FNVdFLKahFdTQxgkmGtG1vudLlNJJStIkk2dSVJJJJKUkkkkpSSSSSlJJJJK UkkkkpSSSSSl
JJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkk kpSSSSSlJJJJ
KUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSS SSSlJJJJKUkk
kkpSSSSSn//W9VSSSSUpJJJJSE21sufveGjY0+4x/pXHl/7rP9H/AG7P8E19 9fpWBtjd+10A
ETID/wD0nZ/22ptP6d4nhjTE+dn5u7/0X/bs/wAE97S6mxrdXOaQB5kJBReU zr+uNy7m4GPV
ca3MbXS7b6RrMOvutyPa9mWzfVsxnel+hf61f23/AAOh0G3Ke4i/UNtcyuxz RXa+vb6jPtWO
wNbS/Vnt/R7/AOdfjY380oOw7xk5FhwKMptzw9j7t7XgCuqrZH2S/wDOqc7+ cVnpOJfTdY59
DMdtlptFVW7Y1vpMo+k+rH9zns3fzad7hNxMK/rLeEb2rqvXbcLqFOBSzGFt zWmt2dknEba5
7nVMx8Etx8x2XkVuZ+s1ba/R+0Yf859o9ib9aelNsfTdY4W1usDhVVfawBl+ Rg1Nfc3HaxuR
kX4VtFON9O/K/VsP7X+gsvL1jpvUOpVW4TMqmnp+VS6jKrNDn3ltgdXecfJ+ 01U0v9F/6L1M
PI9Oz9J+l/mlSr+qnp2ZD/tU/aMijIj0/o+h1HK69s/nPd6n237Ju/4L1/8A gU1c2nfWjorX
tYbrDNYtseKLyyphdbRuzbm0+lgelbjZNeR9tfj/AGb7Pd9o9L0kLF+s2GKX HPf6drcjKrd6
Vdj2V00ZOThU5GZZW26vCqfXi7nZOXZRj/osn/B02+ln/wDNbqRzOpYzcmtn TOpY5rybHVbr
HjIyuq5mRRiubks+zW41PU21/aL8fKqtfss9H9HbSp3/AFHx7b3XOdjXOudd 6rsrEZkOYy3J
y+ot+wetZ6WNkV/tG2t919ObTf6ONZ9l/RvqtSnSyutvweq/Zc2quvDsx7L6 Mlljn2ONT8TH
NDsNuOP0t12eyvFrx78m3If+j9L1bfTWbR9ct/WLMaym77EHXtr2YeU7Immr pNzPVxW1PyKm
b+p5f6SzFrZ/Rf8Ar93O6BldQyTk5eXXvo/5PFVJaK4vxeoM+2b8i77Z+m6b htd6H2D9F9p/
01T8avV9XetU9Rf1WvqON9ttdcbd2HYatt1fTqNtdI6g21j6/wBj1u3/AGiz f6382kp0/wBt
Yd1n2fAd9ryH176nMbY7GlzPtFLL+o49ORi43q1Guz3u9X0bqba6bPWo9Wpg fWG5+HZl9Ux6
8RgyLcWivGsty7bbKLL8bIazHrw6bnf0Wy6v0GXv+zepfd6Ho2KfSOg29Ge2 nByWnp5bWLqb
qy+8upx6enVOry67aKamejh4z7GOwrf0nr/pP0tfoBy/qtVk9OZiWPpudTm5 GfUMmgXUF2RZ
l2elkYhsr9dlNXULPT/T0/rFVOR/wCSmw760dFa9rPWsc51YtO2i9waHOtx6 6rnMpc2jLsyc
a/ErwrtmY/MZ9k9D7T+iSd9aOite1husM1i2x4ovLKmF1tG7NubT6WB6VuNk 15H21+P9m+z3
faPS9JVafqmylhay6usH7CTXTQ2qtpwsy7q7200Uuayuq9+T9nrb+ktpZ+lv vzbvUVT/AJrd
SOZ1LGbk1s6Z1LHNeTY6rdY8ZGV1XMyKMVzcln2a3Gp6m2v7Rfj5VVr9lno/ o7aUlOnjfWGl
uJ6/UN1QOTmUepXTa+pjMXJuxG25V9bLqcRno1Msuvyraaf52z+ar/RrF+s+ DbTfZey6l2Pk
3YnptpusNjqrcjHb9j9Oj9ee6rEsyLq8L7R9kZ6n2j+a3rM6n9Rvt2NfR9ox 3/aPtQ3ZeL9o
9H7Vfk5vq9OH2ij7Hlt+2+nfkfpftP2TC/R0+greZ9VftNDsZ9uPdj1Zdmdi U5ON67BZecp+
WzOr9etmZVvz7nYnpfYn43p0epZlen+kSm11Pqzx0hmb0t9ZffkY+PW+5jnN YbsmnAu9bH34
13q4/q2epjvfRbVfX6VyMOsYdF9eDlXbssbK7ra6bBQLnhuyqzI/TY2Jbe59 foYmRl/aP1jG
/nftFHq0c3pN2L9XqcLBobkWY2Ti5HoYzKsdpFeZTn5DMagvpx6WNYy30WW3 7/8AT5N9/wCn
sm7ol+Te682/Z8TMyMfPysSysOvbfjjG9GuvLqyHY1dW7p+L69f2fL3/AKz6 OV+mq9BKS1/W
jot2LVl491mTTkT6PoUX3PeAGPssroopsufVR61dORd6fpY2V+p3+nlfoVbH VMA9Nr6oLZw7
q2W1WbXS9tu37OK6dvrPtv8AUrZTQ2v17bX+j6fqrHyOk9R6V0/pR6Vuy83p mN+z5FVb2uqc
2j1rnUX5/S9j/V6fj7NudZ6fqWfoLv56kuN0DNb0GjpWRbjXtqwsTG+z5GP9 pxxbj/0i9zC/
FtyWX/ofSY91XofZ2X/8GkpsO+s/SGPayx2RWTWLnmzFyWCqtzraW3Zj7Mdr MGrfjX/pMz0G
elV6/wDM/pFG/wCtXR6g54va6rHuupy7C239G7Hry8jIrbspsbZkVN6fa99G +v8AV/TyP8Ph
My8xv1X6qbsvCdmbsDMwKsTLyL2vvus3W9RsyqsS23LNuL9nqztmM/N/aP6P 7P8A0n7Pd6tv
qH1U+29KPTvtXpzkZ+R6npz/AE9nUatmz1G/0f8Aa30t/wCm+z/4L1f0aU3R 9YulGp1hfc1z
XNb9nfj3tyHF4e6v0sB9Lc65j203v9SnHez9Wyv+4uR6ef8A878SzqB9N7q+ m42M/KyrX4uS
5xDHZtF9b3bav2Y/Dt6Zb/TKbH5v8xjVssr/AEhes9Hyjmu63hF1mbQ3HGNj trY8bqvt9Fjr
G3ZXT2Wsfj9Zv9n2vF9N9Hqepf8A0ZVenfVfNf0rqVefc2rK6zjXUWhrNKjd f1PM9TYLrW72
t6vssx2ZFrK30fo8zJ/nklOxZ17pldFOU59hxb9xZktpudSGMO12RdkV1Opx 8T/C15mRZVi2
4/6zVd9n/SoJ+tHRQ+xjrrG+lY+p73UXhgNTnUZVvrOp9L7JiWs9PMzd/wBj xP0X2m+r1qlV
+s31V/bvqfpccerjnH/W8b7V6M+p+s9O/T4v2PLf6v6e79N632fC/wC436RZ H1U9bGvo+1bf
Xx+qY+705j9qXtzd8ep/2k2ent/7Uf8AApKbt31j6PQ68XXOY3GbY6y01W+k fQa+zJqoyvT+
z5ORQyq71cbGttyGfZ8j9F+r3emW7rXS6HvZdkNqNVxx7C8FrW2Nx/2o9r7H D02sbgfrHq7v
R/l+qspn1L6f9tyLLq8azGyXZL7CMZrct/2v1ftNV/Vd5t+z/rVzavs1OJkM q+z1fansru+0
p31LwrqmV5NznufjXU5lrBsdbfeMgPz2S6yrHe39q9a/V/Tsx/8AKP8A3TxU lN131o6KxjXX
XWUOfYKmU3UX1XOe9tttLWYt9NeS/wC0Nxr2Yu2r9ayKvsuP6uT+iU+kdYbn epVaW/amXZbT
XWHQ2qjKvwKLLXe9tb7m4/s3v/WH15P2f+Yu9KvX0DKs6nR1XOy67cuixhIo pNVbq6qc/Hqr
9OzIyrG2+p1e+2y71tmyuqr0K/51LH+r1+FXk/s7N+y5GZZl23WekHsL8l9+ RjZHoOfs+14L
7qavX/7WYtP2fJq/of2FKbF/X8HHzcnFvLg7GbSdjK7n2vdf67mtx8euh32p npYtlm/Cflfz
WX9orx/siyul/XNl+VkMz2upxmNc+q1uPkAMa3M6ng7+oPLHswGMx+n49lv2 37L6b/tW/wBj
P0FrL6Lm5fW7ep1Pbi2Y7cZuE+1vqsc+pvUK8iyzHqtpe7H9DrL6qv1jGu+1 Uep/R/T+1VWf
VDqAZl0u6hSauqU2UdRAxnBxbbkZ+bacJ/2xzcV+3q1tNfr15v8ANV2/pP5p JTu4/VMPJyrM
Wg2PfTu32Cqz0ZYfTsrZmmv7HbbVZ+jsprv9Wuxltf8AgbVC7rPTqcp+NZY4 OpaXX2+nYaKg
1n2h32rNaz7Hiv8AQ/TenkX1P9Oyn/TVKvT0rqWNXmY+Jm11Y9/2izFcaN11 N+S9+U699rr/
ALPk1U5F9vp4/wBjq/R+lXZd7HvujldBtyH9RpGS1nT+sNeM6n0yb9z8dnTt 2Ll+q2mhno0U
P2XYWV+k9b9J+k/QpTJ31o6KxjXXXWUOfYKmU3UX1XOe9tttLWYt9NeS/wC0 Nxr2Yu2r9ayK
vsuP6uT+iVirrPTrc04TLHG3c5jXGuwVPeyfVoozHMGJfkVenb6uPTfZdX6G Rvr/AFe/06Vf
QMqzqdHVc7Lrty6LGEiik1Vurqpz8eqv07MjKsbb6nV77bLvW2bK6qvQr/nV DB+quPhdXd1B
gxoN12Q2wYrBll+QbH2sv6k5z3Px2uybfSZTj413pfZ6X5NlTL/tKU6eR1TD x8qvDebH5Fu2
GVVWXbQ8+nXZkux67WYlVj2v2XZXo1forv8AQWrPxvrd0i+lji+x1rq6nubR Rk2sL7aqsxtG
NaMVjsq37NezJ9Gur7V9l9TIuxqa6b/SVvQMq/KwMq/LrN2JXS3Jy6qTTl3u qPqvrOVRkMqZ
0/Kt91/TbMTIo/nP8L6N1Auk/VT9m14bPtXq/Y8irIn09u70unN6Ds/nH7N+ z7Xu/wCsf8Mk
pu1/WPo9uV9mquc87q2eu2q04+65ld+Oz9oCv7BvyK8jH9D9Z/S+vTVX+ltV fpH1mw8vC6e7
Kfsy8zHx7LjXXYaGXZFddzMezK22Y2PbY66v0MbIyftFnr43/cij1M/o/wBV upYrbMC/Jr/Z
lORhWMir9NccHH6ayu9l4yX141T8zp2yzHsxLbfTZb+m/TVXVz6f9R8fCuxb N2NcaG43qX24
jH5RfiVUYtf2TLtse3Dx7G4dL3U/Z8i6v1Mn0Mqq2ymzHSnS671z9k+gIx2+ vvPr5t/2TGbs
2fonZfo5X63d6m/Hx/S/S00Zdnqfq/vifrNg49zsXqLm0ZNbi2xtIuvYzZVi ZOTbkZH2WmrH
x8f9oU7sm79X9H07rbaX+tRj2Lcbrgra3GzscP8AUuc9+RjOslj3usxaWNx8 vC2fZaXfZ3WO
9X7Rs9X9Gsdn1GqqoysanLcKr8K/Ar3sDnMbdjdM6cy17mvrba+pvR/V+hV6 n2j/AAXpfpEp
0nfWfpDfTG7Ifbb6kUMxcl9zfS9L1fXxK8d+TjbW5WM/9Yqq315FNlf6O1Co +s2GbswWv9Wq
vIbXh/ZK7Ml9lJxsLNdkenhtybH1Nsz9v2llf2f9Jjf4S39LXv6H1ev6xnqX Tr6a25Dcl91l
9JtawvZ0jGqxxVXlYlr32fsuy/192yv+Z9P+bsVc/ULFrawVPx8j0IZQzqOM Muttf2fp+Ad9
LbcXdl/5IpsZksfUzZfkU/Z/8Ikp1c3rn2XJwHxjv6Tn7h9v9eNm2jJ6h6vp +i7HfifZ8T+k
fbf8J/NrNv8Arls6xXjV03fYi6htm/Dym5E3VdWuf6WK6pmRazf0zE/SV4tj P6V/1i1mfVh2
dRX0/KyW/svHpdVj1U0tqvBfjW9Le+y9jzh7PQysl9dOP03FZXZ6H+Cp9K4V v1d61d1FnVbO
o4322p1Jq24dgq2019Ro22UnqDrXvs/bFjt/2ivZ6P8ANpKdNvXumWPorqfZ c/Ija2qm6wsl
zqP1xtVT/wBn/pq7qXfbvs+y3Hya/wDtNkenUwuu5psz/wBqY2Ph4/TrG0WW U5FmQ99z2Y2R
TVTR9ixn2+qzNrqr2frFuV+r049nqJYPQMrp+SMnEy699/8AygLaS4WTfldQ f9j2ZFP2P9N1
LMa31/t/6L7N/obX5M836u1ZmP1Oi2xr29SyacsNfWHsa6hmGyqm+pzv1nHs t6cx2RX+g9Wm
2yj9H/PJKZO+tHRWenvusYbPUlr6L2uqFXpevZnMdSH9PqqZlY1r7s77PV6F 9WR/M/pEnfWf
pDfTG7Ifbb6kUMxcl9zfS9L1fXxK8d+TjbW5WM/9Yqq315FNlf6O1Z//ADMZ 9lvobbj4xyMT
NxHtxMVtFLTmjEr9arHrsL/0LMBu/wBfIvtvst/pFFPo0Vzv6H1ev6xnqXTr 6a25Dcl91l9J
tawvZ0jGqxxVXlYlr32fsuy/192yv+Z9P+bsSU28f6w0u+3W2brsWjJroxbM Om3JL2WYuLnt
tc3DZkucxzsmz9Ps9HZ6P/XFj/Wjp1t2cxxcKsJ1ezJYyy2q5ltWLkUmi+qp 1FmRc/OZTj4V
Nt2Vkfo301/pln/8yKqqBRTdTfVW5np0dQxxlUbWY2F05j7cdt2I2zNrb03d Tl/o/Sry8yj7
P+l9RSp+pvpdKf0l2TXdiWV4rrG20bt2Thsw6KbHt9b039Pur6ZR9pwNnrWe pf8A5Qr/AMGl
NvO61c7Gx83pltfoty8fFzMfJotbd+sX42Lt2W2YluFbXVlfaP1nFu9at9Fn 81/Oba5m7ouT
hdPx+nYeJXab8/Gyr34VNGHjUtoyMO6x32Z1/wBo9+Pjfv599l2/+ap+z0V9 MkpSSSSSlJJJ
JKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpS SSSSlJJJJKUk
kkkp/9f1VJJJJSkkkklI2j9O8xyxomPOz87b/wCjP7Ff+Fe9xbTY5ujmtJB8 wEn01PJL2NcS
IJIB0hzf+psf/nod9FfpWFtbd+10EATJD/8A0pZ/24kFF5vP651HFyrK6sS3 IDCxrMdrn+rY
1x/SZlb9zqvstP8ANOZ77PVs/WPsrP53Q6Hn5OVrb7mixzG3sLvSuYA5zbqG WufY1v8A0P8A
QX30/pFWO1mVlOsx8i4W2NfW+i9rG7RVTXqz7Vj+/wBSt/8Ag1Z6OxwyLXem +pr797GWPFjw
0U11bnvZZkf4Vjv8Ine5dx4CP63TRbXW2xl9bGN1B+CzCyco0015GRdQK3Nr rtddWxxqfdXl
3v8A1S93pYmNk3f6Nllv6NWG9W6U++jGZmY7sjKrF2NSLWF9tZDntuor3b7a nMY93qV+xUsn
E61X1q/NwGYzqsvGx8d1l9ljXVOpszLDaMaql7ctm3Nb+i+2Ye/0/T9ar+dW Zf8AVXqLH4WL
jWetg4VmD6FluVdUaqcN2M99Dum41RwOoW2/ZbbvteR6Nnq5Xp/zeHQmrnVx PrT0DK6VT1b7
dj0Yl+1u662tmyx7Bf8AZLneoa2ZbKz+ko370Z3Vy7Pfh42HkZQosZVk5FZp bXU97a79tn2j
IoyH7Me+m9/2ai/2Wez9N6lSyR0TrdfSsDp7TXZV06sYwqrzMjD9ZlbKasbP sy8Kj7Tj2tbV
e1/TP1jF/WfV+12WY1Kji/V3qDKulY9uLhV29Mpw6v2vXY52UG4wqfkY9NZx KnNx8tzMjDd+
v/0XJstsq/7SpKd2vq3SrX3V1ZmPY/GsbTkNbawmux7vQqpua136K2279DXW /wB77f0am/qP
T2Wml+TS20ODDWbGhwcTS1rNm7dv3ZmH/wCxWN/p6lzjfqx1V2Ng0WOx2/sX Hqx8JzXvd9p9
G/p+ax+UDSz9n+r+xq69tX7S9L7W/wDnfsv6zY6d0HqH/OB3WupVYzXF2Q+u qp7rjW62npWH
W+u27Hxff6XTMv1fYz2ZHp/pP0qSnVPXOitbkvd1DGDcJwZmON1cUuc41NZk nf8AoHutb6f6
X89R6n1X7L0xmfhNrzPXsx68f9Jsrf8AarqcWqz7RWzI/RfrHq72VW+xY7vq 91Z/Sen9Oe2k
jojqhivqy76HZLa6L+nl19+NQy/pb9l7cjZjvz9/9E9T0v06Lm9Ps6f9WqaB S57qc3Fyrasf
18pwBz6c/KLXWevnZj62utfbft33++77Pj/0etKdMdawqvXbnX4+M/CrpdnO N9Zrqffu2Uve
91VzPot9OzJxsb7Qy2r0f8LXVYHUenmp1wyaTUyluS+wWN2ih4e6vJc/dtbj 2Nqt2Xfzf6Ox
YOXh9R6l1LKy8EWV478fCYWWuuwTds+35FmP9qrr+34fo/tDByX200e+2qzp tv8A2t9GOH9U
8hmJi1XvbWTdkDqVbLX2ttxbcm7qlONZfkVNuz3su9LEt+2N/SYWb1j/AAuX vSU7rurdKZff
jPzMduRi1m7JpNrA+qsBr3XX17t9VTWPY71LPYrAuqNrqQ9ptY1r31gjcGvL 21vcz6TWWOqt
2f8AF2LnLuidbPWqeoTXkDFyL8hlluZkMD2voysfFxP2W2i7AxPQ+1UUPzaf UvtqosyfT9bJ
tqV7pvS+odKxX4uL9meHXVWiza6v2uexudR6LPU2sxcRnodI/T/ocf7HgXfo sH7TlJTdd1bp
TL78Z+ZjtyMWs3ZNJtYH1VgNe66+vdvqqax7HepZ7FXxuv8AT83qFGLgXU5l V1ORa7IotbY1
rsd2Gw0H0t7d729QbZ9P2f8AXVmWfV/qrrcoUPrxsP7Q3Mow/Wfey7IZl1dU +0WWXY7Lul+v
9nfVdj41mdiM+1/aKsf1aP10XT+ndfd1fqfVDTj42WPtNdFb32WUusuxui/Z LG3ehi2XYnqd
OtZlPZXW9ln6Gv1ElOrZ9YaaszKosxchuLg2NqyuofovQrc6urKmz9P9s9Jl eTT61/2T0KP5
2+yvHquuYbN690rCZm78iu3I6djvysnDqex17a62+s532fe17dzHM2epsZ+k rWfk9H6rkXdX
wi3Hb0zrVk25Pqv9dlbsbGwMiuvE+z+j6r/s1no3OzNlPq+t6F/pfZrqXVvq p1bqmW9t1zfQ
e7KnLdk3uIryMbMwaKq+ibG9Oqfifbaa/tFeT62SzG9az9Nl3JKd8dc6K5uM 9vUMYtzXFmG4
XVxc5rhU5mMd/wCne213p/ovz1HG6ucvKNWPh5D8VtllRz5pFO+kvpvb6bsh ud7MmqzG/of8
5/3X/TrH+sPRfrB1nCsqIpY7IxrKPs7c7Jpqpsd6rPtG/FxmftVl9VmP6mLm 49NOP9m9Or1P
tV6l1X6t5XVsnK3Y+J037RXfTZ1DHcbcm+u2i7AppzK/s2F+iZ61GZ6f23JZ 62FRV/3YpSnb
xerdKzWNsw8zHyWWWGljqrWPDrA03upa6tzt1raW+t6f0/S/SKbOo9PfaKWZ NLrS4sFYsaXF
wNzXM2bt2/dh5n/sLk/6C1YlvSOtX9RZ1uyvGrzaHUirCbdY6p7aq+o4+6zO OLXbS937asfs
+wXf0T+c/Wf1avifVHKfT1X7ccerI6piX4rbapuNP2nJ6nnXNa+yvFfZVs6j if6L17cb+RUk
p2/+cPQPsv239p4n2T1PR+0evX6fqR6no+rv9P1fT9/p/T2JftHKZ1xnTLce sY9+PbkY+Q20
uefRdi1WsuxnUMZV7839G5mTd/NrM6l0nrPUbcXOuoprycVt9IxqOoZVDXMv ONZ656hh4uPk
b634np/Y/s3o2ep6/r76fTU8KgY/XOm4NNVnpdL6ZfjWWim5lALndM9BlGRk erXburx7f0bc
vKtr9P8ATWeokp6BJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSS SUpJJJJSkkkk
lKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklP/9D1VJJJJSkkkklKSSSSUpJJ JJSkkkklKSSS
SUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSS SUpJJJJSkkkk
lP8A/9H1VJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUp JJJJSkkkklKS
SSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJ SkkkklKSSSSU
pJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkk klKSSSSUpJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklP8A/9L1VJJJJSkkkklK SSSSUpJJJJSk
kkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSS UpJJJJSkkkkl
KSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJ JJSkkkklKSSS
SUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklP8A/9P1VJB+2Yf+nr/z2/3pfbMP/T1/57f70eGXY/Yix3TJIP2z D/09f+e3+9L7
Zh/6ev8Az2/3pcMux+xVjumSQftmH/p6/wDPb/el9sw/9PX/AJ7f70uGXY/Y qx3TJIP2zD/0
9f8Ant/vS+2Yf+nr/wA9v96XDLsfsVY7pkkH7Zh/6ev/AD2/3pfbMP8A09f+ e3+9Lhl2P2Ks
d0ySD9sw/wDT1/57f70vtmH/AKev/Pb/AHpcMux+xVjumSQftmH/AKev/Pb/ AHpfbMP/AE9f
+e3+9Lhl2P2Ksd0ySD9sw/8AT1/57f70vtmH/p6/89v96XDLsfsVY7pkkH7Z h/6ev/Pb/el9
sw/9PX/nt/vS4Zdj9irHdMkg/bMP/T1/57f70vtmH/p6/wDPb/elwy7H7FWO 6ZJB+2Yf+nr/
AM9v96X2zD/09f8Ant/vS4Zdj9irHdMkg/bMP/T1/wCe3+9L7Zh/6ev/AD2/ 3pcMux+xVjum
SQftmH/p6/8APb/el9sw/wDT1/57f70uGXY/Yqx3TJIP2zD/ANPX/nt/vS+2 Yf8Ap6/89v8A
elwy7H7FWO6ZJB+2Yf8Ap6/89v8Ael9sw/8AT1/57f70uGXY/Yqx3TJIP2zD /wBPX/nt/vS+
2Yf+nr/z2/3pcMux+xVjumSQftmH/p6/89v96X2zD/09f+e3+9Lhl2P2Ksd0 ySD9sw/9PX/n
t/vS+2Yf+nr/AM9v96XDLsfsVY7pkkH7Zh/6ev8Az2/3pfbMP/T1/wCe3+9L hl2P2Ksd0ySD
9sw/9PX/AJ7f70vtmH/p6/8APb/elwy7H7FWO6ZJB+2Yf+nr/wA9v96X2zD/ ANPX/nt/vS4Z
dj9irHdMkg/bMP8A09f+e3+9L7Zh/wCnr/z2/wB6XDLsfsVY7pkkH7Zh/wCn r/z2/wB6X2zD
/wBPX/nt/vS4Zdj9irHdMkg/bMP/AE9f+e3+9L7Zh/6ev/Pb/elwy7H7FWO6 ZJB+2Yf+nr/z
2/3pfbMP/T1/57f70uGXY/Yqx3TJIP2zD/09f+e3+9L7Zh/6ev8Az2/3pcMu x+xVjumSQftm
H/p6/wDPb/el9sw/9PX/AJ7f70uGXY/Yqx3TJIP2zD/09f8Ant/vS+2Yf+nr /wA9v96XDLsf
sVY7pkkH7Zh/6ev/AD2/3pfbMP8A09f+e3+9Lhl2P2Ksd0ySD9sw/wDT1/57 f70vtmH/AKev
/Pb/AHpcMux+xVjumSQftmH/AKev/Pb/AHpfbMP/AE9f+e3+9Lhl2P2Ksd0y SD9sw/8AT1/5
7f70vtmH/p6/89v96XDLsfsVY7pkkH7Zh/6ev/Pb/el9sw/9PX/nt/vS4Zdj 9irHdMkg/bMP
/T1/57f70vtmH/p6/wDPb/elwy7H7FWO6ZJB+2Yf+nr/AM9v96X2zD/09f8A nt/vS4Zdj9ir
HdMkg/bMP/T1/wCe3+9L7Zh/6ev/AD2/3pcMux+xVjumSQftmH/p6/8APb/e l9sw/wDT1/57
f70uGXY/Yqx3TJIP2zD/ANPX/nt/vS+2Yf8Ap6/89v8Aelwy7H7FWO6ZJB+2 Yf8Ap6/89v8A
el9sw/8AT1/57f70uGXY/Yqx3TJIP2zD/wBPX/nt/vS+2Yf+nr/z2/3pcMux +xVjumSQftmH
/p6/89v96X2zD/09f+e3+9Lhl2P2Ksd0ySD9sw/9PX/nt/vS+2Yf+nr/AM9v 96XDLsfsVY7p
kkH7Zh/6ev8Az2/3pfbMP/T1/wCe3+9Lhl2P2Ksd0ySD9sw/9PX/AJ7f70vt mH/p6/8APb/e
lwy7H7FWO7//1O6/ZjP+4dv/AG43/wBLpfsxn/cO3/txv/pdalGQ2+iu9kht rWvaDzDhuEqe
5Cz+8ftVQ7ByP2Yz/uHb/wBuN/8AS6X7MZ/3Dt/7cb/6XWvuS3JWf3pfaqh2 Dkfsxn/cO3/t
xv8A6XS/ZjP+4dv/AG43/wBLq/R1HGvyLcatzvXoaH2Mcx7CGufdj1v/AEjW bmWWYeR6e36b
P0381bU99jclZ/el9qqHYOR+zGf9w7f+3G/+l0v2Yz/uHb/243/0utfcq/UM +rp+Bk59wc6r
EqffY1kFxbW11rwzcWt37W/vJWf3pfaqh2DQ/ZjP+4dv/bjf/S6Z3Tq2tLjh WwBJh4J0/ktv
3LY3KlX1K8mwvxnFrbH1Viomx5c0wwX17K/s3r17LqbHv+z+k/8ATX0/ovUV n96X2qodg5zK
sJ7iwY1oeOWOeGuHxrfc16n9jx/+4lv+eP8A0utCiw5tdrMulg9Kw1jY42NJ DW7rKrTXS7dW
976fo/o7a7EN7X4zgHuL6nQG2GJB/ds2hrfd+Y//AFsBMv3j9qaHYNP7Hj/9 xLf88f8ApdL7
Hj/9xLf88f8ApdX0k3jl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ALiW/wCe P/S6vpJccv3j
9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7BofY8f8A 7iW/54/9LpfY
8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3Et/zx/6X V9JLjl+8ftVw
jsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYND7Hj/9xLf8 8f8ApdL7Hj/9
xLf88f8ApdX0kuOX7x+1XCOwaH2PH/7iW/54/wDS6X2PH/7iW/54/wDS6vpJ ccv3j9quEdg0
PseP/wBxLf8APH/pdL7Hj/8AcS3/ADx/6XV9JLjl+8ftVwjsGh9jx/8AuJb/ AJ4/9LpfY8f/
ALiW/wCeP/S6vpJccv3j9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1f SS45fvH7VcI7
BofY8f8A7iW/54/9LpfY8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/z x/6XS+x4/wD3
Et/zx/6XV9JLjl+8ftVwjsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXH L94/arhHYND7
Hj/9xLf88f8ApdL7Hj/9xLf88f8ApdX0kuOX7x+1XCOwaH2PH/7iW/54/wDS 6X2PH/7iW/54
/wDS6vpJccv3j9quEdg0PseP/wBxLf8APH/pdL7Hj/8AcS3/ADx/6XV9JLjl +8ftVwjsGh9j
x/8AuJb/AJ4/9LpfY8f/ALiW/wCeP/S6vpJccv3j9quEdg0PseP/ANxLf88f +l0vseP/ANxL
f88f+l1fSS45fvH7VcI7BofY8f8A7iW/54/9LpfY8f8A7iW/54/9Lq+klxy/ eP2q4R2DQ+x4
/wD3Et/zx/6XS+x4/wD3Et/zx/6XV9JLjl+8ftVwjsGh9jx/+4lv+eP/AEul 9jx/+4lv+eP/
AEur6SXHL94/arhHYND7Hj/9xLf88f8ApdL7Hj/9xLf88f8ApdX0kuOX7x+1 XCOwaH2PH/7i
W/54/wDS6X2PH/7iW/54/wDS6vpJccv3j9quEdg0PseP/wBxLf8APH/pdL7H j/8AcS3/ADx/
6XV9JLjl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ALiW/wCeP/S6vpJccv3j 9quEdg0PseP/
ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7BofY8f8A7iW/54/9LpfY 8f8A7iW/54/9
Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3Et/zx/6XV9JLjl+8ftVw jsGh9jx/+4lv
+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYND7Hj/9xLf88f8ApdL7Hj/9 xLf88f8ApdX0
kuOX7x+1XCOwaH2PH/7iW/54/wDS6X2PH/7iW/54/wDS6vpJccv3j9quEdg0 PseP/wBxLf8A
PH/pdL7Hj/8AcS3/ADx/6XV9JLjl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ ALiW/wCeP/S6
vpJccv3j9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7 BofY8f8A7iW/
54/9LpfY8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3 Et/zx/6XV9JL
jl+8ftVwjsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYP8A /9Xuqmuu+rrK
mm0Osww1px3NZdLqo/VrbSyuvI/0Nlj9nqLmbPq5m2YuOy3A2YVVl5GDiUdP bc4vGKzGzM/F
zPtHRH5TG4+ZXZk4b/V9O/H9CnHruy8antdtn7p+4pbbP3T9xUYNCkvKW9Ay 7MfNw8nD+15u
XiHHw+r3Pru+zh2EzBdRdl3ej1H9JmMyrrHYuB6Vv231/wCcuya6p5PTc3rH XqcvL6dbj4LX
Y7bq77KZc2qnrLbNzMPJyPUx3WdRxKbaX/0hltldtNmP6y6jbZ+6fuKW2z90 /cUbKnl8L6uA
9RyX9U6e3Iqzm5VDLgay6iuzK6rkWF1nqMyKWdQw+pUVs+xepb9P7T9nVzoT s52COsP/AMoZ
Wd9mrZZ7ad2Gxwqry9g/Rt9Vl+Z1v0PT+0M+2fs3/tPUtv3bi2DuABI7wZj/ AKlPts/dP3FK
yp4/rHSus5HT7OlUYNlhbf1PIblB9IpcMynqn2apm+9uV6vq9Tx6LPUxmVep 6v6X0f0qXVvq
zl+j1BnS8Kur1X5FOOKvTqH2S3ptlTcVvur9PFs67Z632X+b+1/r3p/4ddht s/dP3FLbZ+6f
uKVlTPcqNL+oC661tTWXFxa59pBY+qtz/stNApe59e5j3WXZF7d9dtn8xfX7 Me3ts/dP3FLb
Z+6fuKFlTX6d6rKXVOqdRTU7ZjMsLS8VBrNoeaX2s9j/AFK2e7f6TK/V/Se9 WnFrmlrgC0iC
DqCCo7bP3T9xS22fun7ilZU1nH7MYeZoP0Xk/R/kWO/d/cs/1sLzqETbZ+6f uKr/AGO1n8wX
1j9wjcz/ADT7m/8AW7GIUlIkobc8aekx3nuc2f7Ppv2/56W3O/0Df893/pFK ipmkobc7/QN/
z3f+kUtud/oG/wCe7/0ilRUzSUNud/oG/wCe7/0iltzv9A3/AD3f+kUqKmaS htzv9A3/AD3f
+kUtud/oG/57v/SKVFTNJQ253+gb/nu/9Ipbc7/QN/z3f+kUqKmaShtzv9A3 /Pd/6RS253+g
b/nu/wDSKVFTNJQ253+gb/nu/wDSKW3O/wBA3/Pd/wCkUqKmaShtzv8AQN/z 3f8ApFLbnf6B
v+e7/wBIpUVM0lDbnf6Bv+e7/wBIpbc7/QN/z3f+kUqKmaShtzv9A3/Pd/6R S253+gb/AJ7v
/SKVFTNJQ253+gb/AJ7v/SKW3O/0Df8APd/6RSoqZpKG3O/0Df8APd/6RS25 3+gb/nu/9IpU
VM0lDbnf6Bv+e7/0iltzv9A3/Pd/6RSoqZpKG3O/0Df893/pFLbnf6Bv+e7/ ANIpUVM0lDbn
f6Bv+e7/ANIpbc7/AEDf893/AKRSoqZpKG3O/wBA3/Pd/wCkUtud/oG/57v/ AEilRUzSUNud
/oG/57v/AEiltzv9A3/Pd/6RSoqZpKG3O/0Df893/pFLbnf6Bv8Anu/9IpUV M0lDbnf6Bv8A
nu/9Ipbc7/QN/wA93/pFKipmkobc7/QN/wA93/pFLbnf6Bv+e7/0ilRUzSUN ud/oG/57v/SK
W3O/0Df893/pFKipmkobc7/QN/z3f+kUtud/oG/57v8A0ilRUzSUNud/oG/5 7v8A0iltzv8A
QN/z3f8ApFKipmkobc7/AEDf893/AKRS253+gb/nu/8ASKVFTNJQ253+gb/n u/8ASKW3O/0D
f893/pFKipmkobc7/QN/z3f+kUtud/oG/wCe7/0ilRUzSUNud/oG/wCe7/0i ltzv9A3/AD3f
+kUqKmaShtzv9A3/AD3f+kUtud/oG/57v/SKVFTNJQ253+gb/nu/9Ipbc7/Q N/z3f+kUqKma
Shtzv9A3/Pd/6RS253+gb/nu/wDSKVFTNJQ253+gb/nu/wDSKW3O/wBA3/Pd /wCkUqKmaSht
zv8AQN/z3f8ApFLbnf6Bv+e7/wBIpUVM0lDbnf6Bv+e7/wBIpbc7/QN/z3f+ kUqKmaShtzv9
A3/Pd/6RS253+gb/AJ7v/SKVFTNJQ253+gb/AJ7v/SKW3O/0Df8APd/6RSoq ZpKG3O/0Df8A
Pd/6RS253+gb/nu/9IpUVM0lDbnf6Bv+e7/0iltzv9A3/Pd/6RSoqf/W9VSS SSUpBy7jRi3X
tEmqtzwDwS0FyMh5FIvx7aCdotY5hI7bhtSG6i4DvrPiN6hlYFfUcS3Mxqg9 1LR9NzTkepjV
NGY9/wBpo+zP+1fof0NdlG9dALqi7aHtLpiJEz7v/Sdn/baxn/V++zJuufk+ ++plVrxWfcxh
ucytv6d230/tF3+D/wAL+etxEoDhUZPUsmlmQcl1YuaLG1sbXtaHDc1v6Sqx /wD0kPA+sNY6
6eiX3vuvczc0uraA1wb63p+pV6f+B/SfzP8A11XaulZuOwU4+VX6LNKm20ue 5rR9FhsZkU79
n/FomJ0s1Zbs3IdXbkFnpseyoV7WzuI3uddc7d/x2z+QpTKFHbbShX/cscYy sb+OrYzeoYWB
ULcy5tLXu2Vg6ue8guZRj1Nm3IyLNv6LHpZZdb/g61k5f1ltryMfGox6aLMp odSOp3nCNu97
6aasNgozbb8j9G22/GeyjIxWZWF61Xr3vpp087ptGbse51lORTPoZNDzXYwu ifc32W1Oeyqy
zFyWX4d76avtGPd6apZ3Ser5uE/p1ufS7DyKX4+W52MftD2Wb63vrvryqsan I+zPY3f9hsp+
0/rH2b0f1SqFlZYX1hxsnGy7305DPsWRbj2NZRfbu9O+3CY/HNVH63v9D1LW 4nr/AGT/AA6j
V9aOnWdQfiy5tDMZmV9rLLBW0F2XXkV5rzUKunPxf2e/1Pt1tD/W9TH9P1qE HI+rVt2LbhjI
pfinJfl0UZFBurLrn35GVT1Gr16mZ+P6+X62HWz7H9luoxbLPtXo++vh/U37 Nh34X2msY+fj
3Yucymj0h6dtmdlUt6c31rGYP2d/Vb2fpvtzLKqqf5lJTt4PVMPP3jHNjX1R vqvqsosAdPp2
fZ8uui70rNlja7vT9Kx9Vv8AorFz+J9evtOB028YO3LzsiqrIxPVn0KbnYra 8z1/SFeT+j6t
0mz7Oz9J+vf91sn09XoXQmdJ9dwZiVvv2BzcHEbh1wzftc9gsybrbf0r/dZk +ls9P0aKv09l
4qfqxRV0zEw22frGNX06qzJ2n9IzptzMulvo+psq9V/r/wBT1/8ADekkptu6 90yt99dr7KX4
87m203Vl8ObR+pttqZ+0P01lNLfsP2jfbkY1f/anH9SiPrViN6nbRe26rDGN RkMtfi5LCwvt
zaMh+c6ynbg47G4dT2W5jcZmz1rvV9H+bpVfUb08kZAyMdr6qw2q5mLtvtsZ fh9Qx8rq+V9o
d+0rfW6dX9q214b8j18r34/qLQv6BlZlHUm5mXW7I6pgDAfZVSWMZtObtvbT ZkXvd7OofzXr
/wCA/nP0v6JKZt+tPSm2Pqvsc2yt1nqurqvsqrZXfkYXrZWUMdlGIzfhX+s/ IfXTV6Vv6e3H
/WbLVXWenW5pwmWONu5zGuNdgqe9k+rRRmOYMS/Iq9O31cem+y6v0MjfX+r3 +nmj6qRjdYo+
1f8AK+Pdj7vT/m/Wv6lm749T9Ls/bHp7f0f9H/4b9FLB+quPhdXd1BgxoN12 Q2wYrBll+QbH
2sv6k5z3Px2uybfSZTj413pfZ6X5NlTL/tKU6GF1jCzLTjAuozWN32YV49O9 rQQx9grd/P47
bXel9sxXX4Vtn8xk2qrb1239tjpNTMZrg5oLcnJNORY0tF9uRgYTce/7Zj11 Oez1fXo/WcfK
o/R+h6ysYvSdl7czOyLM7MZJY9/spqLgWu+yYVf6GrbvurryLftPUfs9z8e3 PvqUM7pvUM7I
ay3Kpb01l1N4obQ4X7sd9eVUPtjsl1Ox2VQz1P1D+j/of5z9YSUwd9aehMrf dblejSzYRdbX
ZXW9j314zMjGvurZVlYnq30b8zGfbi1Mvpttu9K2t6sN6z051T7fUc1td1OP YH12Mc23JGO7
GpfVYxtrHv8At2L+Z+h9T9N6fp2rFwvqPj4bGVUuxqm0OxvRsoxGV3vZjZGN m/5QyvUfbl5F
v2GtnrU/Y6fUtuyLcW79B6Gxd0ai7rNHVnH30VlpZr7ntFleLdu3e37NTndT q9PZ+m+3b7P6
NjpKQu+tPQmVvutyvRpZsIutrsrrex768ZmRjX3VsqysT1b6N+ZjPtxamX02 23elbW9WMnqb
aRgWCt3oZ1zanWWB1XpCyu22h91drGvrfdkMowm03ei/7RlV1/z36FYuF9R8 fDYyql2NU2h2
N6NlGIyu97MbIxs3/KGV6j7cvIt+w1s9an7HT6lt2Rbi3foPQ3eqYP7QwLcU P9G1219F0bvT
uqc2/EyPTlrbfs+TVVd6T/0duz07P0aSmpV9YsP7HXmZTbKKb7LhXc2uy2n0 arH1VZt2VTU7
HxsTJx215leRkPrx/s9nqetZVX6qr4X1opd9pbmlrbKLra2V0MttteG5XUMK lrMWqq19r/Q6
W+5/2d9z/ZlXW4+Lj0/pK/W/qXR1DFZh4zserHrxBg0sy8c5foMaHV13dOc/ Ix34mXss/T3u
9f1/s2F/3H/STr+qdtGW/Ox8xrcptzr8c2Ul9bXPu6te8XVMvqfcz0Ov3Ut2 XY/6bHryP+6y
SmxgfWbGs6ezNzRZSy3Iy62vGPfsZXj5F2KyzNd6b/2f+hrrfkPzvszGfpv5 r0rPTni/WfBt
pvsvZdS7HybsT0203WGx1VuRjt+x+nR+vPdViWZF1eF9o+yM9T7R/Nb1lZv1 FtzcF+PdlY11
t7ckWW5GGbW1OybsnMfkdLqdltdgZG7N2W2+tlet9lwv+4/v0j0DKZH2bLrZ 9ny7M7A9Skv2
WZH2r7azL2ZFP2up37RyPsvo/Yn4/wCh9WzL9/qpTbx+v9JycqvDov35Vtfq tpDH7wybqnOt
aWfoPRuxbsfI9f0/s2V6eLkelkX0V2aCyej9C/ZmTfkm/wBZ+VW0WjZtHqev ndQyLK/fZtqs
u6pY2ml299NVX8/kfTWskpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSS SlJJJJKUkkkk
pSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJ JJKUkkkkpSSS
SSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKf/1/VUkkklKQ8i4UY9 t5G4VMc8gd9o
3IiDl0m/FuoaYNtbmAngFwLUhuotCzqdlORktdXSbceiu66ttjpFbjeKnNcc VjXue6jI/R+r
+Z/g/U9+quUP1SnqeR1BmNh1ZWQwNfa1sFpcb/Uvrs+zMd9pv+0Wfan+r+lZ 6PqLqBTUHbgx
odMzAmfd/wClLP8AtxE+SA5FXU+p5Fbb6/RrrsG6tjmOe4NOrN723Vt3bf5C lg9drs6o7pWV
dScss3sZWHNOg3FjmuNrN2z9J/Pb9n+DSowep41TcdjKLq6gGV2OtfW4tGjN 9bce5u/b/wAI
lhdDY3qrurZWPQzKDNlbqnPeeNrnve9tLN3p/ov5jfs/wqlPBR229Nfgxx4r G/jbq3XVUVPu
ue2qqppfZY8hrWtaNz3ve72tY1qzHfWGmx7WdOxcjqZNYuccf0mBtb3W0492 /PvwmXVZL8bI
+z2Y3rMsqq9f+Zux7LjdW6QzqX2ewWelkYdnrYznMbdWLBqx1uNeHMdte1v6 ah2Nn1M9SvEz
cX17t+f1fpXVeqUV0X4mA/IbW9lfVC94uxrHks+3dPx3Ytz67WMZj5bK/wBo 0vZkfq/2v9B9
tshZW7j/AFj6LfTlXOy6aG4Fz6MwXWVsNTmW2YbTf7/0LMi2n9W9X+dYp1de 6Vb1JnTWZFZy
LsevKxveyL67fX2uxPfvyPTZiPtt9Nmz0n1LPs6P1hmHdhUOrNIy7cpm3Itx n3sybMnLtxrs
jGpdkdN+y5GVU+u7Ftyvtv2X0rvs1WTaxUsL6p9TqwczDsfS1vVsbIxcl/q2 3OoFl3UsvHsq
svqZb1N/+VvTyPtFmE/9B6vqX+skp6XC6j0/qFRuwMmnLqa7Y6yixtjQ4AOL C+pzm79rmrHx
/rr0rIwOn5rKsj/KWQzHZjlrPWq9VzK68nLqFv6HEd9pwn+t7/0efg/9yqlY 6D0m/CtycnJr
bVbkNrrgZeTnOLaja9u7L6j6bms3ZL9mPVjM9P8ASW+vd6/p49HH+qPodMwa wa/t9FfTK73f
4P8AUbsW/Lspd6fq+rl1YdVL3v8A59mF06uz0/sySnbZ1bpVn2r08zHf9gn7 bttYfR27t/2q
Hfq+30rP53/RvVKn61dFt6mMFuZjbbaabcO4X1kXuutycV1GM2f0r6bcPb+i fZ77vTWOfqr1
u3MZk32V2W41YIvsysi37RdXldP6kx/2O6r7N0arJd0x7ba8D7RXjfaP0dWR XjVrQzOj9V6h
R1h17cejI6p0xuDXWy19jGWNPUfe+52PQ/0nMzsf/Ab/AOe/R/6VKdBvX+ji 5mNdmY9GVbY+
qrHsuq9R5bbZh/o62Wv3+pdS9jGfzu/9DbXVkepSywzqPT7M2zAryaX5tLd9 uK2xpta07ffZ
QHeqxn6Sv83/AAi58fVfqAxOvU+pTu6tjZFGOZdDXXZPV8xhu/R+1npdWx9+ z1Pey/8A4P1C
9P8Aq1fi9XGTYGvoqycnMqudlZLjuyTkO9OvpJczp2I+r7dZV9r35Pqsr/o1 d2Z6mMlO3hdQ
ws+o24dzbmsdssA0cx4Ac+jIqdFuPkV7v0uPcyu6r/CVqu7q5dnvw8bDyMoU WMqycis0trqe
9td+2z7RkUZD9mPfTe/7NRf7LPZ+m9SpBxekXv6k3rHUbKzmtrNVdWMwMYys y/0bclw+253p
uss/nLMfAt/RZX7Kx8ur1ULqPSsrN6rTkNxMSn0LKXV9VDycwV1PbkXYrKvs rNlWV+nw7P8A
KOz7Pk227LP6Mkp0GdW6VZ9q9PMx3/YJ+27bWH0du7f9qh36vt9Kz+d/0b1A dc6K5uM9vUMY
tzXFmG4XVxc5rhU5mMd/6d7bXen+i/PXO4f1OyMfDbj20V5RxMevGxnP6hmt NmyzFvbkMdD2
dE2vwKcj7Ng1Zf6X0aPtNNOP+sXaejdebl4eS/Jb9qDWNz88Wy6yll12S3pz unNw68DIYyu7
7Mzqdf7OzP5zI9Kv9Jh3pTq4/WemXuxavtNNeVm0tyKMR1tRtcxzTZvrZTZa 25m1ln6XHfdT
Re: There may not be two classifiers names 'xyz' [message #507663 is a reply to message #507148] Thu, 14 January 2010 10:00 Go to previous messageGo to next message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi bde,

You certainly have one or more UML Editors which allow to drag and drop StateMachine elements from a model to a diagram.
I know about EclipseUML but it is not free.

Quote:
Furthermore, if I create a state
machine as owned (like you described) there's a class generated (see picture, arrow top and middle). But I don't want this class to be
generated by genmodel.


No class has been created in my test but it seems I have not done the same test as you.
My test was to create a Class Diagram inside EclipseUML, then create a class. Once the class has been created I have clicked on this newly created Class > Add Diagram > StateMachine & Activity Diagram.
I have finally open the Eclipse UML Editor to visualize it. This is not exactly like using the UML Editor and GenModel but it is the same way and it works well.
If you keep going looking you should find a way to do it with GenModel and UML Editor but I don't have time to instigate at code level because it already works for me at tools level. I would recommend to select a UML Editor and then see what you can get as modeling value and not be stuck at code level with genmodel and try to debug.

I don't see your pictures.
Re: There may not be two classifiers names 'xyz' [message #507965 is a reply to message #507663] Fri, 15 January 2010 10:51 Go to previous message
No real name is currently offline No real nameFriend
Messages: 14
Registered: December 2009
Junior Member
Hi,
as I mentioned, you've got exactly the point.
I've really got no time to investigate time at code level to plan my
project. What I simply want to do is to model it via UML2 first, before
coding (not to code the model, that's a little bit stupid). But it would
be really nice to do it via the UML2 Tools, because I'm sure they've got
a great future.
But at the moment I just want to generate my project, and not to
understand the deepest levels of Eclipse UML. I can do this, if I've
time for this (and I will do it, because it's fascinating).
I'm really grateful for your help and your time.
Thanks a lot.

Have a nice day

Vlad Varnica schrieb:
> Hi bde,
>
> You certainly have one or more UML Editors which allow to drag and drop
> StateMachine elements from a model to a diagram.
> I know about EclipseUML but it is not free.
>
> Quote:
>> Furthermore, if I create a state
>> machine as owned (like you described) there's a class generated (see
>> picture, arrow top and middle). But I don't want this class to be
>> generated by genmodel.
>
>
> No class has been created in my test but it seems I have not done the
> same test as you.
> My test was to create a Class Diagram inside EclipseUML, then create a
> class. Once the class has been created I have clicked on this newly
> created Class > Add Diagram > StateMachine & Activity Diagram.
> I have finally open the Eclipse UML Editor to visualize it. This is not
> exactly like using the UML Editor and GenModel but it is the same way
> and it works well. If you keep going looking you should find a way to do
> it with GenModel and UML Editor but I don't have time to instigate at
> code level because it already works for me at tools level. I would
> recommend to select a UML Editor and then see what you can get as
> modeling value and not be stuck at code level with genmodel and try to
> debug.
>
> I don't see your pictures.
Re: There may not be two classifiers names 'xyz' [message #628186 is a reply to message #507148] Tue, 12 January 2010 11:07 Go to previous message
Rafael Chaves is currently offline Rafael ChavesFriend
Messages: 161
Registered: July 2009
Senior Member
There can't be two elements of the same name in a same namespace when one is a type of the other. A state machine is a behavior which is a class, thus you cannot have both a class and a state machine with the same name. The same is true for activity (also subclass of class).

What are you trying to achieve by naming things the same? UML elements are connected by association, not by name.

But more importantly, one would expect behaviors (SMs, activities) for a behaviored classifier (such as Class) to be children of that class, not siblings, as the classifier is the context for the Behavior. If you do that, the name clashing problem should go away.

See javadoc for Behavior#getContext() at http://bit.ly/4HZYRo .

"The classifier that is the context for the execution of the behavior. If the behavior is owned by a BehavioredClassifier, that classifier is the context. Otherwise, the context is the first BehavioredClassifier reached by following the chain of owner relationships. For example, following this algorithm, the context of an entry action in a state machine is the classifier that owns the state machine. The features of the context classifier as well as the elements visible to the context classifier are visible to the behavior. "

Cheers,

Rafael
http://abstratt.com/blog/
Re: There may not be two classifiers names 'xyz' [message #628189 is a reply to message #507148] Wed, 13 January 2010 11:20 Go to previous message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
You can create same model elements name for a state and activity diagram related to a class if you directly use the Eclipse UML Model Editor.

Click on the class in the UML Editor > New Child > Owned Behavior > StateMachine See more at: http://www.eclipsedownload.com/metamodeling_pictures/stateMa chine_creation.png
Once the model has been created you need to drag and drop your model elements within an UML Editor in order to visualize it graphically.
Re: There may not be two classifiers names 'xyz' [message #628192 is a reply to message #628189] Wed, 13 January 2010 18:54 Go to previous message
No real name is currently offline No real nameFriend
Messages: 14
Registered: December 2009
Junior Member
This is a multi-part message in MIME format.
--------------050801040307090508060802
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

Thanks a lot for your responses!
Vlad, you've got the point, your suggestion describes exactly the stuff
I want to do.
I don't want to model too fine grained, so, just for an overview now:
Suppose I've got a waiter, a guest and a restaurant. Within a class
diagram I create these three classes with one navigable association
between restaurant-waiter and one between restaurant-guest (I choose
bottom-up for demonstration)(that means, there's a global variable in
restaurant both for waiter and for guest. The next step is to create a
state machine with the name restaurant to model the states of waiter and
guest (ordering, eating, drinking etc.) -> (duplicate names = error).
What I don't want to do is: Creating new 'classes' within my hierarchy
for describing the states (or activities) = behaviors of the restaurant
(e.g. class restaurant_order, class restaurant_guest_eating), no, I just
want these three mentioned classes (= restaurant, waiter, guest) (+
interfaces, factories etc. of course).
I work with uml2 tools to view my uml stuff graphically. Sadly,
drag'N'drop isn't possible from uml file to state machine diagram (see
attached picture, arrow bottom). Furthermore, if I create a state
machine as owned (like you described) there's a class generated (see
picture, arrow top and middle). But I don't want this class to be
generated by genmodel.
I just want my three classes, modeled in the class diagram (with
operations, attributes), take these classes and model their interaction
behavior in other diagrams (state machines, activities).
This must be possible! I think, I'm just a little bit stupid at the
moment. As I mentioned, you created a fascinating framework and I
understand not enough about it yet.
Thanks for you patience with me and your work to reproduce my problem,
thanks a lot.

Greets

--------------050801040307090508060802
Content-Type: image/jpeg;
name="uml.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="uml.jpg"

/9j/4AAQSkZJRgABAgEASABIAAD/4RHZRXhpZgAATU0AKgAAAAgABwESAAMA AAABAAEAAAEa
AAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAA cgEyAAIAAAAU
AAAAjodpAAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhv dG9zaG9wIENT
MyBXaW5kb3dzADIwMTA6MDE6MTMgMTk6NDg6MjYAAAAAA6ABAAMAAAABAAEA AKACAAQAAAAB
AAACv6ADAAQAAAABAAADDwAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEA AAEeARsABQAA
AAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIABAAAAAEAABCjAAAA AAAAAEgAAAAB
AAAASAAAAAH/2P/gABBKRklGAAECAABIAEgAAP/tAAxBZG9iZV9DTQAB/+4A DkFkb2JlAGSA
AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwR DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwM DAwREQwMDAwM
DBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoACQAwEiAAIR AQMRAf/dAAQA
Cf/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEA AAAAAAAAAQAC
AwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIG FJGhsUIjJBVS
wWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePz RieUpIW0lcTU
5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYH BwYFNQEAAhED
ITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcm NcLSRJNUoxdk
RVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//a
AAwDAQACEQMRAD8A9RvrrtqfXaxtlbhDmPAc0j+U130llZzmNOc5xoI/R6Xs dZXM1wH1M930
v3fz/TWu/wCifgsy972ZGW5jrQ4enrVWHv8AzPzPdvb/AGUDuPP9imm0U5Nh pxT059lm1zWH
Hd7q3AWPdZ7/AM5v0Fr4VefWC3KNGwD2Noa5sGXc73v/ADNqzRkZdY9R1+dY KjucxuI0bw0l
zmx6W93qtb6f6JaWNntyLDWKb6yJ1trcxum3893t/P8A9diKm0koveythfY4 MY0S5zjAA8SS
o0ZFOTULqHiyp07Xt1aYO32u/OakmjV0aur6WkSSSSQpJJJJSkkkklKSSSSU pJJJJSkkkklP
/9D1N/0T8Fg9YtzGHKGDUb7i+prmNc4ua1w3eptxrKchnuZ++t8iQR4rOyOn 3225RNWPbVd6
ZYy1pIJZDv0v0t36RrNns9iIoEEi6N0eqDtW1uAzrH1wopcyvp4IYC6vfXfY X6F23e/Ida39
L+j/AEv5i3M2vrOdh1V4uRX083VA337S+1riAXMoZuYxn5/6T1Hv/wDPiAzo ZawMOB08gODt
A7RwH09WO9yk7ovqWF78DAdO2SWkEk7PV02O3fQ/Ro5JRmKERD+5xa/85dhM sUhMHjI29wRn
H/E+WX+E26Ol4/sflu+3ZNcbrbdQHgCX1Y8uoxXf8SxXpAIBOp4WPZ0ixznR iYe0exk759It
9B1boa3/AADnN9L+aUR0QkHdg4H0CzQOiHbdzXM2e7dt+mmAAbJnOUzcjfbt H+7H9F2pA5SB
BEgyNRp4jQqlR0fprBXYcOhlzYcXMYBD+XOYfpfS+inZ0bpTKzUzEqFZcHlg YILh+eW/ve5F
a3JjlLc2JkR4/DlUn9D6PYQX4dLiA1olg4YNlbf6tbf5v9xO/o3SX2m5+JU6 1zi8vLBJcY3P
P8v2/TSU2w9jtA4Hvoeyfc2QJEngeMKl+xOkekKvsdPptJLWhjYBcIcW6e1E xul9OxbPUxse
ul55dW0Nmf3tv0klNpJJJJSkkkklKSSSSU//0fVUlkPz3sc5oflvc0ge3FJB nX2Wen6bv6+9
Tbl2PsNbbsgwwv3nH2s/NOxtllbGOsd6n0P/ACCVjup1ElneplAAnII3CRLW D+ydPpp9+T/3
IP8Ams/uQ4h3VRdBJZ+/J/7kH/NZ/clvyf8AuQf81n9yXEO6qPZ0Eln78n/u Qf8ANZ/clvyf
+5B/zWf3JcQ7qo9nQSWfvyf+5B/zWf3Jb8n/ALkH/NZ/clxDuqj2dBJZ+/J/ 7kH/ADWf3Jb8
n/uQf81n9yXEO6qPZ0Eln78n/uQf81n9yW/J/wC5B/zWf3JcQ7qo9nQSWfvy f+5B/wA1n9yW
/J/7kH/NZ/clxDuqj2dBJZ+/J/7kH/NZ/clvyf8AuQf81n9yXEO6qPZ//9L0 zPG3DudX6jXB
ujqGB9g/4utwc17lXv8AUF1205IG0bdjGuYDNf8ANbg79J/6l3qx1Fpdg3ND HWEt0Y2z0nH+
rfLfS/rKtfXOTkFtRcSwSW3ljjrXywH2f1//AEsiBofJB3DT9TKNNk3ZxMsg /ZawRLZd7PR/
TM/0+z3+r/MomJ6jrYe/KcIPtsxq2D8zb+kbU3b/AK/6JD+y5HouBxsn3Fmw HOdOjf8AAP8A
U+kz9x38/wDzliPi0ZDLNz6MljQDJflmxv5nLTZ5e7/rqCUVDnnZufmOJa8H diMbqfoOP6Da
3Z/00TAxsm525+TeW1kBzbseqvfDjuj9E12123b7f8GhfZchrNjcTKhhLmk5 hiHBm/3m3c5u
6n2VP/R/8X6i2qXE1M3tLH7QXMJ3Fpj6Jd+ckpXoU/6Nv3BL0Kf9G37gppJK YehT/o2/cEvQ
p/0bfuCmkkph6FP+jb9wS9Cn/Rt+4KaSSmHoU/6Nv3BL0Kf9G37gppJKYehT /o2/cEvQp/0b
fuCmkkph6FP+jb9wS9Cn/Rt+4KaSSn//0/Ts2n18W2rZXZvbGy4TWfKwD81U ck0C7KNgx3OY
Gbg/3ENeWPb6jGM3t/mXv+n/AINXc91jMO11bnseG+11bPVeD/Ip19T+qqlz 7GuygH2VkNDm
gNN79XfTopmzc13/ABX6L+onR6oPRzT+x6PWpym9LpFgDhIgERFDnte1jfa1 9X0X+ytGwcn6
u0FzrnYFV7HbCaobGjW+91m13ufV7XJ33W7r3Ovv9tYLS7Ac4AzW1z27aw61 +136Wv8Al/ov
5lM2+1zWu+03GXOG4dOs1aAzaP5t36Nk/o/3/wDrSZr4JSsP1ToNb2jErnWl 4DADOn6J35/9
hTzOndDwaDkHpotIJIrx8f1Hlzj6joZW327nD6T/AGKN9jmlrPVtaHNGwjCe 8AzbOjGO2O9n
5/8A6NTNy7y6u1uTlei10vYcNwkS7dUf0TbNv6PZW+v/AMFS1TExBBIsdRfD f1TYXVc/NoFt
fTbqHFzhtynCnQH2OIi273N/4D/txW6P2k6wOyPRrq1mpm57vL9O70W/+y6n i5LMqr1WMsYJ
LS21jq3AtO0+y1rfb/L/AJt6MgAepJZJ5IkngxxgD/emQP8ADkpJJJOYlJJJ JKUkkkkpSSSS
SlJJJJKf/9TvTXeLs2K8qXejs9O1hc6GMDvs/qubXS1rv5/e/wB/85+eoVVZ THVbquoshrt2
66mxo9h/nf0tlrv5Oxn88pHCuL8txwmObkGra0Pczd6bWM/WHt37duzbV6bf 5v6aHT019bqy
enVM9MEbqrniJaWe2ra1rv7diRKIjT6n81ejmBtoNGb72MaAcoHcQK5ayxln 6s9m3+f9n2j9
L6n6S2tTdTmizcKcyPH7Swgw0csc523b+bt/nLf51Db03JrbaasLHrsfWxjC 1z2hxaKxsyHN
O70Gen+r7PoV/wDXFEdIsY4engYwYwe10vDtwPrN9u521vrNY/8AnErSlFeb WwAY/UHGsO27
b6HTO9vN1zN9m33t9Vv+jSfVls9R1dXUHPLPTj16dsE/Tr9S3Y2/ZW337P8A DfT/AJ30x2dJ
u2NczAxnXhhbusL4mXv2zufY6v3+p/x/6b6akcRldrvQ6fTsBLmF1rw4kwHP 9ldrGua39x9n
+D/m0LCnSxLLmuGO6i5rGtn17n1uk+12z2W2Wud73fmf4JW1z4wwGlv2Ckhj 22Ug22GHAek5
9jnM+l6b7P8AjFbrxsBrKA7FduoIcwAkta72+5u6z+R+clxDuqnVSVb7a3/R Wfc3/wAkl9tb
/orPub/5JLiHdVNlJVvtrf8ARWfc3/ySX21v+is+5v8A5JLiHdVNlJVvtrf9 FZ9zf/JJfbW/
6Kz7m/8AkkuId1U2UlW+2t/0Vn3N/wDJJfbW/wCis+5v/kkuId1U2UlW+2t/ 0Vn3N/8AJJfb
W/6Kz7m/+SS4h3VT/9X0O7onTXF1j6Gvc9wLy7cQTo2XN3bVJ3Qumvf6jqQX 6e7c6faNreH/
AJrVeeGlpDuFCG/vWfcf/IoUFNNnQelMe17KGtc0hzSN2hBa5rh7vzXVsSZ0 Hpdb2vZQ1r2G
Wul2hnd3f+8rkN/es+4/+RShv71n3H/yKVBTUr6F0yqxttdDW2sdua/UkOH5 3uc5JppGQcNt
dzYef0gYdgOxtvqet9H8/wBL/jFbhv71n3H/AMilDf3rPuP/AJFKgpF9nHqG v1DIAdwO5I8P
JS+yf8IfuCfY3fu3P+4z98KUN/es+4/+RS4R2VbD7J/wh+4JfZP+EP3BThv7 1n3H/wAilDf3
rPuP/kUuEdlWw+yf8IfuCX2T/hD9wU4b+9Z9x/8AIpQ396z7j/5FLhHZVom4 27d7zoY4CTMY
uYHbzr5BWGBob7fnPM+aj6QHDnAeAOiXCOyrR/ZP+EP3BL7J/wAIfuCL6X8t 33pel/Ld96XC
OyrRfZP+EP3BVsxzcQAubfdLXOApr9Q+zb7Ib+fZv/Rq96X8t33pel/Ld96X COyrf//W9StM
MkeI/KE8P8R93/mSjc2Waa6jTnuiJKYw/wAR93/mSUP8R93/AJkpJJKYw/xH 3f8AmSq29Mx7
Xue4va9xDi6t72GRu42PH77lcSSU02dMoZvh9rt8bt1tjvowRt3We36PuQ6u i4lRBY++WuDw
XXWu1B3+7dZ7t+39J/I/R/za0EklMYf4j7v/ADJKH+I+7/zJSSSUxh/iPu/8 ySh/iPu/8yUk
klMKyTunnd+QBRBaSZ3Egkabv++qVf5/9YpqZ9087tfjCSlez+V/0kvZ/K/6 SIkkpH7P5X/S
Va92eHO+zVMsbB2Cx72EugbQ5wbZtY52/wBR+z9F/OVsyf5hXUklP//X9Fs6 P08NB2O9rmuA
9R8SHts3bd+36Y9ytYuJRiVmuhpawmYLnO7R/hC5Ee3c0iY8D8NU0W/vD/N/ 8ySUzSUIt/eH
+b/5klFv7w/zf/MklM0lCLf3h/m/+ZJRb+8P83/zJJTNJQi394f5v/mSaL9w 1EeMf7UlJElC
Lf3h/m/+ZJRb+8P83/zJJTNJQi394f5v/mSUW/vD/N/8ySU1bR1PfZ9ldQG7 vaLA8n6P52w/
6T/wNNjt6oLf0j6HV7z6ga14dHba7dt/6KuMaWgyZJMnso1cv/rH+CSkiSSS SlJJJJKf/9D1
VJQ9QHUA/cn3jwP3JKZJKO8eB+5LePA/ckpBm4j8mpza77MewtIZZWfouIhr 9n0X7P3XKnh9
Upx8qromY9/28MHp2PBIyA1pL763t3bfoO9Wuz+b/wCE/nFp7x4H7kHIx8TJ LXX1B7q/5t5H
ubq1/wCjsHvr91bPoIEyoUdu6/H7YJ9yJIIIBifVCX6Mv639aLYQshlz64os FT5B3Fu4QD7m
7dPpKe8eB+5LePA/cisYY7Lq6Wtvs9awTus2hkySR7G/ut9qKo7x4H7kt48D 9ySmSSjvHgfu
S3jwP3JKZIdX5/8AWKlvHgfuUGHbukHVxI0SUlSUd48D9yW8eB+5JTJJR3jw P3Jbx4H7klP/
2f/tFrZQaG90b3Nob3AgMy4wADhCSU0EJQAAAAAAEAAAAAAAAAAAAAAAAAAA AAA4QklNA+0A
AAAAABAASAAAAAEAAgBIAAAAAQACOEJJTQQmAAAAAAAOAAAAAAAAAAAAAD+A AAA4QklNBA0A
AAAAAAQAAAB4OEJJTQQZAAAAAAAEAAAAHjhCSU0D8wAAAAAACQAAAAAAAAAA AQA4QklNBAoA
AAAAAAEAADhCSU0nEAAAAAAACgABAAAAAAAAAAI4QklNA/UAAAAAAEgAL2Zm AAEAbGZmAAYA
AAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEAWgAAAAYAAAAAAAEANQAA AAEALQAAAAYA
AAAAAAE4QklNA/gAAAAAAHAAAP////////////////////////////8D6AAA AAD/////////
////////////////////A+gAAAAA/////////////////////////////wPo AAAAAP//////
//////////////////////8D6AAAOEJJTQQAAAAAAAACAAA4QklNBAIAAAAA AAIAADhCSU0E
MAAAAAAAAQEAOEJJTQQtAAAAAAAGAAEAAAACOEJJTQQIAAAAAAAQAAAAAQAA AkAAAAJAAAAA
ADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA0sAAAAGAAAAAAAAAAAAAAMP AAACvwAAAAsA
VQBuAGIAZQBuAGEAbgBuAHQALQA0AAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAB AAAAAAAAAAAA
AAK/AAADDwAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAABAA AAABAAAAAAAA
bnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABU b3AgbG9uZwAA
AAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAADDwAAAABSZ2h0bG9u ZwAAAr8AAAAG
c2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAAEgAAAAdzbGlj ZUlEbG9uZwAA
AAAAAAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAMRVNsaWNl T3JpZ2luAAAA
DWF1dG9HZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAAAABJ bWcgAAAABmJv
dW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAA AExlZnRsb25n
AAAAAAAAAABCdG9tbG9uZwAAAw8AAAAAUmdodGxvbmcAAAK/AAAAA3VybFRF WFQAAAABAAAA
AAAAbnVsbFRFWFQAAAABAAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFn VEVYVAAAAAEA
AAAAAA5jZWxsVGV4dElzSFRNTGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEA AAAAAAlob3J6
QWxpZ25lbnVtAAAAD0VTbGljZUhvcnpBbGlnbgAAAAdkZWZhdWx0AAAACXZl cnRBbGlnbmVu
dW0AAAAPRVNsaWNlVmVydEFsaWduAAAAB2RlZmF1bHQAAAALYmdDb2xvclR5 cGVlbnVtAAAA
EUVTbGljZUJHQ29sb3JUeXBlAAAAAE5vbmUAAAAJdG9wT3V0c2V0bG9uZwAA AAAAAAAKbGVm
dE91dHNldGxvbmcAAAAAAAAADGJvdHRvbU91dHNldGxvbmcAAAAAAAAAC3Jp Z2h0T3V0c2V0
bG9uZwAAAAAAOEJJTQQoAAAAAAAMAAAAAT/wAAAAAAAAOEJJTQQUAAAAAAAE AAAACDhCSU0E
DAAAAAAQvwAAAAEAAACQAAAAoAAAAbAAAQ4AAAAQowAYAAH/2P/gABBKRklG AAECAABIAEgA
AP/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJ DBELCgsRFQ8M
DA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAENCwsNDg0Q
Dg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwM DAwMDAwMDAwM
DAwM/8AAEQgAoACQAwEiAAIRAQMRAf/dAAQACf/EAT8AAAEFAQEBAQEBAAAA AAAAAAMAAQIE
BQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQC BQcGCAUDDDMB
AAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1 FqKygyZEk1Rk
RcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm 9jdHV2d3h5en
t8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFC I8FS0fAzJGLh
coKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSF tJXE1OT0pbXF
1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A9Rvrrtqf XaxtlbhDmPAc
0j+U130llZzmNOc5xoI/R6XsdZXM1wH1M930v3fz/TWu/wCifgsy972ZGW5j rQ4enrVWHv8A
zPzPdvb/AGUDuPP9imm0U5NhpxT059lm1zWHHd7q3AWPdZ7/AM5v0Fr4VefW C3KNGwD2Noa5
sGXc73v/ADNqzRkZdY9R1+dYKjucxuI0bw0lzmx6W93qtb6f6JaWNntyLDWK b6yJ1trcxum3
893t/P8A9diKm0koveythfY4MY0S5zjAA8SSo0ZFOTULqHiyp07Xt1aYO32u /OakmjV0aur6
WkSSSSQpJJJJSkkkklKSSSSUpJJJJSkkkklP/9D1N/0T8Fg9YtzGHKGDUb7i +prmNc4ua1w3
eptxrKchnuZ++t8iQR4rOyOn3225RNWPbVd6ZYy1pIJZDv0v0t36RrNns9iI oEEi6N0eqDtW
1uAzrH1wopcyvp4IYC6vfXfYX6F23e/Ida39L+j/AEv5i3M2vrOdh1V4uRX0 83VA337S+1ri
AXMoZuYxn5/6T1Hv/wDPiAzoZawMOB08gODtA7RwH09WO9yk7ovqWF78DAdO 2SWkEk7PV02O
3fQ/Ro5JRmKERD+5xa/85dhMsUhMHjI29wRnH/E+WX+E26Ol4/sflu+3ZNcb rbdQHgCX1Y8u
oxXf8SxXpAIBOp4WPZ0ixznRiYe0exk759It9B1boa3/AADnN9L+aUR0QkHd g4H0CzQOiHbd
zXM2e7dt+mmAAbJnOUzcjfbtH+7H9F2pA5SBBEgyNRp4jQqlR0fprBXYcOhl zYcXMYBD+XOY
fpfS+inZ0bpTKzUzEqFZcHlgYILh+eW/ve5Fa3JjlLc2JkR4/DlUn9D6PYQX 4dLiA1olg4YN
lbf6tbf5v9xO/o3SX2m5+JU61zi8vLBJcY3PP8v2/TSU2w9jtA4Hvoeyfc2Q JEngeMKl+xOk
ekKvsdPptJLWhjYBcIcW6e1Exul9OxbPUxseul55dW0Nmf3tv0klNpJJJJSk kkklKSSSSU//
0fVUlkPz3sc5oflvc0ge3FJBnX2Wen6bv6+9Tbl2PsNbbsgwwv3nH2s/NOxt llbGOsd6n0P/
ACCVjup1ElneplAAnII3CRLWD+ydPpp9+T/3IP8Ams/uQ4h3VRdBJZ+/J/7k H/NZ/clvyf8A
uQf81n9yXEO6qPZ0Eln78n/uQf8ANZ/clvyf+5B/zWf3JcQ7qo9nQSWfvyf+ 5B/zWf3Jb8n/
ALkH/NZ/clxDuqj2dBJZ+/J/7kH/ADWf3Jb8n/uQf81n9yXEO6qPZ0Eln78n /uQf81n9yW/J
/wC5B/zWf3JcQ7qo9nQSWfvyf+5B/wA1n9yW/J/7kH/NZ/clxDuqj2dBJZ+/ J/7kH/NZ/clv
yf8AuQf81n9yXEO6qPZ//9L0zPG3DudX6jXBujqGB9g/4utwc17lXv8AUF12 05IG0bdjGuYD
Nf8ANbg79J/6l3qx1Fpdg3NDHWEt0Y2z0nH+rfLfS/rKtfXOTkFtRcSwSW3l jjrXywH2f1//
AEsiBofJB3DT9TKNNk3ZxMsg/ZawRLZd7PR/TM/0+z3+r/MomJ6jrYe/KcIP tsxq2D8zb+kb
U3b/AK/6JD+y5HouBxsn3FmwHOdOjf8AAP8AU+kz9x38/wDzliPi0ZDLNz6M ljQDJflmxv5n
LTZ5e7/rqCUVDnnZufmOJa8HdiMbqfoOP6Da3Z/00TAxsm525+TeW1kBzbse qvfDjuj9E121
23b7f8GhfZchrNjcTKhhLmk5hiHBm/3m3c5u6n2VP/R/8X6i2qXE1M3tLH7Q XMJ3Fpj6Jd+c
kpXoU/6Nv3BL0Kf9G37gppJKYehT/o2/cEvQp/0bfuCmkkph6FP+jb9wS9Cn /Rt+4KaSSmHo
U/6Nv3BL0Kf9G37gppJKYehT/o2/cEvQp/0bfuCmkkph6FP+jb9wS9Cn/Rt+ 4KaSSn//0/Ts
2n18W2rZXZvbGy4TWfKwD81Uck0C7KNgx3OYGbg/3ENeWPb6jGM3t/mXv+n/ AINXc91jMO11
bnseG+11bPVeD/Ip19T+qqlz7GuygH2VkNDmgNN79XfTopmzc13/ABX6L+on R6oPRzT+x6PW
pym9LpFgDhIgERFDnte1jfa19X0X+ytGwcn6u0FzrnYFV7HbCaobGjW+91m1 3ufV7XJ33W7r
3Ovv9tYLS7Ac4AzW1z27aw61+136Wv8Al/ov5lM2+1zWu+03GXOG4dOs1aAz aP5t36Nk/o/3
/wDrSZr4JSsP1ToNb2jErnWl4DADOn6J35/9hTzOndDwaDkHpotIJIrx8f1H lzj6joZW327n
D6T/AGKN9jmlrPVtaHNGwjCe8AzbOjGO2O9n5/8A6NTNy7y6u1uTlei10vYc NwkS7dUf0TbN
v6PZW+v/AMFS1TExBBIsdRfDf1TYXVc/NoFtfTbqHFzhtynCnQH2OIi273N/ 4D/txW6P2k6w
OyPRrq1mpm57vL9O70W/+y6ni5LMqr1WMsYJLS21jq3AtO0+y1rfb/L/AJt6 MgAepJZJ5Ikn
gxxgD/emQP8ADkpJJJOYlJJJJKUkkkkpSSSSSlJJJJKf/9TvTXeLs2K8qXej s9O1hc6GMDvs
/qubXS1rv5/e/wB/85+eoVVZTHVbquoshrt266mxo9h/nf0tlrv5Oxn88pHC uL8txwmObkGr
a0Pczd6bWM/WHt37duzbV6bf5v6aHT019bqyenVM9MEbqrniJaWe2ra1rv7d iRKIjT6n81ej
mBtoNGb72MaAcoHcQK5ayxln6s9m3+f9n2j9L6n6S2tTdTmizcKcyPH7Swgw 0csc523b+bt/
nLf51Db03JrbaasLHrsfWxjC1z2hxaKxsyHNO70Gen+r7PoV/wDXFEdIsY4e ngYwYwe10vDt
wPrN9u521vrNY/8AnErSlFebWwAY/UHGsO27b6HTO9vN1zN9m33t9Vv+jSfV ls9R1dXUHPLP
Tj16dsE/Tr9S3Y2/ZW337P8ADfT/AJ30x2dJu2NczAxnXhhbusL4mXv2zufY 6v3+p/x/6b6a
kcRldrvQ6fTsBLmF1rw4kwHP9ldrGua39x9n+D/m0LCnSxLLmuGO6i5rGtn1 7n1uk+12z2W2
Wud73fmf4JW1z4wwGlv2Ckhj22Ug22GHAek59jnM+l6b7P8AjFbrxsBrKA7F duoIcwAkta72
+5u6z+R+clxDuqnVSVb7a3/RWfc3/wAkl9tb/orPub/5JLiHdVNlJVvtrf8A RWfc3/ySX21v
+is+5v8A5JLiHdVNlJVvtrf9FZ9zf/JJfbW/6Kz7m/8AkkuId1U2UlW+2t/0 Vn3N/wDJJfbW
/wCis+5v/kkuId1U2UlW+2t/0Vn3N/8AJJfbW/6Kz7m/+SS4h3VT/9X0O7on TXF1j6Gvc9wL
y7cQTo2XN3bVJ3Qumvf6jqQX6e7c6faNreH/AJrVeeGlpDuFCG/vWfcf/IoU FNNnQelMe17K
Gtc0hzSN2hBa5rh7vzXVsSZ0Hpdb2vZQ1r2GWul2hnd3f+8rkN/es+4/+RSh v71n3H/yKVBT
Ur6F0yqxttdDW2sdua/UkOH53uc5JppGQcNtdzYef0gYdgOxtvqet9H8/wBL /jFbhv71n3H/
AMilDf3rPuP/AJFKgpF9nHqGv1DIAdwO5I8PJS+yf8IfuCfY3fu3P+4z98KU N/es+4/+RS4R
2VbD7J/wh+4JfZP+EP3BThv71n3H/wAilDf3rPuP/kUuEdlWw+yf8IfuCX2T /hD9wU4b+9Z9
x/8AIpQ396z7j/5FLhHZVom427d7zoY4CTMYuYHbzr5BWGBob7fnPM+aj6QH DnAeAOiXCOyr
R/ZP+EP3BL7J/wAIfuCL6X8t33pel/Ld96XCOyrRfZP+EP3BVsxzcQAubfdL XOApr9Q+zb7I
b+fZv/Rq96X8t33pel/Ld96XCOyrf//W9StMMkeI/KE8P8R93/mSjc2Waa6j TnuiJKYw/wAR
93/mSUP8R93/AJkpJJKYw/xH3f8AmSq29Mx7Xue4va9xDi6t72GRu42PH77l cSSU02dMoZvh
9rt8bt1tjvowRt3We36PuQ6ui4lRBY++WuDwXXWu1B3+7dZ7t+39J/I/R/za 0EklMYf4j7v/
ADJKH+I+7/zJSSSUxh/iPu/8ySh/iPu/8yUkklMKyTunnd+QBRBaSZ3Egkab v++qVf5/9Ypq
Z9087tfjCSlez+V/0kvZ/K/6SIkkpH7P5X/SVa92eHO+zVMsbB2Cx72EugbQ 5wbZtY52/wBR
+z9F/OVsyf5hXUklP//X9Fs6P08NB2O9rmuA9R8SHts3bd+36Y9ytYuJRiVm uhpawmYLnO7R
/hC5Ee3c0iY8D8NU0W/vD/N/8ySUzSUIt/eH+b/5klFv7w/zf/MklM0lCLf3 h/m/+ZJRb+8P
83/zJJTNJQi394f5v/mSaL9w1EeMf7UlJElCLf3h/m/+ZJRb+8P83/zJJTNJ Qi394f5v/mSU
W/vD/N/8ySU1bR1PfZ9ldQG7vaLA8n6P52w/6T/wNNjt6oLf0j6HV7z6ga14 dHba7dt/6KuM
aWgyZJMnso1cv/rH+CSkiSSSSlJJJJKf/9D1VJQ9QHUA/cn3jwP3JKZJKO8e B+5LePA/ckpB
m4j8mpza77MewtIZZWfouIhr9n0X7P3XKnh9Upx8qromY9/28MHp2PBIyA1p L763t3bfoO9W
uz+b/wCE/nFp7x4H7kHIx8TJLXX1B7q/5t5Hubq1/wCjsHvr91bPoIEyoUdu 6/H7YJ9yJIII
BifVCX6Mv639aLYQshlz64osFT5B3Fu4QD7m7dPpKe8eB+5LePA/cisYY7Lq 6Wtvs9awTus2
hkySR7G/ut9qKo7x4H7kt48D9ySmSSjvHgfuS3jwP3JKZIdX5/8AWKlvHgfu UGHbukHVxI0S
UlSUd48D9yW8eB+5JTJJR3jwP3Jbx4H7klP/2QA4QklNBCEAAAAAAFUAAAAB AQAAAA8AQQBk
AG8AYgBlACAAUABoAG8AdABvAHMAaABvAHAAAAATAEEAZABvAGIAZQAgAFAA aABvAHQAbwBz
AGgAbwBwACAAQwBTADMAAAABADhCSU0EBgAAAAAABwABAAAAAQEA/+EPzmh0 dHA6Ly9ucy5h
ZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJX NU0wTXBDZWhp
SHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpu czptZXRhLyIg
eDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNC4xLWMwMzYgNDYuMjc2NzIwLCBN b24gRmViIDE5
IDIwMDcgMjI6NDA6MDggICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0i aHR0cDovL3d3
dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVz Y3JpcHRpb24g
cmRmOmFib3V0PSIiIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxl bWVudHMvMS4x
LyIgeG1sbnM6eGFwPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4 bWxuczp4YXBN
TT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RS ZWY9Imh0dHA6
Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHht bG5zOnBob3Rv
c2hvcD0iaHR0cDovL25zLmFkb2JlLmNvbS9waG90b3Nob3AvMS4wLyIgeG1s bnM6dGlmZj0i
aHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iIHhtbG5zOmV4aWY9Imh0 dHA6Ly9ucy5h
ZG9iZS5jb20vZXhpZi8xLjAvIiBkYzpmb3JtYXQ9ImltYWdlL2pwZWciIHhh cDpDcmVhdG9y
VG9vbD0iQWRvYmUgUGhvdG9zaG9wIENTMyBXaW5kb3dzIiB4YXA6Q3JlYXRl RGF0ZT0iMjAx
MC0wMS0xM1QxOTo0ODoyNiswMTowMCIgeGFwOk1vZGlmeURhdGU9IjIwMTAt MDEtMTNUMTk6
NDg6MjYrMDE6MDAiIHhhcDpNZXRhZGF0YURhdGU9IjIwMTAtMDEtMTNUMTk6 NDg6MjYrMDE6
MDAiIHhhcE1NOkRvY3VtZW50SUQ9InV1aWQ6Njg3NDlDMjQ3NDAwREYxMTlF OTY4NTc3RTRB
NEMyMDgiIHhhcE1NOkluc3RhbmNlSUQ9InV1aWQ6Njk3NDlDMjQ3NDAwREYx MTlFOTY4NTc3
RTRBNEMyMDgiIHBob3Rvc2hvcDpDb2xvck1vZGU9IjMiIHBob3Rvc2hvcDpJ Q0NQcm9maWxl
PSJzUkdCIElFQzYxOTY2LTIuMSIgcGhvdG9zaG9wOkhpc3Rvcnk9IiIgdGlm ZjpPcmllbnRh
dGlvbj0iMSIgdGlmZjpYUmVzb2x1dGlvbj0iNzIwMDAwLzEwMDAwIiB0aWZm OllSZXNvbHV0
aW9uPSI3MjAwMDAvMTAwMDAiIHRpZmY6UmVzb2x1dGlvblVuaXQ9IjIiIHRp ZmY6TmF0aXZl
RGlnZXN0PSIyNTYsMjU3LDI1OCwyNTksMjYyLDI3NCwyNzcsMjg0LDUzMCw1 MzEsMjgyLDI4
MywyOTYsMzAxLDMxOCwzMTksNTI5LDUzMiwzMDYsMjcwLDI3MSwyNzIsMzA1 LDMxNSwzMzQz
MjszMDI1M0JGNjlCRDAzN0M1RUUyQTlERTg0MTI2MTI2RiIgZXhpZjpQaXhl bFhEaW1lbnNp
b249IjcwMyIgZXhpZjpQaXhlbFlEaW1lbnNpb249Ijc4MyIgZXhpZjpDb2xv clNwYWNlPSIx
IiBleGlmOk5hdGl2ZURpZ2VzdD0iMzY4NjQsNDA5NjAsNDA5NjEsMzcxMjEs MzcxMjIsNDA5
NjIsNDA5NjMsMzc1MTAsNDA5NjQsMzY4NjcsMzY4NjgsMzM0MzQsMzM0Mzcs MzQ4NTAsMzQ4
NTIsMzQ4NTUsMzQ4NTYsMzczNzcsMzczNzgsMzczNzksMzczODAsMzczODEs MzczODIsMzcz
ODMsMzczODQsMzczODUsMzczODYsMzczOTYsNDE0ODMsNDE0ODQsNDE0ODYs NDE0ODcsNDE0
ODgsNDE0OTIsNDE0OTMsNDE0OTUsNDE3MjgsNDE3MjksNDE3MzAsNDE5ODUs NDE5ODYsNDE5
ODcsNDE5ODgsNDE5ODksNDE5OTAsNDE5OTEsNDE5OTIsNDE5OTMsNDE5OTQs NDE5OTUsNDE5
OTYsNDIwMTYsMCwyLDQsNSw2LDcsOCw5LDEwLDExLDEyLDEzLDE0LDE1LDE2 LDE3LDE4LDIw
LDIyLDIzLDI0LDI1LDI2LDI3LDI4LDMwOzhCMkI3ODk3M0UyMTI0MENFQ0Ey NkM3RTlBQUNC
RDIxIj4gPHhhcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InV1 aWQ6M0MwNkU1
RDg3MzAwREYxMTlFOTY4NTc3RTRBNEMyMDgiIHN0UmVmOmRvY3VtZW50SUQ9 InV1aWQ6M0Mw
NkU1RDg3MzAwREYxMTlFOTY4NTc3RTRBNEMyMDgiLz4gPC9yZGY6RGVzY3Jp cHRpb24+IDwv
cmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iDFhJQ0Nf UFJPRklMRQAB
AQAADEhMaW5vAhAAAG1udHJSR0IgWFlaIAfOAAIACQAGADEAAGFjc3BNU0ZU AAAAAElFQyBz
UkdCAAAAAAAAAAAAAAABAAD21gABAAAAANMtSFAgIAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWNwcnQAAAFQAAAAM2Rlc2MAAAGE AAAAbHd0cHQA
AAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIYAAAAFGdYWVoAAAIsAAAAFGJY WVoAAAJAAAAA
FGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQAAANMAAAAhnZpZXcAAAPU AAAAJGx1bWkA
AAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJUUkMAAAQ8AAAIDGdU UkMAAAQ8AAAI
DGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAxOTk4IEhld2xl dHQtUGFja2Fy
ZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAA AAAAAAAAEnNS
R0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAA AAAAAAAAWFla
IAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAA AAAkoAAAD4QA
ALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAA AAAWSUVDIGh0
dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0Ig Y29sb3VyIHNw
YWNlIC0gc1JHQgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBS R0IgY29sb3Vy
IHNwYWNlIC0gc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAA ACxSZWZlcmVu
Y2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAA AAAsUmVmZXJl
bmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAdmlldwAAAAAAE6T+ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAAB WFlaIAAAAAAA
TAlWAFAAAABXH+dtZWFzAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAACjwAA AAJzaWcgAAAA
AENSVCBjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADcAOwBA AEUASgBPAFQA
WQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8ApACpAK4AsgC3ALwAwQDG AMsA0ADVANsA
4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQErATIBOAE+AUUBTAFSAVkBYAFn AW4BdQF8AYMB
iwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoCAwIMAhQCHQImAi8COAJB AksCVAJdAmcC
cQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMWAyEDLQM4A0MDTwNa A2YDcgN+A4oD
lgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEEfgSMBJoEqAS2 BMQE0wThBPAE
/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYnBjcGSAZZ BmoGewaMBp0G
rwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8IMghG CFoIbgiCCJYI
qgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqB CpgKrgrFCtwK
8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0N DSYNQA1aDXQN
jg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/s EAkQJhBDEGEQ
fhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMj E0MTYxODE6QT
xRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxay FtYW+hcdF0EX
ZReJF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqe GsUa7BsUGzsb
YxuKG7Ib2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7p HxMfPh9pH5Qf
vx/qIBUgQSBsIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOU I8Ij8CQfJE0k
fCSrJNolCSU4JWgllyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSii KNQpBik4KWsp
nSnQKgIqNSpoKpsqzysCKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4W Lkwugi63Lu4v
JC9aL5Evxy/+MDUwbDCkMNsxEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPx NCs0ZTSeNNg1
EzVNNYc1wjX9Njc2cjauNuk3JDdgN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2 OnQ6sjrvOy07
azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+YD6gPuA/IT9hP6I/4kAjQGRApkDn QSlBakGsQe5C
MEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWaRd5GIkZnRqtG8Ec1R3tHwEgF SEtIkUjXSR1J
Y0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpNk03cTiVObk63TwBPSU+T T91QJ1BxULtR
BlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXCVg9WXFapVvdXRFeS V+BYL1h9WMtZ
GllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxevV8PX2Ffs2AF YFdgqmD8YU9h
omH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fpaD9olmjs aUNpmmnxakhq
n2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx8HJL cqZzAXNdc7h0
FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwh fIF84X1BfaF+
AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZy hteHO4efiASI
aYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/ kaiSEZJ6kuOT
TZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJ nPedZJ3SnkCe
rp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhS qMSpN6mpqhyq
j6sCq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSc tRO1irYBtnm2
8Ldot+C4WbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFn wePCX8Lbw1jD
1MRRxM7FS8XIxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62 zzfPuNA50LrR
PNG+0j/SwdNE08bUSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK 3RDdlt4c3qLf
Kd+v4DbgveFE4cziU+Lb42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl 63Dr++yG7RHt
nO4o7rTvQO/M8Fjw5fFy8f/yjPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH +lf65/t3/Af8
mP0p/br+S/7c/23////uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwR CwoLERUPDAwP
FRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwB DQsLDQ4NEA4O
EBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwM DAwMDAwMDAwM
DP/AABEIAw8CvwMBIgACEQEDEQH/3QAEACz/xAE/AAABBQEBAQEBAQAAAAAA AAADAAECBAUG
BwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUH BggFAwwzAQAC
EQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRai soMmRJNUZEXC
o3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3 R1dnd4eXp7fH
1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPB UtHwMyRi4XKC
kkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSV xNTk9KW1xdXl
9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/APVUkkklKQcu k34t1DTBtrcw
E8AuBajJJKeUP1SnqeR1BmNh1ZWQwNfa1sFpcb/Uvrs+zMd9pv8AtFn2p/q/ pWej6i6S+iv0
rC2tu/a6CAJkh/8A6Us/7cU2n9O8TwxpifOz83d/6L/t2f4J7XllT3jlrSRP kEkPPNyq6cvM
FmRkUh9rXMFNJsY4elQ3f6n2bI/Pa5n84rHRn+rlX2NdZY11+5r7WGt5aKKq 95r9On2+p+j/
AJpI5+Uci+s59GOKnhjWWsaXEFldu/8AnafzrP3FY6bm5F11jLL2ZDWW+mLK 2hrSPTZfIh1n
ua52z+cUcTH3DV3cv7VxBofRB9YelZXVNtNWJiOitzaOpXPIycSyz2nKwaW4 tv6WjbTfVszs
R9l1f06dnrLPP1RtdfktuqrysZ9mZez1czLaHnMGUHY37Pr/AFLp/tz7Md+f T9rt9L1Lfsn2
jK/Vt3N6xg4Nopu9ay0t3mvHouyXNaSWsfazCqyHUsscyz0vW2et6V3pfzNq vKRDy7+hfWF9
VL25DWZ9brWY+Wcl73YdFox2fZ2h+F6XX2O+zes/9q1UZH82z7X9p/yioP8A qx1VtPUsep2O
9nWa8jGyHue9portyepZdWRTW2mz7Zb6PWP0mM+zDZ6uN/SX+t6lXVpJKeX6 p9V+oZnRTgVW
Ui05PU79zi4N251fVascSK3O3sd1TH9f2/6b0/U/whep9D6v1qmw5bqcG19J wQzGsNw+y5Fu
NZ1V7sjIxav1i7ExfQxK/sn6B/6T17fX/U9jJ6pgYv2r17dn2DHGXle1x2Uu 9bbb7Wu3/wBE
yPZX+k/R/wBRT6jm1dP6fk59wc6rEpsvsayC4tra614YHFrd+1v7ySnEZ9W+ o4+ddmV5zsxw
uqzscZXpt3ZTacjpmWy/7FjY/pY9/Tn4lVNlbLfQyKvtPoXe+jK0+nYeU3Ky OpZwrry8muqg
0UONlbK6De+r9NZXRZda+zLvsss9Ghmz0qPS/Q/ackuZ1KjD6bldSsbYacOu 62xuwteRRv8A
V9Nl3pbt3pO9F/8ANXfzldnpfpEXLyqMLFuzMl3p4+NW6258E7WMBssdtYHP dtY381JSZJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKS SSSUpJJJJSkk
kklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSU pJJJJSkkkklK
SSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSU/wD/ 0PVUkkklKSSS
SUhLQ+57SToxphri3n1W/mP/APRf9v2foWyKmim10una4/ScRw/83dt/wn+v p1qbQfXeZMbG
wNdvNnHt27v7f/mcrH7K3PidoLo+AlIKLz1edXj5mbW7OxcU+s0+nf8ASP6H H94/T0ez+wj9
IuF+XkWNtryAcn+dp+gYx6vo++36P/GKbbcy225lGLiubS8MLnlzSSWMt+i2 u3/S/vo/T8m1
19lVtNVVjH+k70pI+gzIne5rP3/o7FHHg9w1KzctOGvP1JN0NO3Vp/WDFyrr Sen4eT+0DTtx
+pUXMporsl/2b9oVfa6Ls3HxLnev6FuDn0+nbd6VNvrX0rCzvqt1S2zqz21Z FuZk19QDcjdi
MptryGZNeBh+u2r9s5Potvw6vsufdRgY9mN6lV3pYeFXb2tmXi1er6t1df2e sXX7nAenWd8X
W7j+jq/Q3fpH+z9FZ+4hO6t0plF+S/Mx24+LYacm42sDKrAWsdTfZu2VWte9 jfTs96kQ5XUP
q5L6qMAenh5tf2LqrZ3F+OHPzDbZba/1n23+pn4N1tbvtdtvWv2jdc+3CYsT O+q3VLbOrPbV
kW5mTX1ANyN2Iym2vIZk14GH67av2zk+i2/Dq+y591GBj2Y3qVXelh4VdvZ3 dR6fRivzLsmm
rFqcWWXvsa2trmv+zvY+1ztjXtv/AEP/AB36NKrqPT7sI59WTTZhBrnnKbY1 1W1k+q/12u9L
ZXsf6nu9iSnH6l9XN12FXgD08R36v1Fkz6lItr6k5+Y6x/qZ3r2Y+VgWtu9a yz9u5uVb/wBq
q8nE690DrmZm5t2PiWfacqvMptuqGHXj20PxcrG6fSb/ANH1q631P2d69eY/ 7EzLrstq/V6M
R9fZ29R6fThDPtyaa8Ita8ZTrGtq2vj0n+u53pbLN7PT93vRabqr6mXUvbbV a0PrsYQ5rmuG
5j2Pb7XMc1JTw/Uvq51C3C6lVf0r9pPy681nTROO77LddldTyW5f65dT9n+1 05vTn+pierkf
qv6wyv0KFPrP1c611DqWU6qh1V+Y3Lx7stoxK8V2PZi5WLgMtuqH7eve2x3T vtNWR62N9qqt
toq9GjDXcJJKePz+h3X1vGJ0b7OLcT0Ol1/qzf2blB+W6zqH6K9zMX1n5GFk +v0n7Vl/qn6S
v1qaFtfV/pf2CnKstq2ZWVl5Vr3F28mt+Tk34ga7c/06vRv9ZtDPZXbffZ6f 2i7IWskkpSSS
SSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKU kkkkpSSSSSlJ
JJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkk pSSSSSlJJJJK
UkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKf/9H1VJJJ JSkkkklISwuu
fDiz2NG5oGv873fWfo7t/wDOf2P9M2QxwptPqOI2uO32xw/T6O787/wP/jPU k3+k2aj6DNIE
82d59T/O9n7n+EU7HNbW5zxLQCXDmQAkFFwaKHW5WaRi4+RFzRvudDh+hxzt /mLvbr+8i9Ka
WZuQw1sp25P83WZaP1eo+32Vf+e0K7HwMjItJ6OMqxjgyy0urMnax4G69zLH ba3sVrpP2Ot7
6acIYRY8tdWC0+8sbbu21l1fuqd9NRxEfcNHW5JN0Po1ev0Ptyn2V4dl1WLj tt6g1u4fbKCb
tvSqmVhzMy2p9dmV6Nv/AAfTf6H1zPsqxM76s5V3Rer2Nrs2X/tW6zBAM3ZL b88dKubjen+n
9anK9b1P56y3B6FZjf0Zd2kpEPHuyHM6RfhHGy/tGN1c5djRiZBBpHV25nq0 WtoNWT+qv+0b
MZ9tnpf1FPqVfU86263pmI44vVbsOl9eULcZrhjHJy+o5GZQce66vH6hi0Yv Q92VjMfk/wA3
ZW/C+yfaetSSU8l02vqeDbTb1PEcMXpV2ZSyvFFuS1oyTjZfTsjDoGPTdZj9 Pxb8roe7Fxnv
xv5uutmF9r+zbXRKbWjNyCx1OPmZJyMSh4LHMrdXSyxz6D/R35WXXk53pfz3 616mUyrMsyKa
9NJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkk lKSSSSUpJJJJ
SkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSS SSUpJJJJSkkk
klKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUp JJJJSkkkklP/
0vVUkkklKSSSSUhPqG54Y4AhjT7hu59WPaLG/nfyP7f+hbIFvo2y5pbtdptM xD++/wD4v/Wz
9HNu713z9HY2PpczZu/4P/M9/wDpP8EpWbPTd6n0IO74R7uEgouFSC7Kzf0G RbFzRuptFbf5
nH0LftFHu/sIvSv6ZkDY+uMj6Njt7x+r1fSfvu/8+IFtfTDkXH/KAtLh63oG 4N3bGbZ+yn0t
/pekrfSW4DbH/Z/tG82Ev+0Fxd6mxn0vW/TfzGz6X6NRxiBkJ4onWWgPqSbo aHo1esfsr9qu
/wCcn2f9k/Z6vsX23Z9m+078j7bu9f8AV/tf2f7F9n9f9N6P2v7D/wB6Kyr+ v5/SemdT+3Zf
2RzcCy3on2stbY94u6n9lDftf6fKy2YLOjevRk+rlMe+r7ZX9pyLfU7VJSIe Hbnfs9ox7OtO
6cLusZbcxjjitOLVY7q2di/0vHsdSzqTqsa+uzM9b1mf0P06rFO/61ZmJ0zq d+Xm10EYFjuj
X2+mz7RbVd1OmrKxtzW1ZluTi09JyXsoZ9m/WabaMeqnKrXX3YtF9lFtrdz8 Ww20GSNryyzG
Lvafd+hyLme9GSU8IQ2r0/W6rZh/ZetZd2VJx2/Ya7v2z9luf9ox3+jV1P7R R6dnUfXZd9oq
+x+n6laWd9YfrBVZ1axuXj1Pxq+oFuDva+6qvHZknAzP2e3A9bG9b0MO/wC1 Z/U78DIryf0V
P65hU1d2kkpDi131UNZk3faLtTZbtDASSXba62zsqZPp0te+230v56++39M8 ySSSlJJJJKUk
kkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSS lJJJJKUkkkkp
SSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJ JKUkkkkpSSSS
SlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSn//T9VSS SSUpJJJJSE+o
LnljQSWNHuO3j1Y9wrd+d/L/ALH+mbINvo2y1obtdruMxD+2z/i/9a/0km/0 mzQfQZrInmzt
Hqf53s/c/wAIp2Na6tzXmGkEOPEAhIKLhU2huVmj1civ9M3Smo2N/maPzvQv 939tF6U/fmZB
3Pf+sfSsbscf1er6Veyrb/22gWnEoybiOsHFfa4PsqDK9HbGVzF9dljd1dbP zlb6TXi+o+2v
NOa6ywvdYQ0S8MZTt/RNZV7amN9m1RxjWQmxvLr3SToPo1frNTk1ep1O02Xd MxMc2X0U5d+F
ZWKvUuyb6fsO39oW307GV4+XdjVUPxv0d363fsr1fWP6wWZtpq6c23DN2Xi4 jHPppNluJ9pa
wV5dmbZdc/KuwXs9D9kY/wBnZb632i2nC9TJ3cjpPSsrKrzcnDx78ujb6ORZ Ux9jNh9Sv07X
tNjNlh3s2/npO6T0p99+S/Dx3ZGVWacm41ML7ayGsdTfZt321OYxjfTs9ikQ 8/b9YusVYT7n
vra3Essb1TLODbGIa66LmY9/TWZ78nJ9RuR6v7R6fk5eGyr/AAf2Z/22qI+s XU2Y/U7aBS2v
o7crLyGWi2117GZfU6GY9Fz8hv2J/pdK/nXMzKf1j9BiU0Y3oWb46H0VrcZj en4wbhOL8Nop
rilznC1z8YbP0D3Wt9T9F+ep2dJ6Va+my3Dx7H41jrsdzqmE12Pd69t1LnN/ RW23fprLGe99
v6RJThP6h1rOqdjvyKaKuq5Of0vFfRVYy/HdQOoNozTkfantyHtb03+arpxP 0l2/1v0P6SFH
XepZNN3Uaa7KMrM+zYWD097fWb69dVnUeo7W239Kp9Wr18vAyvUyMX07+je9 9mR+orpW4mK3
ZtprHp2PurhoG2yz1PWuZp7bbfXv9Sz6b/Wt/wBIo3dO6ffivw7sam3FtcX2 UPra6tznP+0P
e+pzdjnuv/Tf8d+kSU8O760ZVOfZ1a/Gi6rHFeTj7zXLsFv1p3/zFt9TfWt6 d/NWP6hRj+p/
2otppylp25fV8DrWeyy2nK6pk42BVhNoxi1riLOrXvrOPkdQrZvbj4+Xb6tn UsVn9e39FkdF
j9J6Vi+n9lw8ej0f5r06mM2R6383sa3Z/S8v6P8A3KyP9NYhV/V7oFVF2NV0 zErx8nb9opbR
WGWbDvq9atrNlvpP91e/6CSnnMT6xdXdZ1LqtoayrpvTjZl9PeDL7ca/rOM9 2PZXkXUYD734
DPX9vUvZ6dH2i30PtFl3I6x1/G6nT0bdiX5d9lX6z6VlVba76ep2/wBG+0ZV j7cazo/q/wBJ
YzLZb9l/U/6YtunpPSqPs/oYePV9j3/ZNlTG+l6v8/8AZ9rf0Prf4X0/5xLF 6T0rCY2vDw8f
GZXYbmNqqYwNsLTQ65ra2t22upd6PqfT9L9GkptpJJJKUkkkkpSSYkNBJMAa klYfUvrp0LAJ
YLvtVw09Oj36+dn81/002U4xFyIHmy4eXzZpcOKEsh/qi/8AG/dd1QdbWxzW Pe1rrDDGkgFx
An2j85cp+0frp1rTAxm9KxXf4a76cf227v8Atuj/AK4rXTPqbVj5dfUeoZd2 dnVkOa9zi1oI
+brH/wDbn/W0wZDI+iJI/el6A2JcljxRJz54RyUaw4v6Rk4v3Zyh+qx/+GPS JJJKVpKSSSSU
pJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkk klKSSSSUpJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKS SSSUpJJJJSkk
kklKSSSSUpJJJJSkkkklP//U9VSSSSUpJJJJSEvLbnw0v9jTtaRp/O9n2D6W 3Z/N/wBv/Qtk
PcabR6bgNrhu9scP1+lu/N/8E/4z05tJ9d4gxsbB1282ce7bu/sf+YSsZvrc yY3Atn4iEgou
FTltqys1hy8fH/TNOy4e4/oaPd/PU+3+yi9LtFuZe8WMunI/nK/oH9Xq+j7r P+rTCjPquvfj
ZeI1l7xYW2Nc8ghldP02XU/6H9xH6bi3Mvttvvpusts9V3oggCK2Ywbsc6x3 5m7d6ijjjImZ
EaXI7/vKJ0ryQddb1D9odLZi9RyMOrMyHY11dTMdwhuPmZvqtOVi5NjbXWY1 Vf0/S9L/AAXq
fpFXZ9brH5uRWzpmTdi0Oya220VXve5+J6otb7sWrp+y63FtoxvR6pkXWXWY tb8er1L/ALKX
M+sv1WOYxmTkzkdPyHbIZcQy4Ndg2++tnpP2MzLan/4P+e/7i2+jRHV/qO69 2QMi1r7txAH2
xjGPuDW25GPQNtODl2fa3ermY1dGV+lzd939OUtHsUWE2H1/qud1XBqoZiOq sryvtlFeQ93p
+i/pzd1htwacmrqGO3MuY/pl9ON/OfrF1di6ZcnT1f6js9A15FrbarBa28/b PWc5/oSMrLf+
s5NT2/ZGXUZlttHp4rK7q/T6d+r6Dfrr9WnRGWfdETTcPpenzup9v8+z+p+m /wC4+R6S4T2K
rHd3Elht+uv1adEZZ90RNNw+l6fO6n2/z7P6n6b/ALj5HpJv11+rTojLPuiJ puH0vT53U+3+
fZ/U/Tf9x8j0lwnsVWO7uJLC/wCe/wBWA3c7MLWwCXOquaAD6er91Q2fz7N+ 7+b/AE3/AHHy
PS3UCCN0qSSWX1v6xdO6LVuyX7rnCa8dmr3f+QZ/LchKQiLJoBfixZMsxDHE znLaMXRuuqoq
ddc9tdTBL3uMADzcVkdJ+tXTurdRvwcXcRUzey12gsg7bNjPpe2WLzvrn1k6 j1q2b3enjtM1
47PoDzd/pH/y3KjhX20ZLH13vxiTtddXO5rXe2wjaW/mqnLnPWOEem9f6z0W D/i4PYmc0/18
o+gR1hiP9b/OPr3Uet9K6Y2c3JZU7kVzLz8KmbrFgP8Arj1HqLzT9XunPv7f aLhDB8gQxv8A
buVzpv1J6Hixdc059zvcbLzuaSe4qHs/7c9Rb7GMrYGVtDGN0a1ogAeQCsVl luRAdo+qX+M5
PHyOH5IS5qY/TzfqcH0ww/WS/wAPI8mPqp1vqpD/AKwdSd6Z1+y0aN/I2r/w KxbvTfq90fpg
BxMZjbB/hXe6z/tx8ub/AGFopJ0cUIm6uX70vVJizc/zGWPAZcGP/NYh7WL/ ABIfN/hKSSST
2qpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJT//1fVUkkklKSSSSUhLgy57iDqx olrS7j1XfmM/
9Gf2Pf8ApmyLWmm1sOna4fRcBw/87bt/wf8Ar6lak0t+02DTcGMnxibI/N/9 Gf8Abf8AhJWs
L6nsHLmkCfMJBRcOrFbflZjjiY+QRc0b7j7h+hoO3+Zu9uv7yL0usV5l9YrZ SG5H83V9ATj1
O9vtr/6hCd07MGTkWHp2PlNueHsfdYGvAFdVWyPRv/Oqc7+cVnpWBk0W2vto rxmvt9VtVTg5
jR6TKNohlXuc9nqfzaihjrIZV1l/zkmWgHk8PkV9Pu6h1qzJZda/GvvsBrua 0EfaGY3pe9md
t2et/pf+B+zY381UAfVzqbsarIYzd63plrIeNLi1lDvXsYzEd6jravZXkvsZ 6n6T+bu9Kx1D
B60Op9UbXg5NjMu62veabXAsN9V9b67N1zNn8x7/AFPT9H1v0WP6FtWKI0dZ tZW2zo9r3xWx
1r8e8OdWz0W1Uv8Aosp9j6K32Usx8jZXd6l36PNWzhzQjixj3YD0wsSlHpCP p4eL0/pNHJjk
Zz9EjrLaP9byRv6VRVi5T35TPVxn1sjba0Fzhkl+OWWY7LW5G7GZ9P06f37F QpNLbQb2Osq1
3NY4McdNIscy5rfd/wAGte39v5LPSs6XeaHMrrqpdRkRXt/mHse8+v8Aoft9 ntyLbKq/03qV
+nh/qwrOh2+lOPj9RfaduxtmC6tvuNX07PWtdX7b2/4P/S/6DI9GWPM4hYll jrt6o/8AcrDh
yfowlp/VP/dM7OhHI6hl4/T2vbThPNNj7N9xLg6xjXbMLHdYz1G1f6HYz/T+ +tQx+g2jJxq8
54oGRkCgVe4vcG2jFyDVayu3F/RP3/zl39j9JV6kxX1y27Isu6TdczNtF9lL 6MhrBYTLHg1+
jcz0/trm++3/AE/rf0W30JY5+sVNe3F6bfRZa9lllrce5pcWvryKd9Dx9jr9 K26r6GNV6Xp3
V/QqzU3341QzY+n6cO2vq4k+0bv25df0Zfk42U1lBsDLm2NYJFzC5jeN0h1p wrGbf+Mxv+OZ
/Or2deSX9M6va51lPS8mjcBsrrpvABIrjabXsub/ADzPpZVWz9N+lo+zXeh6 2qfPZITnExkJ
1HWiJf8ARbHLRlGMuIGOvUV/0nP6t+2n1ej0kU12OHuyL3GG/wDF1sZZvf8A 1/YuUP8Ai76j
lWuvzuotNthl7w11hJ+L3VLu0lQnhjM3Kz4Xo6fLfEc/LRMcHBjJ+afBGWSX +FPieOp/xa9O
H8/mXP8A6gaz/qhar1P1A+rlf067Lv69hH/nr0l0aSAwYh+gPrqmfxXnp78x Mf3T7f8A6T4W
FNVdFLKahFdTQxgkmGtG1vudLlNJJStIkk2dSVJJJJKUkkkkpSSSSSlJJJJK UkkkkpSSSSSl
JJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkk kpSSSSSlJJJJ
KUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSS SSSlJJJJKUkk
kkpSSSSSn//W9VSSSSUpJJJJSE21sufveGjY0+4x/pXHl/7rP9H/AG7P8E19 9fpWBtjd+10A
ETID/wD0nZ/22ptP6d4nhjTE+dn5u7/0X/bs/wAE97S6mxrdXOaQB5kJBReU zr+uNy7m4GPV
ca3MbXS7b6RrMOvutyPa9mWzfVsxnel+hf61f23/AAOh0G3Ke4i/UNtcyuxz RXa+vb6jPtWO
wNbS/Vnt/R7/AOdfjY380oOw7xk5FhwKMptzw9j7t7XgCuqrZH2S/wDOqc7+ cVnpOJfTdY59
DMdtlptFVW7Y1vpMo+k+rH9zns3fzad7hNxMK/rLeEb2rqvXbcLqFOBSzGFt zWmt2dknEba5
7nVMx8Etx8x2XkVuZ+s1ba/R+0Yf859o9ib9aelNsfTdY4W1usDhVVfawBl+ Rg1Nfc3HaxuR
kX4VtFON9O/K/VsP7X+gsvL1jpvUOpVW4TMqmnp+VS6jKrNDn3ltgdXecfJ+ 01U0v9F/6L1M
PI9Oz9J+l/mlSr+qnp2ZD/tU/aMijIj0/o+h1HK69s/nPd6n237Ju/4L1/8A gU1c2nfWjorX
tYbrDNYtseKLyyphdbRuzbm0+lgelbjZNeR9tfj/AGb7Pd9o9L0kLF+s2GKX HPf6drcjKrd6
Vdj2V00ZOThU5GZZW26vCqfXi7nZOXZRj/osn/B02+ln/wDNbqRzOpYzcmtn TOpY5rybHVbr
HjIyuq5mRRiubks+zW41PU21/aL8fKqtfss9H9HbSp3/AFHx7b3XOdjXOudd 6rsrEZkOYy3J
y+ot+wetZ6WNkV/tG2t919ObTf6ONZ9l/RvqtSnSyutvweq/Zc2quvDsx7L6 Mlljn2ONT8TH
NDsNuOP0t12eyvFrx78m3If+j9L1bfTWbR9ct/WLMaym77EHXtr2YeU7Immr pNzPVxW1PyKm
b+p5f6SzFrZ/Rf8Ar93O6BldQyTk5eXXvo/5PFVJaK4vxeoM+2b8i77Z+m6b htd6H2D9F9p/
01T8avV9XetU9Rf1WvqON9ttdcbd2HYatt1fTqNtdI6g21j6/wBj1u3/AGiz f6382kp0/wBt
Yd1n2fAd9ryH176nMbY7GlzPtFLL+o49ORi43q1Guz3u9X0bqba6bPWo9Wpg fWG5+HZl9Ux6
8RgyLcWivGsty7bbKLL8bIazHrw6bnf0Wy6v0GXv+zepfd6Ho2KfSOg29Ge2 nByWnp5bWLqb
qy+8upx6enVOry67aKamejh4z7GOwrf0nr/pP0tfoBy/qtVk9OZiWPpudTm5 GfUMmgXUF2RZ
l2elkYhsr9dlNXULPT/T0/rFVOR/wCSmw760dFa9rPWsc51YtO2i9waHOtx6 6rnMpc2jLsyc
a/ErwrtmY/MZ9k9D7T+iSd9aOite1husM1i2x4ovLKmF1tG7NubT6WB6VuNk 15H21+P9m+z3
faPS9JVafqmylhay6usH7CTXTQ2qtpwsy7q7200Uuayuq9+T9nrb+ktpZ+lv vzbvUVT/AJrd
SOZ1LGbk1s6Z1LHNeTY6rdY8ZGV1XMyKMVzcln2a3Gp6m2v7Rfj5VVr9lno/ o7aUlOnjfWGl
uJ6/UN1QOTmUepXTa+pjMXJuxG25V9bLqcRno1Msuvyraaf52z+ar/RrF+s+ DbTfZey6l2Pk
3YnptpusNjqrcjHb9j9Oj9ee6rEsyLq8L7R9kZ6n2j+a3rM6n9Rvt2NfR9ox 3/aPtQ3ZeL9o
9H7Vfk5vq9OH2ij7Hlt+2+nfkfpftP2TC/R0+greZ9VftNDsZ9uPdj1Zdmdi U5ON67BZecp+
WzOr9etmZVvz7nYnpfYn43p0epZlen+kSm11Pqzx0hmb0t9ZffkY+PW+5jnN YbsmnAu9bH34
13q4/q2epjvfRbVfX6VyMOsYdF9eDlXbssbK7ra6bBQLnhuyqzI/TY2Jbe59 foYmRl/aP1jG
/nftFHq0c3pN2L9XqcLBobkWY2Ti5HoYzKsdpFeZTn5DMagvpx6WNYy30WW3 7/8AT5N9/wCn
sm7ol+Te682/Z8TMyMfPysSysOvbfjjG9GuvLqyHY1dW7p+L69f2fL3/AKz6 OV+mq9BKS1/W
jot2LVl491mTTkT6PoUX3PeAGPssroopsufVR61dORd6fpY2V+p3+nlfoVbH VMA9Nr6oLZw7
q2W1WbXS9tu37OK6dvrPtv8AUrZTQ2v17bX+j6fqrHyOk9R6V0/pR6Vuy83p mN+z5FVb2uqc
2j1rnUX5/S9j/V6fj7NudZ6fqWfoLv56kuN0DNb0GjpWRbjXtqwsTG+z5GP9 pxxbj/0i9zC/
FtyWX/ofSY91XofZ2X/8GkpsO+s/SGPayx2RWTWLnmzFyWCqtzraW3Zj7Mdr MGrfjX/pMz0G
elV6/wDM/pFG/wCtXR6g54va6rHuupy7C239G7Hry8jIrbspsbZkVN6fa99G +v8AV/TyP8Ph
My8xv1X6qbsvCdmbsDMwKsTLyL2vvus3W9RsyqsS23LNuL9nqztmM/N/aP6P 7P8A0n7Pd6tv
qH1U+29KPTvtXpzkZ+R6npz/AE9nUatmz1G/0f8Aa30t/wCm+z/4L1f0aU3R 9YulGp1hfc1z
XNb9nfj3tyHF4e6v0sB9Lc65j203v9SnHez9Wyv+4uR6ef8A878SzqB9N7q+ m42M/KyrX4uS
5xDHZtF9b3bav2Y/Dt6Zb/TKbH5v8xjVssr/AEhes9Hyjmu63hF1mbQ3HGNj trY8bqvt9Fjr
G3ZXT2Wsfj9Zv9n2vF9N9Hqepf8A0ZVenfVfNf0rqVefc2rK6zjXUWhrNKjd f1PM9TYLrW72
t6vssx2ZFrK30fo8zJ/nklOxZ17pldFOU59hxb9xZktpudSGMO12RdkV1Opx 8T/C15mRZVi2
4/6zVd9n/SoJ+tHRQ+xjrrG+lY+p73UXhgNTnUZVvrOp9L7JiWs9PMzd/wBj xP0X2m+r1qlV
+s31V/bvqfpccerjnH/W8b7V6M+p+s9O/T4v2PLf6v6e79N632fC/wC436RZ H1U9bGvo+1bf
Xx+qY+705j9qXtzd8ep/2k2ent/7Uf8AApKbt31j6PQ68XXOY3GbY6y01W+k fQa+zJqoyvT+
z5ORQyq71cbGttyGfZ8j9F+r3emW7rXS6HvZdkNqNVxx7C8FrW2Nx/2o9r7H D02sbgfrHq7v
R/l+qspn1L6f9tyLLq8azGyXZL7CMZrct/2v1ftNV/Vd5t+z/rVzavs1OJkM q+z1fansru+0
p31LwrqmV5NznufjXU5lrBsdbfeMgPz2S6yrHe39q9a/V/Tsx/8AKP8A3TxU lN131o6KxjXX
XWUOfYKmU3UX1XOe9tttLWYt9NeS/wC0Nxr2Yu2r9ayKvsuP6uT+iU+kdYbn epVaW/amXZbT
XWHQ2qjKvwKLLXe9tb7m4/s3v/WH15P2f+Yu9KvX0DKs6nR1XOy67cuixhIo pNVbq6qc/Hqr
9OzIyrG2+p1e+2y71tmyuqr0K/51LH+r1+FXk/s7N+y5GZZl23WekHsL8l9+ RjZHoOfs+14L
7qavX/7WYtP2fJq/of2FKbF/X8HHzcnFvLg7GbSdjK7n2vdf67mtx8euh32p npYtlm/Cflfz
WX9orx/siyul/XNl+VkMz2upxmNc+q1uPkAMa3M6ng7+oPLHswGMx+n49lv2 37L6b/tW/wBj
P0FrL6Lm5fW7ep1Pbi2Y7cZuE+1vqsc+pvUK8iyzHqtpe7H9DrL6qv1jGu+1 Uep/R/T+1VWf
VDqAZl0u6hSauqU2UdRAxnBxbbkZ+bacJ/2xzcV+3q1tNfr15v8ANV2/pP5p JTu4/VMPJyrM
Wg2PfTu32Cqz0ZYfTsrZmmv7HbbVZ+jsprv9Wuxltf8AgbVC7rPTqcp+NZY4 OpaXX2+nYaKg
1n2h32rNaz7Hiv8AQ/TenkX1P9Oyn/TVKvT0rqWNXmY+Jm11Y9/2izFcaN11 N+S9+U699rr/
ALPk1U5F9vp4/wBjq/R+lXZd7HvujldBtyH9RpGS1nT+sNeM6n0yb9z8dnTt 2Ll+q2mhno0U
P2XYWV+k9b9J+k/QpTJ31o6KxjXXXWUOfYKmU3UX1XOe9tttLWYt9NeS/wC0 Nxr2Yu2r9ayK
vsuP6uT+iVirrPTrc04TLHG3c5jXGuwVPeyfVoozHMGJfkVenb6uPTfZdX6G Rvr/AFe/06Vf
QMqzqdHVc7Lrty6LGEiik1Vurqpz8eqv07MjKsbb6nV77bLvW2bK6qvQr/nV DB+quPhdXd1B
gxoN12Q2wYrBll+QbH2sv6k5z3Px2uybfSZTj413pfZ6X5NlTL/tKU6eR1TD x8qvDebH5Fu2
GVVWXbQ8+nXZkux67WYlVj2v2XZXo1forv8AQWrPxvrd0i+lji+x1rq6nubR Rk2sL7aqsxtG
NaMVjsq37NezJ9Gur7V9l9TIuxqa6b/SVvQMq/KwMq/LrN2JXS3Jy6qTTl3u qPqvrOVRkMqZ
0/Kt91/TbMTIo/nP8L6N1Auk/VT9m14bPtXq/Y8irIn09u70unN6Ds/nH7N+ z7Xu/wCsf8Mk
pu1/WPo9uV9mquc87q2eu2q04+65ld+Oz9oCv7BvyK8jH9D9Z/S+vTVX+ltV fpH1mw8vC6e7
Kfsy8zHx7LjXXYaGXZFddzMezK22Y2PbY66v0MbIyftFnr43/cij1M/o/wBV upYrbMC/Jr/Z
lORhWMir9NccHH6ayu9l4yX141T8zp2yzHsxLbfTZb+m/TVXVz6f9R8fCuxb N2NcaG43qX24
jH5RfiVUYtf2TLtse3Dx7G4dL3U/Z8i6v1Mn0Mqq2ymzHSnS671z9k+gIx2+ vvPr5t/2TGbs
2fonZfo5X63d6m/Hx/S/S00Zdnqfq/vifrNg49zsXqLm0ZNbi2xtIuvYzZVi ZOTbkZH2WmrH
x8f9oU7sm79X9H07rbaX+tRj2Lcbrgra3GzscP8AUuc9+RjOslj3usxaWNx8 vC2fZaXfZ3WO
9X7Rs9X9Gsdn1GqqoysanLcKr8K/Ar3sDnMbdjdM6cy17mvrba+pvR/V+hV6 n2j/AAXpfpEp
0nfWfpDfTG7Ifbb6kUMxcl9zfS9L1fXxK8d+TjbW5WM/9Yqq315FNlf6O1Co +s2GbswWv9Wq
vIbXh/ZK7Ml9lJxsLNdkenhtybH1Nsz9v2llf2f9Jjf4S39LXv6H1ev6xnqX Tr6a25Dcl91l
9JtawvZ0jGqxxVXlYlr32fsuy/192yv+Z9P+bsVc/ULFrawVPx8j0IZQzqOM Muttf2fp+Ad9
LbcXdl/5IpsZksfUzZfkU/Z/8Ikp1c3rn2XJwHxjv6Tn7h9v9eNm2jJ6h6vp +i7HfifZ8T+k
fbf8J/NrNv8Arls6xXjV03fYi6htm/Dym5E3VdWuf6WK6pmRazf0zE/SV4tj P6V/1i1mfVh2
dRX0/KyW/svHpdVj1U0tqvBfjW9Le+y9jzh7PQysl9dOP03FZXZ6H+Cp9K4V v1d61d1FnVbO
o4322p1Jq24dgq2019Ro22UnqDrXvs/bFjt/2ivZ6P8ANpKdNvXumWPorqfZ c/Ija2qm6wsl
zqP1xtVT/wBn/pq7qXfbvs+y3Hya/wDtNkenUwuu5psz/wBqY2Ph4/TrG0WW U5FmQ99z2Y2R
TVTR9ixn2+qzNrqr2frFuV+r049nqJYPQMrp+SMnEy699/8AygLaS4WTfldQ f9j2ZFP2P9N1
LMa31/t/6L7N/obX5M836u1ZmP1Oi2xr29SyacsNfWHsa6hmGyqm+pzv1nHs t6cx2RX+g9Wm
2yj9H/PJKZO+tHRWenvusYbPUlr6L2uqFXpevZnMdSH9PqqZlY1r7s77PV6F 9WR/M/pEnfWf
pDfTG7Ifbb6kUMxcl9zfS9L1fXxK8d+TjbW5WM/9Yqq315FNlf6O1Z//ADMZ 9lvobbj4xyMT
NxHtxMVtFLTmjEr9arHrsL/0LMBu/wBfIvtvst/pFFPo0Vzv6H1ev6xnqXTr 6a25Dcl91l9J
tawvZ0jGqxxVXlYlr32fsuy/192yv+Z9P+bsSU28f6w0u+3W2brsWjJroxbM Om3JL2WYuLnt
tc3DZkucxzsmz9Ps9HZ6P/XFj/Wjp1t2cxxcKsJ1ezJYyy2q5ltWLkUmi+qp 1FmRc/OZTj4V
Nt2Vkfo301/pln/8yKqqBRTdTfVW5np0dQxxlUbWY2F05j7cdt2I2zNrb03d Tl/o/Sry8yj7
P+l9RSp+pvpdKf0l2TXdiWV4rrG20bt2Thsw6KbHt9b039Pur6ZR9pwNnrWe pf8A5Qr/AMGl
NvO61c7Gx83pltfoty8fFzMfJotbd+sX42Lt2W2YluFbXVlfaP1nFu9at9Fn 81/Oba5m7ouT
hdPx+nYeJXab8/Gyr34VNGHjUtoyMO6x32Z1/wBo9+Pjfv599l2/+ap+z0V9 MkpSSSSSlJJJ
JKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpS SSSSlJJJJKUk
kkkp/9f1VJJJJSkkkklI2j9O8xyxomPOz87b/wCjP7Ff+Fe9xbTY5ujmtJB8 wEn01PJL2NcS
IJIB0hzf+psf/nod9FfpWFtbd+10EATJD/8A0pZ/24kFF5vP651HFyrK6sS3 IDCxrMdrn+rY
1x/SZlb9zqvstP8ANOZ77PVs/WPsrP53Q6Hn5OVrb7mixzG3sLvSuYA5zbqG WufY1v8A0P8A
QX30/pFWO1mVlOsx8i4W2NfW+i9rG7RVTXqz7Vj+/wBSt/8Ag1Z6OxwyLXem +pr797GWPFjw
0U11bnvZZkf4Vjv8Ine5dx4CP63TRbXW2xl9bGN1B+CzCyco0015GRdQK3Nr rtddWxxqfdXl
3v8A1S93pYmNk3f6Nllv6NWG9W6U++jGZmY7sjKrF2NSLWF9tZDntuor3b7a nMY93qV+xUsn
E61X1q/NwGYzqsvGx8d1l9ljXVOpszLDaMaql7ctm3Nb+i+2Ye/0/T9ar+dW Zf8AVXqLH4WL
jWetg4VmD6FluVdUaqcN2M99Dum41RwOoW2/ZbbvteR6Nnq5Xp/zeHQmrnVx PrT0DK6VT1b7
dj0Yl+1u662tmyx7Bf8AZLneoa2ZbKz+ko370Z3Vy7Pfh42HkZQosZVk5FZp bXU97a79tn2j
IoyH7Me+m9/2ai/2Wez9N6lSyR0TrdfSsDp7TXZV06sYwqrzMjD9ZlbKasbP sy8Kj7Tj2tbV
e1/TP1jF/WfV+12WY1Kji/V3qDKulY9uLhV29Mpw6v2vXY52UG4wqfkY9NZx KnNx8tzMjDd+
v/0XJstsq/7SpKd2vq3SrX3V1ZmPY/GsbTkNbawmux7vQqpua136K2279DXW /wB77f0am/qP
T2Wml+TS20ODDWbGhwcTS1rNm7dv3ZmH/wCxWN/p6lzjfqx1V2Ng0WOx2/sX Hqx8JzXvd9p9
G/p+ax+UDSz9n+r+xq69tX7S9L7W/wDnfsv6zY6d0HqH/OB3WupVYzXF2Q+u qp7rjW62npWH
W+u27Hxff6XTMv1fYz2ZHp/pP0qSnVPXOitbkvd1DGDcJwZmON1cUuc41NZk nf8AoHutb6f6
X89R6n1X7L0xmfhNrzPXsx68f9Jsrf8AarqcWqz7RWzI/RfrHq72VW+xY7vq 91Z/Sen9Oe2k
jojqhivqy76HZLa6L+nl19+NQy/pb9l7cjZjvz9/9E9T0v06Lm9Ps6f9WqaB S57qc3Fyrasf
18pwBz6c/KLXWevnZj62utfbft33++77Pj/0etKdMdawqvXbnX4+M/CrpdnO N9Zrqffu2Uve
91VzPot9OzJxsb7Qy2r0f8LXVYHUenmp1wyaTUyluS+wWN2ih4e6vJc/dtbj 2Nqt2Xfzf6Ox
YOXh9R6l1LKy8EWV478fCYWWuuwTds+35FmP9qrr+34fo/tDByX200e+2qzp tv8A2t9GOH9U
8hmJi1XvbWTdkDqVbLX2ttxbcm7qlONZfkVNuz3su9LEt+2N/SYWb1j/AAuX vSU7rurdKZff
jPzMduRi1m7JpNrA+qsBr3XX17t9VTWPY71LPYrAuqNrqQ9ptY1r31gjcGvL 21vcz6TWWOqt
2f8AF2LnLuidbPWqeoTXkDFyL8hlluZkMD2voysfFxP2W2i7AxPQ+1UUPzaf UvtqosyfT9bJ
tqV7pvS+odKxX4uL9meHXVWiza6v2uexudR6LPU2sxcRnodI/T/ocf7HgXfo sH7TlJTdd1bp
TL78Z+ZjtyMWs3ZNJtYH1VgNe66+vdvqqax7HepZ7FXxuv8AT83qFGLgXU5l V1ORa7IotbY1
rsd2Gw0H0t7d729QbZ9P2f8AXVmWfV/qrrcoUPrxsP7Q3Mow/Wfey7IZl1dU +0WWXY7Lul+v
9nfVdj41mdiM+1/aKsf1aP10XT+ndfd1fqfVDTj42WPtNdFb32WUusuxui/Z LG3ehi2XYnqd
OtZlPZXW9ln6Gv1ElOrZ9YaaszKosxchuLg2NqyuofovQrc6urKmz9P9s9Jl eTT61/2T0KP5
2+yvHquuYbN690rCZm78iu3I6djvysnDqex17a62+s532fe17dzHM2epsZ+k rWfk9H6rkXdX
wi3Hb0zrVk25Pqv9dlbsbGwMiuvE+z+j6r/s1no3OzNlPq+t6F/pfZrqXVvq p1bqmW9t1zfQ
e7KnLdk3uIryMbMwaKq+ibG9Oqfifbaa/tFeT62SzG9az9Nl3JKd8dc6K5uM 9vUMYtzXFmG4
XVxc5rhU5mMd/wCne213p/ovz1HG6ucvKNWPh5D8VtllRz5pFO+kvpvb6bsh ud7MmqzG/of8
5/3X/TrH+sPRfrB1nCsqIpY7IxrKPs7c7Jpqpsd6rPtG/FxmftVl9VmP6mLm 49NOP9m9Or1P
tV6l1X6t5XVsnK3Y+J037RXfTZ1DHcbcm+u2i7AppzK/s2F+iZ61GZ6f23JZ 62FRV/3YpSnb
xerdKzWNsw8zHyWWWGljqrWPDrA03upa6tzt1raW+t6f0/S/SKbOo9PfaKWZ NLrS4sFYsaXF
wNzXM2bt2/dh5n/sLk/6C1YlvSOtX9RZ1uyvGrzaHUirCbdY6p7aq+o4+6zO OLXbS937asfs
+wXf0T+c/Wf1avifVHKfT1X7ccerI6piX4rbapuNP2nJ6nnXNa+yvFfZVs6j if6L17cb+RUk
p2/+cPQPsv239p4n2T1PR+0evX6fqR6no+rv9P1fT9/p/T2JftHKZ1xnTLce sY9+PbkY+Q20
uefRdi1WsuxnUMZV7839G5mTd/NrM6l0nrPUbcXOuoprycVt9IxqOoZVDXMv ONZ656hh4uPk
b634np/Y/s3o2ep6/r76fTU8KgY/XOm4NNVnpdL6ZfjWWim5lALndM9BlGRk erXburx7f0bc
vKtr9P8ATWeokp6BJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSS SUpJJJJSkkkk
lKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklP/9D1VJJJJSkkkklKSSSSUpJJ JJSkkkklKSSS
SUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkkl KSSSSUpJJJJS
kkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSS SUpJJJJSkkkk
lP8A/9H1VJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUp JJJJSkkkklKS
SSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJ SkkkklKSSSSU
pJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkk klKSSSSUpJJJ
JSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklP8A/9L1VJJJJSkkkklK SSSSUpJJJJSk
kkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSS UpJJJJSkkkkl
KSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJ JJSkkkklKSSS
SUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSkkkklKSSSSUpJJJJSk kkklKSSSSUpJ
JJJSkkkklP8A/9P1VJB+2Yf+nr/z2/3pfbMP/T1/57f70eGXY/Yix3TJIP2z D/09f+e3+9L7
Zh/6ev8Az2/3pcMux+xVjumSQftmH/p6/wDPb/el9sw/9PX/AJ7f70uGXY/Y qx3TJIP2zD/0
9f8Ant/vS+2Yf+nr/wA9v96XDLsfsVY7pkkH7Zh/6ev/AD2/3pfbMP8A09f+ e3+9Lhl2P2Ks
d0ySD9sw/wDT1/57f70vtmH/AKev/Pb/AHpcMux+xVjumSQftmH/AKev/Pb/ AHpfbMP/AE9f
+e3+9Lhl2P2Ksd0ySD9sw/8AT1/57f70vtmH/p6/89v96XDLsfsVY7pkkH7Z h/6ev/Pb/el9
sw/9PX/nt/vS4Zdj9irHdMkg/bMP/T1/57f70vtmH/p6/wDPb/elwy7H7FWO 6ZJB+2Yf+nr/
AM9v96X2zD/09f8Ant/vS4Zdj9irHdMkg/bMP/T1/wCe3+9L7Zh/6ev/AD2/ 3pcMux+xVjum
SQftmH/p6/8APb/el9sw/wDT1/57f70uGXY/Yqx3TJIP2zD/ANPX/nt/vS+2 Yf8Ap6/89v8A
elwy7H7FWO6ZJB+2Yf8Ap6/89v8Ael9sw/8AT1/57f70uGXY/Yqx3TJIP2zD /wBPX/nt/vS+
2Yf+nr/z2/3pcMux+xVjumSQftmH/p6/89v96X2zD/09f+e3+9Lhl2P2Ksd0 ySD9sw/9PX/n
t/vS+2Yf+nr/AM9v96XDLsfsVY7pkkH7Zh/6ev8Az2/3pfbMP/T1/wCe3+9L hl2P2Ksd0ySD
9sw/9PX/AJ7f70vtmH/p6/8APb/elwy7H7FWO6ZJB+2Yf+nr/wA9v96X2zD/ ANPX/nt/vS4Z
dj9irHdMkg/bMP8A09f+e3+9L7Zh/wCnr/z2/wB6XDLsfsVY7pkkH7Zh/wCn r/z2/wB6X2zD
/wBPX/nt/vS4Zdj9irHdMkg/bMP/AE9f+e3+9L7Zh/6ev/Pb/elwy7H7FWO6 ZJB+2Yf+nr/z
2/3pfbMP/T1/57f70uGXY/Yqx3TJIP2zD/09f+e3+9L7Zh/6ev8Az2/3pcMu x+xVjumSQftm
H/p6/wDPb/el9sw/9PX/AJ7f70uGXY/Yqx3TJIP2zD/09f8Ant/vS+2Yf+nr /wA9v96XDLsf
sVY7pkkH7Zh/6ev/AD2/3pfbMP8A09f+e3+9Lhl2P2Ksd0ySD9sw/wDT1/57 f70vtmH/AKev
/Pb/AHpcMux+xVjumSQftmH/AKev/Pb/AHpfbMP/AE9f+e3+9Lhl2P2Ksd0y SD9sw/8AT1/5
7f70vtmH/p6/89v96XDLsfsVY7pkkH7Zh/6ev/Pb/el9sw/9PX/nt/vS4Zdj 9irHdMkg/bMP
/T1/57f70vtmH/p6/wDPb/elwy7H7FWO6ZJB+2Yf+nr/AM9v96X2zD/09f8A nt/vS4Zdj9ir
HdMkg/bMP/T1/wCe3+9L7Zh/6ev/AD2/3pcMux+xVjumSQftmH/p6/8APb/e l9sw/wDT1/57
f70uGXY/Yqx3TJIP2zD/ANPX/nt/vS+2Yf8Ap6/89v8Aelwy7H7FWO6ZJB+2 Yf8Ap6/89v8A
el9sw/8AT1/57f70uGXY/Yqx3TJIP2zD/wBPX/nt/vS+2Yf+nr/z2/3pcMux +xVjumSQftmH
/p6/89v96X2zD/09f+e3+9Lhl2P2Ksd0ySD9sw/9PX/nt/vS+2Yf+nr/AM9v 96XDLsfsVY7p
kkH7Zh/6ev8Az2/3pfbMP/T1/wCe3+9Lhl2P2Ksd0ySD9sw/9PX/AJ7f70vt mH/p6/8APb/e
lwy7H7FWO7//1O6/ZjP+4dv/AG43/wBLpfsxn/cO3/txv/pdalGQ2+iu9kht rWvaDzDhuEqe
5Cz+8ftVQ7ByP2Yz/uHb/wBuN/8AS6X7MZ/3Dt/7cb/6XWvuS3JWf3pfaqh2 Dkfsxn/cO3/t
xv8A6XS/ZjP+4dv/AG43/wBLq/R1HGvyLcatzvXoaH2Mcx7CGufdj1v/AEjW bmWWYeR6e36b
P0381bU99jclZ/el9qqHYOR+zGf9w7f+3G/+l0v2Yz/uHb/243/0utfcq/UM +rp+Bk59wc6r
EqffY1kFxbW11rwzcWt37W/vJWf3pfaqh2DQ/ZjP+4dv/bjf/S6Z3Tq2tLjh WwBJh4J0/ktv
3LY3KlX1K8mwvxnFrbH1Viomx5c0wwX17K/s3r17LqbHv+z+k/8ATX0/ovUV n96X2qodg5zK
sJ7iwY1oeOWOeGuHxrfc16n9jx/+4lv+eP8A0utCiw5tdrMulg9Kw1jY42NJ DW7rKrTXS7dW
976fo/o7a7EN7X4zgHuL6nQG2GJB/ds2hrfd+Y//AFsBMv3j9qaHYNP7Hj/9 xLf88f8ApdL7
Hj/9xLf88f8ApdX0k3jl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ALiW/wCe P/S6vpJccv3j
9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7BofY8f8A 7iW/54/9LpfY
8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3Et/zx/6X V9JLjl+8ftVw
jsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYND7Hj/9xLf8 8f8ApdL7Hj/9
xLf88f8ApdX0kuOX7x+1XCOwaH2PH/7iW/54/wDS6X2PH/7iW/54/wDS6vpJ ccv3j9quEdg0
PseP/wBxLf8APH/pdL7Hj/8AcS3/ADx/6XV9JLjl+8ftVwjsGh9jx/8AuJb/ AJ4/9LpfY8f/
ALiW/wCeP/S6vpJccv3j9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1f SS45fvH7VcI7
BofY8f8A7iW/54/9LpfY8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/z x/6XS+x4/wD3
Et/zx/6XV9JLjl+8ftVwjsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXH L94/arhHYND7
Hj/9xLf88f8ApdL7Hj/9xLf88f8ApdX0kuOX7x+1XCOwaH2PH/7iW/54/wDS 6X2PH/7iW/54
/wDS6vpJccv3j9quEdg0PseP/wBxLf8APH/pdL7Hj/8AcS3/ADx/6XV9JLjl +8ftVwjsGh9j
x/8AuJb/AJ4/9LpfY8f/ALiW/wCeP/S6vpJccv3j9quEdg0PseP/ANxLf88f +l0vseP/ANxL
f88f+l1fSS45fvH7VcI7BofY8f8A7iW/54/9LpfY8f8A7iW/54/9Lq+klxy/ eP2q4R2DQ+x4
/wD3Et/zx/6XS+x4/wD3Et/zx/6XV9JLjl+8ftVwjsGh9jx/+4lv+eP/AEul 9jx/+4lv+eP/
AEur6SXHL94/arhHYND7Hj/9xLf88f8ApdL7Hj/9xLf88f8ApdX0kuOX7x+1 XCOwaH2PH/7i
W/54/wDS6X2PH/7iW/54/wDS6vpJccv3j9quEdg0PseP/wBxLf8APH/pdL7H j/8AcS3/ADx/
6XV9JLjl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ALiW/wCeP/S6vpJccv3j 9quEdg0PseP/
ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7BofY8f8A7iW/54/9LpfY 8f8A7iW/54/9
Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3Et/zx/6XV9JLjl+8ftVw jsGh9jx/+4lv
+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYND7Hj/9xLf88f8ApdL7Hj/9 xLf88f8ApdX0
kuOX7x+1XCOwaH2PH/7iW/54/wDS6X2PH/7iW/54/wDS6vpJccv3j9quEdg0 PseP/wBxLf8A
PH/pdL7Hj/8AcS3/ADx/6XV9JLjl+8ftVwjsGh9jx/8AuJb/AJ4/9LpfY8f/ ALiW/wCeP/S6
vpJccv3j9quEdg0PseP/ANxLf88f+l0vseP/ANxLf88f+l1fSS45fvH7VcI7 BofY8f8A7iW/
54/9LpfY8f8A7iW/54/9Lq+klxy/eP2q4R2DQ+x4/wD3Et/zx/6XS+x4/wD3 Et/zx/6XV9JL
jl+8ftVwjsGh9jx/+4lv+eP/AEul9jx/+4lv+eP/AEur6SXHL94/arhHYP8A /9Xuqmuu+rrK
mm0Osww1px3NZdLqo/VrbSyuvI/0Nlj9nqLmbPq5m2YuOy3A2YVVl5GDiUdP bc4vGKzGzM/F
zPtHRH5TG4+ZXZk4b/V9O/H9CnHruy8antdtn7p+4pbbP3T9xUYNCkvKW9Ay 7MfNw8nD+15u
XiHHw+r3Pru+zh2EzBdRdl3ej1H9JmMyrrHYuB6Vv231/wCcuya6p5PTc3rH XqcvL6dbj4LX
Y7bq77KZc2qnrLbNzMPJyPUx3WdRxKbaX/0hltldtNmP6y6jbZ+6fuKW2z90 /cUbKnl8L6uA
9RyX9U6e3Iqzm5VDLgay6iuzK6rkWF1nqMyKWdQw+pUVs+xepb9P7T9nVzoT s52COsP/AMoZ
Wd9mrZZ7ad2Gxwqry9g/Rt9Vl+Z1v0PT+0M+2fs3/tPUtv3bi2DuABI7wZj/ AKlPts/dP3FK
yp4/rHSus5HT7OlUYNlhbf1PIblB9IpcMynqn2apm+9uV6vq9Tx6LPUxmVep 6v6X0f0qXVvq
zl+j1BnS8Kur1X5FOOKvTqH2S3ptlTcVvur9PFs67Z632X+b+1/r3p/4ddht s/dP3FLbZ+6f
uKVlTPcqNL+oC661tTWXFxa59pBY+qtz/stNApe59e5j3WXZF7d9dtn8xfX7 Me3ts/dP3FLb
Z+6fuKFlTX6d6rKXVOqdRTU7ZjMsLS8VBrNoeaX2s9j/AFK2e7f6TK/V/Se9 WnFrmlrgC0iC
DqCCo7bP3T9xS22fun7ilZU1nH7MYeZoP0Xk/R/kWO/d/cs/1sLzqETbZ+6f uKr/AGO1n8wX
1j9wjcz/ADT7m/8AW7GIUlIkobc8aekx3nuc2f7Ppv2/56W3O/0Df893/pFK ipmkobc7/QN/
z3f+kUtud/oG/wCe7/0ilRUzSUNud/oG/wCe7/0iltzv9A3/AD3f+kUqKmaS htzv9A3/AD3f
+kUtud/oG/57v/SKVFTNJQ253+gb/nu/9Ipbc7/QN/z3f+kUqKmaShtzv9A3 /Pd/6RS253+g
b/nu/wDSKVFTNJQ253+gb/nu/wDSKW3O/wBA3/Pd/wCkUqKmaShtzv8AQN/z 3f8ApFLbnf6B
v+e7/wBIpUVM0lDbnf6Bv+e7/wBIpbc7/QN/z3f+kUqKmaShtzv9A3/Pd/6R S253+gb/AJ7v
/SKVFTNJQ253+gb/AJ7v/SKW3O/0Df8APd/6RSoqZpKG3O/0Df8APd/6RS25 3+gb/nu/9IpU
VM0lDbnf6Bv+e7/0iltzv9A3/Pd/6RSoqZpKG3O/0Df893/pFLbnf6Bv+e7/ ANIpUVM0lDbn
f6Bv+e7/ANIpbc7/AEDf893/AKRSoqZpKG3O/wBA3/Pd/wCkUtud/oG/57v/ AEilRUzSUNud
/oG/57v/AEiltzv9A3/Pd/6RSoqZpKG3O/0Df893/pFLbnf6Bv8Anu/9IpUV M0lDbnf6Bv8A
nu/9Ipbc7/QN/wA93/pFKipmkobc7/QN/wA93/pFLbnf6Bv+e7/0ilRUzSUN ud/oG/57v/SK
W3O/0Df893/pFKipmkobc7/QN/z3f+kUtud/oG/57v8A0ilRUzSUNud/oG/5 7v8A0iltzv8A
QN/z3f8ApFKipmkobc7/AEDf893/AKRS253+gb/nu/8ASKVFTNJQ253+gb/n u/8ASKW3O/0D
f893/pFKipmkobc7/QN/z3f+kUtud/oG/wCe7/0ilRUzSUNud/oG/wCe7/0i ltzv9A3/AD3f
+kUqKmaShtzv9A3/AD3f+kUtud/oG/57v/SKVFTNJQ253+gb/nu/9Ipbc7/Q N/z3f+kUqKma
Shtzv9A3/Pd/6RS253+gb/nu/wDSKVFTNJQ253+gb/nu/wDSKW3O/wBA3/Pd /wCkUqKmaSht
zv8AQN/z3f8ApFLbnf6Bv+e7/wBIpUVM0lDbnf6Bv+e7/wBIpbc7/QN/z3f+ kUqKmaShtzv9
A3/Pd/6RS253+gb/AJ7v/SKVFTNJQ253+gb/AJ7v/SKW3O/0Df8APd/6RSoq ZpKG3O/0Df8A
Pd/6RS253+gb/nu/9IpUVM0lDbnf6Bv+e7/0iltzv9A3/Pd/6RSoqf/W9VSS SSUpBy7jRi3X
tEmqtzwDwS0FyMh5FIvx7aCdotY5hI7bhtSG6i4DvrPiN6hlYFfUcS3Mxqg9 1LR9NzTkepjV
NGY9/wBpo+zP+1fof0NdlG9dALqi7aHtLpiJEz7v/Sdn/baxn/V++zJuufk+ ++plVrxWfcxh
ucytv6d230/tF3+D/wAL+etxEoDhUZPUsmlmQcl1YuaLG1sbXtaHDc1v6Sqx /wD0kPA+sNY6
6eiX3vuvczc0uraA1wb63p+pV6f+B/SfzP8A11XaulZuOwU4+VX6LNKm20ue 5rR9FhsZkU79
n/FomJ0s1Zbs3IdXbkFnpseyoV7WzuI3uddc7d/x2z+QpTKFHbbShX/cscYy sb+OrYzeoYWB
ULcy5tLXu2Vg6ue8guZRj1Nm3IyLNv6LHpZZdb/g61k5f1ltryMfGox6aLMp odSOp3nCNu97
6aasNgozbb8j9G22/GeyjIxWZWF61Xr3vpp087ptGbse51lORTPoZNDzXYwu ifc32W1Oeyqy
zFyWX4d76avtGPd6apZ3Ser5uE/p1ufS7DyKX4+W52MftD2Wb63vrvryqsan I+zPY3f9hsp+
0/rH2b0f1SqFlZYX1hxsnGy7305DPsWRbj2NZRfbu9O+3CY/HNVH63v9D1LW 4nr/AGT/AA6j
V9aOnWdQfiy5tDMZmV9rLLBW0F2XXkV5rzUKunPxf2e/1Pt1tD/W9TH9P1qE HI+rVt2LbhjI
pfinJfl0UZFBurLrn35GVT1Gr16mZ+P6+X62HWz7H9luoxbLPtXo++vh/U37 Nh34X2msY+fj
3Yucymj0h6dtmdlUt6c31rGYP2d/Vb2fpvtzLKqqf5lJTt4PVMPP3jHNjX1R vqvqsosAdPp2
fZ8uui70rNlja7vT9Kx9Vv8AorFz+J9evtOB028YO3LzsiqrIxPVn0KbnYra 8z1/SFeT+j6t
0mz7Oz9J+vf91sn09XoXQmdJ9dwZiVvv2BzcHEbh1wzftc9gsybrbf0r/dZk +ls9P0aKv09l
4qfqxRV0zEw22frGNX06qzJ2n9IzptzMulvo+psq9V/r/wBT1/8ADekkptu6 90yt99dr7KX4
87m203Vl8ObR+pttqZ+0P01lNLfsP2jfbkY1f/anH9SiPrViN6nbRe26rDGN RkMtfi5LCwvt
zaMh+c6ynbg47G4dT2W5jcZmz1rvV9H+bpVfUb08kZAyMdr6qw2q5mLtvtsZ fh9Qx8rq+V9o
d+0rfW6dX9q214b8j18r34/qLQv6BlZlHUm5mXW7I6pgDAfZVSWMZtObtvbT ZkXvd7OofzXr
/wCA/nP0v6JKZt+tPSm2Pqvsc2yt1nqurqvsqrZXfkYXrZWUMdlGIzfhX+s/ IfXTV6Vv6e3H
/WbLVXWenW5pwmWONu5zGuNdgqe9k+rRRmOYMS/Iq9O31cem+y6v0MjfX+r3 +nmj6qRjdYo+
1f8AK+Pdj7vT/m/Wv6lm749T9Ls/bHp7f0f9H/4b9FLB+quPhdXd1BgxoN12 Q2wYrBll+QbH
2sv6k5z3Px2uybfSZTj413pfZ6X5NlTL/tKU6GF1jCzLTjAuozWN32YV49O9 rQQx9grd/P47
bXel9sxXX4Vtn8xk2qrb1239tjpNTMZrg5oLcnJNORY0tF9uRgYTce/7Zj11 Oez1fXo/WcfK
o/R+h6ysYvSdl7czOyLM7MZJY9/spqLgWu+yYVf6GrbvurryLftPUfs9z8e3 PvqUM7pvUM7I
ay3Kpb01l1N4obQ4X7sd9eVUPtjsl1Ox2VQz1P1D+j/of5z9YSUwd9aehMrf dblejSzYRdbX
ZXW9j314zMjGvurZVlYnq30b8zGfbi1Mvpttu9K2t6sN6z051T7fUc1td1OP YH12Mc23JGO7
GpfVYxtrHv8At2L+Z+h9T9N6fp2rFwvqPj4bGVUuxqm0OxvRsoxGV3vZjZGN m/5QyvUfbl5F
v2GtnrU/Y6fUtuyLcW79B6Gxd0ai7rNHVnH30VlpZr7ntFleLdu3e37NTndT q9PZ+m+3b7P6
NjpKQu+tPQmVvutyvRpZsIutrsrrex768ZmRjX3VsqysT1b6N+ZjPtxamX02 23elbW9WMnqb
aRgWCt3oZ1zanWWB1XpCyu22h91drGvrfdkMowm03ei/7RlV1/z36FYuF9R8 fDYyql2NU2h2
N6NlGIyu97MbIxs3/KGV6j7cvIt+w1s9an7HT6lt2Rbi3foPQ3eqYP7QwLcU P9G1219F0bvT
uqc2/EyPTlrbfs+TVVd6T/0duz07P0aSmpV9YsP7HXmZTbKKb7LhXc2uy2n0 arH1VZt2VTU7
HxsTJx215leRkPrx/s9nqetZVX6qr4X1opd9pbmlrbKLra2V0MttteG5XUMK lrMWqq19r/Q6
W+5/2d9z/ZlXW4+Lj0/pK/W/qXR1DFZh4zserHrxBg0sy8c5foMaHV13dOc/ Ix34mXss/T3u
9f1/s2F/3H/STr+qdtGW/Ox8xrcptzr8c2Ul9bXPu6te8XVMvqfcz0Ov3Ut2 XY/6bHryP+6y
SmxgfWbGs6ezNzRZSy3Iy62vGPfsZXj5F2KyzNd6b/2f+hrrfkPzvszGfpv5 r0rPTni/WfBt
pvsvZdS7HybsT0203WGx1VuRjt+x+nR+vPdViWZF1eF9o+yM9T7R/Nb1lZv1 FtzcF+PdlY11
t7ckWW5GGbW1OybsnMfkdLqdltdgZG7N2W2+tlet9lwv+4/v0j0DKZH2bLrZ 9ny7M7A9Skv2
WZH2r7azL2ZFP2up37RyPsvo/Yn4/wCh9WzL9/qpTbx+v9JycqvDov35Vtfq tpDH7wybqnOt
aWfoPRuxbsfI9f0/s2V6eLkelkX0V2aCyej9C/ZmTfkm/wBZ+VW0WjZtHqev ndQyLK/fZtqs
u6pY2ml299NVX8/kfTWskpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSS SlJJJJKUkkkk
pSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJ JJKUkkkkpSSS
SSlJJJJKUkkkkpSSSSSlJJJJKUkkkkpSSSSSlJJJJKf/1/VUkkklKQ8i4UY9 t5G4VMc8gd9o
3IiDl0m/FuoaYNtbmAngFwLUhuotCzqdlORktdXSbceiu66ttjpFbjeKnNcc VjXue6jI/R+r
+Z/g/U9+quUP1SnqeR1BmNh1ZWQwNfa1sFpcb/Uvrs+zMd9pv+0Wfan+r+lZ 6PqLqBTUHbgx
odMzAmfd/wClLP8AtxE+SA5FXU+p5Fbb6/RrrsG6tjmOe4NOrN723Vt3bf5C lg9drs6o7pWV
dScss3sZWHNOg3FjmuNrN2z9J/Pb9n+DSowep41TcdjKLq6gGV2OtfW4tGjN 9bce5u/b/wAI
lhdDY3qrurZWPQzKDNlbqnPeeNrnve9tLN3p/ov5jfs/wqlPBR229Nfgxx4r G/jbq3XVUVPu
ue2qqppfZY8hrWtaNz3ve72tY1qzHfWGmx7WdOxcjqZNYuccf0mBtb3W0492 /PvwmXVZL8bI
+z2Y3rMsqq9f+Zux7LjdW6QzqX2ewWelkYdnrYznMbdWLBqx1uNeHMdte1v6 ah2Nn1M9SvEz
cX17t+f1fpXVeqUV0X4mA/IbW9lfVC94uxrHks+3dPx3Ytz67WMZj5bK/wBo 0vZkfq/2v9B9
tshZW7j/AFj6LfTlXOy6aG4Fz6MwXWVsNTmW2YbTf7/0LMi2n9W9X+dYp1de 6Vb1JnTWZFZy
LsevKxveyL67fX2uxPfvyPTZiPtt9Nmz0n1LPs6P1hmHdhUOrNIy7cpm3Itx n3sybMnLtxrs
jGpdkdN+y5GVU+u7Ftyvtv2X0rvs1WTaxUsL6p9TqwczDsfS1vVsbIxcl/q2 3OoFl3UsvHsq
svqZb1N/+VvTyPtFmE/9B6vqX+skp6XC6j0/qFRuwMmnLqa7Y6yixtjQ4AOL C+pzm79rmrHx
/rr0rIwOn5rKsj/KWQzHZjlrPWq9VzK68nLqFv6HEd9pwn+t7/0efg/9yqlY 6D0m/CtycnJr
bVbkNrrgZeTnOLaja9u7L6j6bms3ZL9mPVjM9P8ASW+vd6/p49HH+qPodMwa wa/t9FfTK73f
4P8AUbsW/Lspd6fq+rl1YdVL3v8A59mF06uz0/sySnbZ1bpVn2r08zHf9gn7 bttYfR27t/2q
Hfq+30rP53/RvVKn61dFt6mMFuZjbbaabcO4X1kXuutycV1GM2f0r6bcPb+i fZ77vTWOfqr1
u3MZk32V2W41YIvsysi37RdXldP6kx/2O6r7N0arJd0x7ba8D7RXjfaP0dWR XjVrQzOj9V6h
R1h17cejI6p0xuDXWy19jGWNPUfe+52PQ/0nMzsf/Ab/AOe/R/6VKdBvX+ji 5mNdmY9GVbY+
qrHsuq9R5bbZh/o62Wv3+pdS9jGfzu/9DbXVkepSywzqPT7M2zAryaX5tLd9 uK2xpta07ffZ
QHeqxn6Sv83/AAi58fVfqAxOvU+pTu6tjZFGOZdDXXZPV8xhu/R+1npdWx9+ z1Pey/8A4P1C
9P8Aq1fi9XGTYGvoqycnMqudlZLjuyTkO9OvpJczp2I+r7dZV9r35Pqsr/o1 d2Z6mMlO3hdQ
ws+o24dzbmsdssA0cx4Ac+jIqdFuPkV7v0uPcyu6r/CVqu7q5dnvw8bDyMoU WMqycis0trqe
9td+2z7RkUZD9mPfTe/7NRf7LPZ+m9SpBxekXv6k3rHUbKzmtrNVdWMwMYys y/0bclw+253p
uss/nLMfAt/RZX7Kx8ur1ULqPSsrN6rTkNxMSn0LKXV9VDycwV1PbkXYrKvs rNlWV+nw7P8A
KOz7Pk227LP6Mkp0GdW6VZ9q9PMx3/YJ+27bWH0du7f9qh36vt9Kz+d/0b1A dc6K5uM9vUMY
tzXFmG4XVxc5rhU5mMd/6d7bXen+i/PXO4f1OyMfDbj20V5RxMevGxnP6hmt NmyzFvbkMdD2
dE2vwKcj7Ng1Zf6X0aPtNNOP+sXaejdebl4eS/Jb9qDWNz88Wy6yll12S3pz unNw68DIYyu7
7Mzqdf7OzP5zI9Kv9Jh3pTq4/WemXuxavtNNeVm0tyKMR1tRtcxzTZvrZTZa 25m1ln6XHfdT
Re: There may not be two classifiers names 'xyz' [message #628194 is a reply to message #507148] Thu, 14 January 2010 10:00 Go to previous message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi bde,

You certainly have one or more UML Editors which allow to drag and drop StateMachine elements from a model to a diagram.
I know about EclipseUML but it is not free.

Quote:
> Furthermore, if I create a state
> machine as owned (like you described) there's a class generated (see picture, arrow top and middle). But I don't want this class to be
> generated by genmodel.


No class has been created in my test but it seems I have not done the same test as you.
My test was to create a Class Diagram inside EclipseUML, then create a class. Once the class has been created I have clicked on this newly created Class > Add Diagram > StateMachine & Activity Diagram.
I have finally open the Eclipse UML Editor to visualize it. This is not exactly like using the UML Editor and GenModel but it is the same way and it works well.
If you keep going looking you should find a way to do it with GenModel and UML Editor but I don't have time to instigate at code level because it already works for me at tools level. I would recommend to select a UML Editor and then see what you can get as modeling value and not be stuck at code level with genmodel and try to debug.

I don't see your pictures.
Re: There may not be two classifiers names 'xyz' [message #628195 is a reply to message #628194] Fri, 15 January 2010 10:51 Go to previous message
No real name is currently offline No real nameFriend
Messages: 14
Registered: December 2009
Junior Member
Hi,
as I mentioned, you've got exactly the point.
I've really got no time to investigate time at code level to plan my
project. What I simply want to do is to model it via UML2 first, before
coding (not to code the model, that's a little bit stupid). But it would
be really nice to do it via the UML2 Tools, because I'm sure they've got
a great future.
But at the moment I just want to generate my project, and not to
understand the deepest levels of Eclipse UML. I can do this, if I've
time for this (and I will do it, because it's fascinating).
I'm really grateful for your help and your time.
Thanks a lot.

Have a nice day

Vlad Varnica schrieb:
> Hi bde,
>
> You certainly have one or more UML Editors which allow to drag and drop
> StateMachine elements from a model to a diagram.
> I know about EclipseUML but it is not free.
>
> Quote:
>> Furthermore, if I create a state
>> machine as owned (like you described) there's a class generated (see
>> picture, arrow top and middle). But I don't want this class to be
>> generated by genmodel.
>
>
> No class has been created in my test but it seems I have not done the
> same test as you.
> My test was to create a Class Diagram inside EclipseUML, then create a
> class. Once the class has been created I have clicked on this newly
> created Class > Add Diagram > StateMachine & Activity Diagram.
> I have finally open the Eclipse UML Editor to visualize it. This is not
> exactly like using the UML Editor and GenModel but it is the same way
> and it works well. If you keep going looking you should find a way to do
> it with GenModel and UML Editor but I don't have time to instigate at
> code level because it already works for me at tools level. I would
> recommend to select a UML Editor and then see what you can get as
> modeling value and not be stuck at code level with genmodel and try to
> debug.
>
> I don't see your pictures.
Previous Topic:UML2 Install Failure
Next Topic:Generalization from EClass in another Eclipse Project
Goto Forum:
  


Current Time: Sat Nov 22 00:39:17 GMT 2014

Powered by FUDForum. Page generated in 0.02576 seconds
.:: Contact :: Home ::.

Powered by: FUDforum 3.0.2.
Copyright ©2001-2010 FUDforum Bulletin Board Software