Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Modeling » UML2 » Re: Creating Stereotype extending AssociationEnd
Re: Creating Stereotype extending AssociationEnd [message #478459] Tue, 26 May 2009 16:55 Go to next message
Ed Merks is currently offline Ed MerksFriend
Messages: 26287
Registered: July 2009
Senior Member
Gilbert,

I've added the UML2 newsgroup to the "to" list of the reply to redirect
this question to the appropriate group.


Gilbert Mirenque wrote:
> Hello NG,
> I don't exactly know if this is the right NG. Please point me to the
> correct one.
> I recently started to create a UML-profile which is aimed to put some
> special semantics to my use-cases and class-diagrams. I added a
> stereotype DataChannel extending the "Association"-metaclass. Now it
> would be fine if I could create a new stereotype "Event" extending
> AssociationEnd. But I couldn't select "AssociationEnd" as a metaclass in
> my profile. And if it is possible - how can I specify that the
> association-ends of my newly created stereotype DataChannel are of
> stereotype "Event"? Or isn't it possible at all?
>
> greets
> Gilbert
>
Re: Creating Stereotype extending AssociationEnd [message #478462 is a reply to message #478459] Tue, 26 May 2009 18:44 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

thx for the hit to the right NG :)
Re: Creating Stereotype extending AssociationEnd [message #478464 is a reply to message #478462] Wed, 27 May 2009 08:23 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

no suggestions?
Re: Creating Stereotype extending AssociationEnd [message #478465 is a reply to message #478464] Wed, 27 May 2009 15:14 Go to previous messageGo to next message
Rafael Chaves is currently offline Rafael ChavesFriend
Messages: 362
Registered: July 2009
Senior Member
There is no AssociationEnd metaclass in UML 2.*. Association ends are
represented using the Property metaclass.

Cheers,

Rafael
http://abstratt.com/blog/

Gilbert Mirenque wrote:
> no suggestions?
Re: Creating Stereotype extending AssociationEnd [message #478466 is a reply to message #478464] Wed, 27 May 2009 15:24 Go to previous messageGo to next message
Christian W. Damus is currently offline Christian W. DamusFriend
Messages: 847
Registered: July 2009
Senior Member
--=-QG4LWcFXZb7t8qbC46WC
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

It seems that my newsreader doesn't know how to reply to cross-posted
messages, so here is my reply from the EMF newsgroup.

-----8<-----

Hi, Gilbert,

There is no AssociationEnd metaclass: it was removed in UML 2.0.
Instead, association ends are represented by the Property metaclass.
So, your Event stereotype needs to extend Property.

To assert that the ends of a <<dataChannel>> association are <<events>>
you will need to use OCL. e.g.:

context DataChannel
inv ends_are_events: base_Assocation.end->forAll(e |
e.extension_Event->notEmpty())

HTH,

Christian

----->8-----

On Wed, 2009-05-27 at 10:23 +0200, Gilbert Mirenque wrote:

> no suggestions?

--=-QG4LWcFXZb7t8qbC46WC
Content-Type: text/html; charset="utf-8"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 TRANSITIONAL//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=UTF-8">
<META NAME="GENERATOR" CONTENT="GtkHTML/3.24.1.1">
</HEAD>
<BODY>
It seems that my newsreader doesn't know how to reply to cross-posted messages, so here is my reply from the EMF newsgroup.<BR>
<BR>
-----8&lt;-----<BR>
<BR>
Hi, Gilbert,<BR>
<BR>
There is no AssociationEnd metaclass:&nbsp; it was removed in UML 2.0.&nbsp; Instead, association ends are represented by the Property metaclass.&nbsp; So, your Event stereotype needs to extend Property.<BR>
<BR>
To assert that the ends of a &lt;&lt;dataChannel&gt;&gt; association are &lt;&lt;events&gt;&gt; you will need to use OCL.&nbsp; e.g.:<BR>
<BR>
&nbsp; context DataChannel<BR>
&nbsp; inv ends_are_events: base_Assocation.end-&gt;forAll(e | e.extension_Event-&gt;notEmpty())<BR>
<BR>
HTH,<BR>
<BR>
Christian<BR>
<BR>
-----&gt;8-----<BR>
<BR>
On Wed, 2009-05-27 at 10:23 +0200, Gilbert Mirenque wrote:
<BLOCKQUOTE TYPE=CITE>
<PRE>
no suggestions?
</PRE>
</BLOCKQUOTE>
</BODY>
</HTML>

--=-QG4LWcFXZb7t8qbC46WC--
Re: Creating Stereotype extending AssociationEnd [message #478467 is a reply to message #478466] Wed, 27 May 2009 15:42 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

Thanks a lot - especially for that OCL-hint.

best regards
Re: Creating Stereotype extending AssociationEnd [message #478480 is a reply to message #478459] Tue, 02 June 2009 20:47 Go to previous messageGo to next message
Nicolas Rouquette is currently offline Nicolas RouquetteFriend
Messages: 142
Registered: July 2009
Senior Member
Gilbert,

If you want to convey that a <<DataChannel>>-stereotyped Association has
an <<Event>>-stereotyped association end, then you need to define
<<End>> as an extension of whatever metaclass you want to use for
representing the actual <<Event>> in your profile.

For more details on profile development, read the excellent article here:

http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Custo mizing_UML2_Which_Technique_is_Right_For_You/article.html

- Nicolas.

Ed Merks wrote:
> Gilbert,
>
> I've added the UML2 newsgroup to the "to" list of the reply to redirect
> this question to the appropriate group.
>
>
> Gilbert Mirenque wrote:
>> Hello NG,
>> I don't exactly know if this is the right NG. Please point me to the
>> correct one.
>> I recently started to create a UML-profile which is aimed to put some
>> special semantics to my use-cases and class-diagrams. I added a
>> stereotype DataChannel extending the "Association"-metaclass. Now it
>> would be fine if I could create a new stereotype "Event" extending
>> AssociationEnd. But I couldn't select "AssociationEnd" as a metaclass in
>> my profile. And if it is possible - how can I specify that the
>> association-ends of my newly created stereotype DataChannel are of
>> stereotype "Event"? Or isn't it possible at all?
>>
>> greets
>> Gilbert
>>
Re: Creating Stereotype extending AssociationEnd [message #478484 is a reply to message #478464] Wed, 03 June 2009 12:17 Go to previous messageGo to next message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi Gilbert,

I was reading your post then I have decided to spend three hours writing a
short article on this subject. I don't think this is a waste of time to
read it.

My article is available at:
http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html

Thanks,

Vlad,
Re: Creating Stereotype extending AssociationEnd [message #478492 is a reply to message #478484] Thu, 04 June 2009 09:15 Go to previous messageGo to next message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

This is a multi-part message in MIME format.
--------------060105080205020100080001
Content-Type: text/plain; charset=ISO-8859-15
Content-Transfer-Encoding: 7bit

Hi Vlad,

> My article is available at:
> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html


thanks for your article. Nice possibility to apply stereotypes to
association ends. But I think that it is only possible in this way with
the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
display the specified association-names as attributes in the class (see
the attached screenshots). That means one has first to open the
generated uml-file, select the association-end-property, and apply the
stereotype via the uml2tools from eclipse. Well, the stereotype is
applied but it isn't visible in the diagram. Another issue is that you
could apply the associationEnd-stereotype to any property of a class -
not only to associationEnds.
But a big thank you for your article. I could solve my problem in
another way. I found out that I can model my concerns better with a
StateMachine and not with a ClassDiagram. There I extended the
Pseudostate metaclass.

best regards,
Gilbert

--------------060105080205020100080001
Content-Type: image/jpeg;
name="appliedStereotype.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="appliedStereotype.jpg"

/9j/4AAQSkZJRgABAgEASABIAAD/4RQiRXhpZgAATU0AKgAAAAgABwESAAMA AAABAAEAAAEa
AAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAA cgEyAAIAAAAU
AAAAjodpAAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhv dG9zaG9wIENT
MyBXaW5kb3dzADIwMDk6MDY6MDQgMTE6MTQ6MzEAAAAAA6ABAAMAAAABAAEA AKACAAQAAAAB
AAABuaADAAQAAAABAAAA7gAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEA AAEeARsABQAA
AAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIABAAAAAEAABLsAAAA AAAAAEgAAAAB
AAAASAAAAAH/2P/gABBKRklGAAECAABIAEgAAP/tAAxBZG9iZV9DTQAB/+4A DkFkb2JlAGSA
AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwR DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwM DAwREQwMDAwM
DBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAVgCgAwEiAAIR AQMRAf/dAAQA
Cv/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEA AAAAAAAAAQAC
AwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIG FJGhsUIjJBVS
wWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePz RieUpIW0lcTU
5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYH BwYFNQEAAhED
ITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcm NcLSRJNUoxdk
RVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//a
AAwDAQACEQMRAD8A9DpqzH0dPdRa1lQrr9VpmSAGu9m32/R/fVUs67V1bfU3 HdivuAdV6jt4
qP08mth9rbP9LV9C2z9L/Lu0sH+hYf8AxbP+oTnBrOYMze/e0RsDvZxs3Gv9 7+UjIA2D30VH
Sj+Dksr6/mBxp6hj+m4ubYaSHvbp7GV2em+pr2ue2x36L+b/AEP/AHbVwY/X hZP2mn0w8wzb
zXpG55G71Pp/8X+j/pH89YDHZ0vEybXV3Psu6fV+kqivcGhp26V1ss3Obu2e 79KgM6R0Z5fl
Pdk4dzGOfbda41PFQDa3+pkuHv2tprsdk+s/K9lN9uR6lVOwmPUahaJdDoW0 KfrBINWVQA4v
carGl5busY5rPUbt3MqZ61f+u+lxV9YnNdGTjghsMIBdLpsO632N/mv0Ff6P Z9p2Xv8A1L1q
/s9LFq+r2I9725t2+qxx9KxxY6aD611WNRsqfXUzd+mpw2MqfV+is/QexTyK fq8XbR1M4pNp
sIqvbWC/I32sa7TZ+m+1uurZ/wBqP5z9N6aaubLcfrhY+xmXX9odWRtd7qt4 FrKrWMDf0bbP
1e539tM3D+sDrg9+fWwB7nvYxktGlTKq2Nd7vT9P7Q+xr3P/AEnpf8Yq/wCz +hD0K6sm2kuB
qqfU5zI9LfjNxrrWM2sdTbm7KcTJ/wAP+irq/na0OjG+rbPbiZb3OeKzvocX hwe+qmr+jsNb
tjq27/8AQerZlW+n/SElNx2P9ZnOePtdNdZaWiGS8OP+FY8s2ez9yyn/AElX +EryKYjE+sLb
Te3NY0Pc79XtAexshm0te1ldlmz0t3p/ov5y/wDmf0X2Wh6H1XbTU23qLsqq WvbYbPWYOXy2
8Nt+zM9u/wDR20+n6fq/8IpO6X9WwasYdSsYWjZRUy8Ndt1r9GjY1tmzb+j9 Kn+d/VfU9T0c
P00puU4n1kBb62XVbU47Xhsh4rcfc9t2xjH31td9NlNH/F1fzSnbh/WIUtpp zKoLHNsseD6k
kVBr63tbt3t23v8Aof4T6CPj9a6Qaw2vIbDRtY1wLXO2sFm2qtzWvtd6fu2V MUz1zowbudm0
NbDHEusaABY0WU7iT7fWrdvq/wBIkpr2Yf1gaXGjMr987vUZuIMUMrNUANZ/ N5Fr2bf523/R
/wAywxPrDXW7bmMse6SA8CW/zugeK2td/wBp/wDB1e/fZ/wFuukkpy8ej6wN O7IyKbSK3N2t
bsYXkscyzbsst/R7bGfz+z9J/Nfo/wBITAo6w2/1M++uyssMV1AiHucHfSLW 72VsbsY76a0E
klKSSSSUpJJJJT//0PS8H+hYf/Fs/wCoVpVcH+hYf/Fs/wCoVpE7nzQNg5dl w35wbgy9lTyX
Gv226aV7mhz7fU/Obs/qesmxLdjLi7Erc9lRc77MHEvALopDb66fe/8AMZ6q 0wfe75Krnl/2
O0iCAR7XaTDmy2ZH0v3UQencoI69nLty8Zu1tvRXF7TeMXbUCyGzq9zq2Pxv tdm7/BfpP+vs
9Qbs3o7c+sN6Pd9p3QwClrSS703W5HpOextjcV7vTuytv6u+z9F7M39PoYjs p1N5xm1ss3sh
hmNsM9U7ZO2z093p/mfQQx/zmZYNvoWMd/OG06gy3d6DaRX+g+n6PrPtv/0v /CAijSQbFr35
jKq6COnFzdzxt2agCxrLDjsZXZv9T+k17/s/q0/pFXozcQVepidGsrDQ2x7H 0it21rXub6Xp
ttbZkM27K6nvqZ+l/n/51XXjrjqPca2PPpz6Mbx7P0/pm8Pp2/aNmzez+jer /h/TQQ760mt7
XsxQ7a8Mcwu3Tts9L6fs/nfQ3fo/ob/5tBLLp32HKttA6Z9lFTGNa66trS4O D63Vt27mbaqv
Z7LH/wA96X76unpvTzYbDj1l7uXFomSd5P8AWc/3Kykkpru6dgPDA7GqIq3G sFjfaXfT2ae3
f+chHo3Sjc277JUHtk6NABJ/Oewex7m/mPf/ADe+z0/5yxXUklKSSSSUpJJJ JSkkkklKSSSS
U//R9Lwf6Fh/8Wz/AKhWlVwf6Fh/8Wz/AKhWkTufNA2DEfTd8lVca8ymxlF2 18ghwkwQQ9vt
9v7itD6bvkqz8LCoxcgNpArsa51rRI3aaif6qQUWtjtbdiX2HMcGOsbGQPY2 K9ntZY4+/Hse
PTe9np7/ANJ6T/8ACqm3AxQ71aurGhrS4WBjms3mtxY+2+XbrL/1a37Rkf4T Zb/N/pVbt6hh
W4FbrKR6L7BWwP8AY1rmfpK7GlzWuq9N9f6J/wDg3/QXM9ay6cF+M7pWDiV1 2Uvvd6geHB1T
/Qa+j0baPd7/AFPU2+z+k2W1+n6qfHHPJICI+bb6BaZxiDZ21L0NmPhekMe7 qQtcXMZsvc17
HPqYarA+rc3fY/8An3+/+l11Xf4P9IJnSmXMdTX1h+QH7mhjnNsaQWuca3Vt c1rv0V7LPb/w
Xp7P0S5cZXVCA4dP6YWhrqW6WhuwAMfSxpyNv2b02+lX/wBp/s/6Ov8AV0an qvXWOBZi9Oaa
t1m8tuJBPqPfdJuNjsh7r7/o/rX6a7/CX7LJPuebtH/Git+8Y/H7C91Vl4r8 dl7LmuofAZYX
aEzs+k7+Umr6hg2gGvIrduO1vuGpn0/b/Wf9D99cKzqPWGVHHGN06uioF1eM 2uwsaSfRLqaa
rB6XrfaLGXWts9L0vW/wVn6SDMzqfqMyDi9O32OB9UtveSW/pqrHPOR7/Udu e61/83/2p/S+
pWl9zzdh/jRV7+PufsL6BTk497Q6mxtgLWv9pB9rxurd/bb9FD/aOBu2/aK5 A3fSERDnfS+j
9Fj3Lhx1jr7dobT08EVgAgv3OqrIY2iz17X2up/S/wBH+n/171EKzN6te4Md h9OsFe3aCLg1
pLa27WTkBtTa2vpY/wChT/NM/nfTrS+55uw/xoq+8Y+5+wvftzcR9npNuYX6 QJGsl7fZ+/7q
rPofuI683HX+q4we4Y2BtYfWLIuc0Ore5rXsqfk+nv8AW/SUf6f+dxvUsq9l 8fW76yljXD9n
7n/Rr22kkez3tLb3ep7rWN/R/wBT+d/Ro/cs/Yf40UfeMfc/YXuUlxDvrT9a 2a2M6fWAYJIt
JmJ+gy51jt35mxn6T/Bb6vehf88vrMHtYa8EOc4sjbYSC1vrO0Ze51ns/wBD 6v6T9D/OpDk8
x2A/xoq+8Y+5+wveJLiT9Z/rYHtaa8Da5wAdtsJhzm1NdsZe930rPooGN9df rHkRtZiNkAj9
Fa4+4vZ7gMj2M3V/pLf5uv8AR/6RL7nmIuhp/Wir7xj2s/YXvUlwuR9bfrZR VZY+rBHpse/R
tr/oMsu/Mv8Azm0PXb0vNlNb3RL2hxjiSJUWTDPHXFXquqIl8v8AdXwyRnfD 08Kf/9L0vB/o
WH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMG/Td8lNRH03fJO5waC5xAaBJJ 4ACCWE/oZn82
Z+SzOr9NZmX02W4VGWGMImxjXuaS5jva+xvtZsa//ri0DfQykG2xrG/QJcdu sfR935yqdQor
yaW3jIYylgduuLmgQQ6s+/b7du7fv3ey1idDQgnREtRTQf8AV/BrZjbOjYWT Ib9pf9npa8mW
tf8AoXmutnsc9+/17v8AR+j+eqg6Na3Ge531a6bZkMqaWNa2pofafT9Vga9j vSrZuu2Oda/+
a/4X9HtnFyH1Yv2fMDRU1h2gSyyC12/9G+l/vrbY36foe/f6KqDpvVGY1uOz rbvUZUysPfXW
41uiub7Nx9V77vTt/nbf8P8A8HUkZG9yoRHZp5fQm1l4xegdPuDANrnVUs3n ePofS9v2f6fq
en+l/m0zein1Du+rfTjXLRo2oEiLHXW79j/+Arrp9P8A0tnrrSv6dmuve2nq jqHPmyqoDcWt
FQxd8Wvfv2Wv9b6P2f1PT/Q+r+lUMfE6p9qey/qoftBIxWtYSWOa6uu+1zBT kV77f0u2h9df
6P0qnocUu5VwjsHNd0S9rWgfV/ptrnsYd/o0s2PLahf6tfqWep6dr8h7K6n/ AKStno+v/h7j
P6Mxxayv6u4TKzc1hLm0GKg1j7cj0/ov3276qqt/qf4az0v5tbOF/P2H7aMs 11VU2tkS22s3
erbYyp3o12Xb/cxlFX8z/wBt2mXVWOeyt7XurO2xrSCWmN218fR9qXEe5VQ7 BxsX6v8ATnWs
GT0XBqYaQ52ympwbbJD6/Uhr3fo9n+A/69YrX/Nr6u/+VeHrz+gr/wDILSSS 4j3KqHYOafq1
9XSZPS8Mnx9Cv/yCR+rf1eJJPTMQk8k0V6/9BaSSXEe5VQ7BzP8Amz9XP/Kv D/7Yr/8AIJz9
W/q6eel4Z/6xX/5BaSSXEe5VQ7BzP+bP1cIj9lYcf8RX/wCQWkAGgNaIAEAD gBOkkSTumgNn
/9P0vB/oWH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMW/Td8knsa9jmO1a4E HtodOyYfTd8l
NBLS/ZeFXjNprY5jKnGxgY9zCHEOGj2Oa785VM+rp9dVOFZQ59QD3Mc51jY3 n0LB6wa5/vZk
2b/f/NLXcJaQO4IWf1L7RNZqqFjocI2hwHtdslzqn+31djH+7+b/ADE6Opo7 dlshWo37uff0
36vuON9qxzj2ZAcTjA7RFrttwtcw7P5/IZ/Nv3/9a9RApzPqfVjevXuoqpo9 V7QyxsMua0bn
vDfpurzPzbf8Jv8A8D+i1rLr66MVhwzZU4M9b2g7DLG7W0Mbu9u57/5vZ+jV X9pdX+y2Ps6N
Nra2PLG2NdvtJr31NG3/AAT32+//AIH/AEdnrIHcrhs1epH6q1gtzGPaKwwm sbtrQ1zMRu/Y
702+n6VXss+mz+j+p6lvqFxuofVnGsdXVbY1pdX7Xi5zQ97rMprWtsDnU2Od S627+b9T9H6q
tX5vVKbL/T6c3IaHauadheRT6nDm2b/0+yht3/pL3tT1TPvvcw9Lcytm4Oue 7hzWFzmBnpb7
fftp30epS/8AwNtyCnNtyPqq51T8plzbK2Vuxqnl8hr21201UVMd+b9qZT/w Vv6P/uOtDD6l
0LADcbEte/1La8eus73Q9zK3Mprfd7WMrosrs9L1NlP83/O/olexnWWWCu7F FDG0VPa0w7a9
3qttx9zP0X6BtdX83++rPo1cbG8k8Dl30nf2pSUgxuo4uU9raHF4fUL2OiAW OJZ+dD/zf3Va
TbW7t8DdEbu8eEp0lKSSSSUpJJJJSkkkklP/1PS8H+hYf/Fs/wCoVpfKqSJ3 PmgbB+lbqrWu
z7M24WYDqzFDmvaGtH85vtAduY9R6e0F+VXiOpbaaWeneNz3BpN32Z1mO5tX 6uyz1/RY3I/6
4vmxJP8A0Dv/ANytPzjb/un6POH1r0b9uc4b3O3SwksH6Td9nd6Qfa5tbqdn pM9P1f5v/hG+
yfWEY9oZnMk3Ndjl9TyWta97/RtjZY5lr/Qqss+h9m9VfOKSjXv0hVjfWMZN Trsuva2d1YG4
ObFP0rW0U1ssZZu/wX6wz1fQ+x+r+qPRh/WUNaLs+su5e4VjmXHaxpZ9H+bZ /wBvf9yKPsXz
ckkp+lsnH6o5jAzK9PJLrTS4Mcaw1w/RsyNo9N/pf4Oy1tf/ABVv+FgzD639 p3WZ8H3FjG1T
XEsG13t9vs93856r3v8A0PpV1Xev82JJKfpHExettzWPtzQ+oEnJqdWYM+ps ZRZtqr2sY7H9
7G/pLWWW/ov5hbK+VUklP1UkvlVJJT9VJL5VSSU/VSS+VUklP1UkvlVJJT// 2f/tGVRQaG90
b3Nob3AgMy4wADhCSU0EJQAAAAAAEAAAAAAAAAAAAAAAAAAAAAA4QklNBC8A AAAAAErAjQEA
SAAAAEgAAAAAAAAAAAAAANACAABAAgAAAAAAAAAAAAAYAwAAZAIAAAABwAMA ALAEAAABAA8n
AQBsbHVuAAAAAAAAAAAAADhCSU0D7QAAAAAAEABIAAAAAQACAEgAAAABAAI4 QklNBCYAAAAA
AA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAHg4QklNBBkAAAAAAAQA AAAeOEJJTQPz
AAAAAAAJAAAAAAAAAAABADhCSU0ECgAAAAAAAQAAOEJJTScQAAAAAAAKAAEA AAAAAAAAAjhC
SU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAA AQAyAAAAAQBa
AAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA//// ////////////
/////////////wPoAAAAAP////////////////////////////8D6AAAAAD/ ////////////
////////////////A+gAAAAA/////////////////////////////wPoAAA4 QklNBAAAAAAA
AAIAADhCSU0EAgAAAAAAAgAAOEJJTQQwAAAAAAABAQA4QklNBC0AAAAAAAYA AQAAAAI4QklN
BAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0E GgAAAAADSwAA
AAYAAAAAAAAAAAAAAO4AAAG5AAAACwBVAG4AYgBlAG4AYQBuAG4AdAAtADEA AAABAAAAAAAA
AAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAbkAAADuAAAAAAAAAAAAAAAAAAAA AAEAAAAAAAAA
AAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpj AAAAAQAAAAAA
AFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAA QnRvbWxvbmcA
AADuAAAAAFJnaHRsb25nAAABuQAAAAZzbGljZXNWbExzAAAAAU9iamMAAAAB AAAAAAAFc2xp
Y2UAAAASAAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAAAAA AAAGb3JpZ2lu
ZW51bQAAAAxFU2xpY2VPcmlnaW4AAAANYXV0b0dlbmVyYXRlZAAAAABUeXBl ZW51bQAAAApF
U2xpY2VUeXBlAAAAAEltZyAAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3Qx AAAABAAAAABU
b3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAA7gAA AABSZ2h0bG9u
ZwAAAbkAAAADdXJsVEVYVAAAAAEAAAAAAABudWxsVEVYVAAAAAEAAAAAAABN c2dlVEVYVAAA
AAEAAAAAAAZhbHRUYWdURVhUAAAAAQAAAAAADmNlbGxUZXh0SXNIVE1MYm9v bAEAAAAIY2Vs
bFRleHRURVhUAAAAAQAAAAAACWhvcnpBbGlnbmVudW0AAAAPRVNsaWNlSG9y ekFsaWduAAAA
B2RlZmF1bHQAAAAJdmVydEFsaWduZW51bQAAAA9FU2xpY2VWZXJ0QWxpZ24A AAAHZGVmYXVs
dAAAAAtiZ0NvbG9yVHlwZWVudW0AAAARRVNsaWNlQkdDb2xvclR5cGUAAAAA Tm9uZQAAAAl0
b3BPdXRzZXRsb25nAAAAAAAAAApsZWZ0T3V0c2V0bG9uZwAAAAAAAAAMYm90 dG9tT3V0c2V0
bG9uZwAAAAAAAAALcmlnaHRPdXRzZXRsb25nAAAAAAA4QklNBCgAAAAAAAwA AAABP/AAAAAA
AAA4QklNBBQAAAAAAAQAAAADOEJJTQQMAAAAABMIAAAAAQAAAKAAAABWAAAB 4AAAoUAAABLs
ABgAAf/Y/+AAEEpGSUYAAQIAAEgASAAA/+0ADEFkb2JlX0NNAAH/7gAOQWRv YmUAZIAAAAAB
/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwM DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBER DAwMDAwMEQwM
DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABWAKADASIAAhEBAxEB /90ABAAK/8QB
PwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAA AAABAAIDBAUG
BwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGx QiMkFVLBYjM0
coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5Sk hbSVxNTk9KW1
xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1 AQACEQMhMRIE
QVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJE k1SjF2RFVTZ0
ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eX p7fH/9oADAMB
AAIRAxEAPwD0OmrMfR091FrWVCuv1WmZIAa72bfb9H99VSzrtXVt9Tcd2K+4 B1XqO3io/Tya
2H2ts/0tX0LbP0v8u7Swf6Fh/wDFs/6hOcGs5gzN797RGwO9nGzca/3v5SMg DYPfRUdKP4OS
yvr+YHGnqGP6bi5thpIe9unsZXZ6b6mva57bHfov5v8AQ/8AdtXBj9eFk/aa fTDzDNvNekbn
kbvU+n/xf6P+kfz1gMdnS8TJtdXc+y7p9X6SqK9waGnbpXWyzc5u7Z7v0qAz pHRnl+U92Th3
MY59t1rjU8VANrf6mS4e/a2mux2T6z8r2U325HqVU7CY9RqFol0OhbQp+sEg 1ZVADi9xqsaX
lu6xjms9Ru3cypnrV/676XFX1ic10ZOOCGwwgF0umw7rfY3+a/QV/o9n2nZe /wDUvWr+z0sW
r6vYj3vbm3b6rHH0rHFjpoPrXVY1Gyp9dTN36anDYyp9X6Kz9B7FPIp+rxdt HUzik2mwiq9t
YL8jfaxrtNn6b7W66tn/AGo/nP03ppq5stx+uFj7GZdf2h1ZG13uq3gWsqtY wN/Rts/V7nf2
0zcP6wOuD359bAHue9jGS0aVMqrY13u9P0/tD7Gvc/8ASel/xir/ALP6EPQr qybaS4Gqp9Tn
Mj0t+M3GutYzax1NubspxMn/AA/6Kur+drQ6Mb6ts9uJlvc54rO+hxeHB76q av6Ow1u2Orbv
/wBB6tmVb6f9ISU3HY/1mc54+1011lpaIZLw4/4VjyzZ7P3LKf8ASVf4SvIp iMT6wttN7c1j
Q9zv1e0B7GyGbS17WV2WbPS3en+i/nL/AOZ/RfZaHofVdtNTbeouyqpa9ths 9Zg5fLbw237M
z27/ANHbT6fp+r/wik7pf1bBqxh1KxhaNlFTLw123Wv0aNjW2bNv6P0qf539 V9T1PRw/TSm5
TifWQFvrZdVtTjteGyHitx9z23bGMffW1302U0f8XV/NKduH9YhS2mnMqgsc 2yx4PqSRUGvr
e1u3e3be/wCh/hPoI+P1rpBrDa8hsNG1jXAtc7awWbaq3Na+13p+7ZUxTPXO jBu52bQ1sMcS
6xoAFjRZTuJPt9at2+r/AEiSmvZh/WBpcaMyv3zu9Rm4gxQys1QA1n83kWvZ t/nbf9H/ADLD
E+sNdbtuYyx7pIDwJb/O6B4ra13/AGn/AMHV799n/AW66SSnLx6PrA07sjIp tIrc3a1uxheS
xzLNuyy39HtsZ/P7P0n81+j/AEhMCjrDb/Uz767KywxXUCIe5wd9ItbvZWxu xjvprQSSUpJJ
JJSkkkklP//Q9Lwf6Fh/8Wz/AKhWlVwf6Fh/8Wz/AKhWkTufNA2Dl2XDfnBu DL2VPJca/bbp
pXuaHPt9T85uz+p6ybEt2MuLsStz2VFzvswcS8AuikNvrp97/wAxnqrTB97v kqueX/Y7SIIB
HtdpMObLZkfS/dRB6dygjr2cu3Lxm7W29FcXtN4xdtQLIbOr3OrY/G+12bv8 F+k/6+z1Buze
jtz6w3o932ndDAKWtJLvTdbkek57G2NxXu9O7K2/q77P0Xszf0+hiOynU3nG bWyzeyGGY2wz
1Ttk7bPT3en+Z9BDH/OZlg2+hYx384bTqDLd3oNpFf6D6fo+s+2//S/8ICKN JBsWvfmMqroI
6cXN3PG3ZqALGssOOxldm/1P6TXv+z+rT+kVejNxBV6mJ0aysNDbHsfSK3bW te5vpem21tmQ
zbsrqe+pn6X+f/nVdeOuOo9xrY8+nPoxvHs/T+mbw+nb9o2bN7P6N6v+H9NB DvrSa3tezFDt
rwxzC7dO2z0vp+z+d9Dd+j+hv/m0EsunfYcq20Dpn2UVMY1rrq2tLg4PrdW3 buZtqq9nssf/
AD3pfvq6em9PNhsOPWXu5cWiZJ3k/wBZz/crKSSmu7p2A8MDsaoircawWN9p d9PZp7d/5yEe
jdKNzbvslQe2To0AEn857B7Hub+Y9/8AN77PT/nLFdSSUpJJJJSkkkklKSSS SUpJJJJT/9H0
vB/oWH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMR9N3yVVxrzKbGUXbXyCHC TBBD2+32/uK0
Ppu+SrPwsKjFyA2kCuxrnWtEjdpqJ/qpBRa2O1t2JfYcxwY6xsZA9jYr2e1l jj78ex49N72e
nv8A0npP/wAKqbcDFDvVq6saGtLhYGOazea3Fj7b5dusv/VrftGR/hNlv83+ lVu3qGFbgVus
pHovsFbA/wBjWuZ+krsaXNa6r031/on/AODf9Bcz1rLpwX4zulYOJXXZS+93 qB4cHVP9Br6P
Rto93v8AU9Tb7P6TZbX6fqp8cc8kgIj5tvoFpnGINnbUvQ2Y+F6Qx7upC1xc xmy9zXsc+phq
sD6tzd9j/wCff7/6XXVd/g/0gmdKZcx1NfWH5AfuaGOc2xpBa5xrdW1zWu/R Xss9v/Bens/R
LlxldUIDh0/phaGupbpaG7AAx9LGnI2/ZvTb6Vf/AGn+z/o6/wBXRqeq9dY4 FmL05pq3Wby2
4kE+o990m42OyHuvv+j+tfprv8Jfssk+55u0f8aK37xj8fsL3VWXivx2Xsua 6h8BlhdoTOz6
Tv5SavqGDaAa8it247W+4amfT9v9Z/0P31wrOo9YZUccY3Tq6KgXV4za7Cxp J9EuppqsHpet
9osZda2z0vS9b/BWfpIMzOp+ozIOL07fY4H1S295Jb+mqsc85Hv9R257rX/z f/an9L6laX3P
N2H+NFXv4+5+wvoFOTj3tDqbG2Ata/2kH2vG6t39tv0UP9o4G7b9orkDd9IR EOd9L6P0WPcu
HHWOvt2htPTwRWACC/c6qshjaLPXtfa6n9L/AEf6f/XvUQrM3q17gx2H06wV 7doIuDWktrbt
ZOQG1Nra+lj/AKFP80z+d9OtL7nm7D/Gir7xj7n7C9+3NxH2ek25hfpAkayX t9n7/uqs+h+4
jrzcdf6rjB7hjYG1h9Ysi5zQ6t7mteyp+T6e/wBb9JR/p/53G9Syr2Xx9bvr KWNcP2fuf9Gv
baSR7Pe0tvd6nutY39H/AFP539Gj9yz9h/jRR94x9z9he5SXEO+tP1rZrYzp 9YBgki0mYn6D
LnWO3fmbGfpP8Fvq96F/zy+swe1hrwQ5ziyNthILW+s7Rl7nWez/AEPq/pP0 P86kOTzHYD/G
ir7xj7n7C94kuJP1n+tge1prwNrnAB22wmHObU12xl73fSs+igY311+seRG1 mI2QCP0Vrj7i
9nuAyPYzdX+kt/m6/wBH/pEvueYi6Gn9aKvvGPaz9he9SXC5H1t+tlFVlj6s Eemx79G2v+gy
y78y/wDObQ9dvS82U1vdEvaHGOJIlRZMM8dcVeq6oiXy/wB1fDJGd8PTwp// 0vS8H+hYf/Fs
/wCoVpVcH+hYf/Fs/wCoVpE7nzQNgwb9N3yU1EfTd8k7nBoLnEBoEkngAIJY T+hmfzZn5LM6
v01mZfTZbhUZYYwibGNe5pLmO9r7G+1mxr/+uLQN9DKQbbGsb9Alx26x9H3f nKp1CivJpbeM
hjKWB264uaBBDqz79vt27t+/d7LWJ0NCCdES1FNB/wBX8GtmNs6NhZMhv2l/ 2elryZa1/wCh
ea62exz37/Xu/wBH6P56qDo1rcZ7nfVrptmQyppY1ramh9p9P1WBr2O9Ktm6 7Y51r/5r/hf0
e2cXIfVi/Z8wNFTWHaBLLILXb/0b6X++ttjfp+h79/oqoOm9UZjW47Otu9Rl TKw99dbjW6K5
vs3H1Xvu9O3+dt/w/wDwdSRkb3KhEdmnl9CbWXjF6B0+4MA2udVSzed4+h9L 2/Z/p+p6f6X+
bTN6KfUO76t9ONctGjagSIsddbv2P/4Cuun0/wDS2eutK/p2a697aeqOoc+b KqgNxa0VDF3x
a9+/Za/1vo/Z/U9P9D6v6VQx8Tqn2p7L+qh+0EjFa1hJY5rq677XMFORXvt/ S7aH11/o/Sqe
hxS7lXCOwc13RL2taB9X+m2uexh3+jSzY8tqF/q1+pZ6np2vyHsrqf8ApK2e j6/+HuM/ozHF
rK/q7hMrNzWEubQYqDWPtyPT+i/fbvqqq3+p/hrPS/m1s4X8/YftoyzXVVTa 2RLbazd6ttjK
nejXZdv9zGUVfzP/AG3aZdVY57K3te6s7bGtIJaY3bXx9H2pcR7lVDsHGxfq /wBOdawZPRcG
phpDnbKanBtskPr9SGvd+j2f4D/r1itf82vq7/5V4evP6Cv/AMgtJJLiPcqo dg5p+rX1dJk9
LwyfH0K//IJH6t/V4kk9MxCTyTRXr/0FpJJcR7lVDsHM/wCbP1c/8q8P/tiv /wAgnP1b+rp5
6Xhn/rFf/kFpJJcR7lVDsHM/5s/VwiP2Vhx/xFf/AJBaQAaA1ogAQAOAE6SR JO6aA2f/0/S8
H+hYf/Fs/wCoVpVcH+hYf/Fs/wCoVpE7nzQNgxb9N3ySexr2OY7VrgQe2h07 Jh9N3yU0EtL9
l4VeM2mtjmMqcbGBj3MIcQ4aPY5rvzlUz6un11U4VlDn1APcxznWNjefQsHr Brn+9mTZv9/8
0tdwlpA7ghZ/UvtE1mqoWOhwjaHAe12yXOqf7fV2Mf7v5v8AMTo6mjt2WyFa jfu59/Tfq+44
32rHOPZkBxOMDtEWu23C1zDs/n8hn82/f/1r1ECnM+p9WN69e6iqmj1XtDLG wy5rRue8N+m6
vM/Nt/wm/wDwP6LWsuvroxWHDNlTgz1vaDsMsbtbQxu727nv/m9n6NVf2l1f 7LY+zo02trY8
sbY12+0mvfU0bf8ABPfb7/8Agf8AR2esgdyuGzV6kfqrWC3MY9orDCaxu2tD XMxG79jvTb6f
pVeyz6bP6P6nqW+oXG6h9Wcax1dVtjWl1fteLnND3usymta2wOdTY51Lrbv5 v1P0fqq1fm9U
psv9Ppzchodq5p2F5FPqcObZv/T7KG3f+kve1PVM++9zD0tzK2bg657uHNYX OYGelvt9+2nf
R6lL/wDA23IKc23I+qrnVPymXNsrZW7GqeXyGvbXbTVRUx35v2plP/BW/o/+ 460MPqXQsANx
sS17/Utrx66zvdD3Mrcymt93tYyuiyuz0vU2U/zf87+iV7GdZZYK7sUUMbRU 9rTDtr3eq23H
3M/RfoG11fzf76s+jVxsbyTwOXfSd/alJSDG6ji5T2tocXh9QvY6IBY4ln50 P/N/dVpNtbu3
wN0Ru7x4SnSUpJJJJSkkkklKSSSSU//U9Lwf6Fh/8Wz/AKhWl8qpInc+aBsH 6Vuqta7Pszbh
ZgOrMUOa9oa0fzm+0B25j1Hp7QX5VeI6ltppZ6d43PcGk3fZnWY7m1fq7LPX 9Fjcj/ri+bEk
/wDQO/8A3K0/ONv+6fo84fWvRv25zhvc7dLCSwfpN32d3pB9rm1up2ekz0/V /m/+Eb7J9YRj
2hmcyTc12OX1PJa1r3v9G2NljmWv9Cqyz6H2b1V84pKNe/SFWN9Yxk1Ouy69 rZ3Vgbg5sU/S
tbRTWyxlm7/BfrDPV9D7H6v6o9GH9ZQ1ouz6y7l7hWOZcdrGln0f5tn/AG9/ 3Io+xfNySSn6
WycfqjmMDMr08kutNLgxxrDXD9GzI2j03+l/g7LW1/8AFW/4WDMPrf2ndZnw fcWMbVNcSwbX
e32+z3fznqve/wDQ+lXVd6/zYkkp+kcTF623NY+3ND6gScmp1Zgz6mxlFm2q vaxjsf3sb+kt
ZZb+i/mFsr5VSSU/VSS+VUklP1UkvlVJJT9VJL5VSSU/VSS+VUklP//ZOEJJ TQQhAAAAAABV
AAAAAQEAAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAEwBB AGQAbwBiAGUA
IABQAGgAbwB0AG8AcwBoAG8AcAAgAEMAUwAzAAAAAQA4QklNBAYAAAAAAAcA CAAAAAEBAP/h
D85odHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdp bj0i77u/IiBp
ZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1s bnM6eD0iYWRv
YmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDQuMS1jMDM2 IDQ2LjI3Njcy
MCwgTW9uIEZlYiAxOSAyMDA3IDIyOjQwOjA4ICAgICAgICAiPiA8cmRmOlJE RiB4bWxuczpy
ZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1u cyMiPiA8cmRm
OkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczpkYz0iaHR0cDovL3B1 cmwub3JnL2Rj
L2VsZW1lbnRzLzEuMS8iIHhtbG5zOnhhcD0iaHR0cDovL25zLmFkb2JlLmNv bS94YXAvMS4w
LyIgeG1sbnM6eGFwTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9t bS8iIHhtbG5z
OnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVz b3VyY2VSZWYj
IiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGhvdG9z aG9wLzEuMC8i
IHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIiB4 bWxuczpleGlm
PSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgZGM6Zm9ybWF0PSJp bWFnZS9qcGVn
IiB4YXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDUzMgV2luZG93 cyIgeGFwOkNy
ZWF0ZURhdGU9IjIwMDktMDYtMDRUMTE6MTQ6MzErMDI6MDAiIHhhcDpNb2Rp ZnlEYXRlPSIy
MDA5LTA2LTA0VDExOjE0OjMxKzAyOjAwIiB4YXA6TWV0YWRhdGFEYXRlPSIy MDA5LTA2LTA0
VDExOjE0OjMxKzAyOjAwIiB4YXBNTTpEb2N1bWVudElEPSJ1dWlkOkU5QTky QjAwRTg1MERF
MTFBQjlBQzJENzM1MUU1RTc0IiB4YXBNTTpJbnN0YW5jZUlEPSJ1dWlkOkVB QTkyQjAwRTg1
MERFMTFBQjlBQzJENzM1MUU1RTc0IiBwaG90b3Nob3A6Q29sb3JNb2RlPSIz IiBwaG90b3No
b3A6SUNDUHJvZmlsZT0ic1JHQiBJRUM2MTk2Ni0yLjEiIHBob3Rvc2hvcDpI aXN0b3J5PSIi
IHRpZmY6T3JpZW50YXRpb249IjEiIHRpZmY6WFJlc29sdXRpb249IjcyMDAw MC8xMDAwMCIg
dGlmZjpZUmVzb2x1dGlvbj0iNzIwMDAwLzEwMDAwIiB0aWZmOlJlc29sdXRp b25Vbml0PSIy
IiB0aWZmOk5hdGl2ZURpZ2VzdD0iMjU2LDI1NywyNTgsMjU5LDI2MiwyNzQs Mjc3LDI4NCw1
MzAsNTMxLDI4MiwyODMsMjk2LDMwMSwzMTgsMzE5LDUyOSw1MzIsMzA2LDI3 MCwyNzEsMjcy
LDMwNSwzMTUsMzM0MzI7MDI3MjA4MkNGM0FCRjQ1REQyRTIyMDQ2NUVGNDk2 NDMiIGV4aWY6
UGl4ZWxYRGltZW5zaW9uPSI0NDEiIGV4aWY6UGl4ZWxZRGltZW5zaW9uPSIy MzgiIGV4aWY6
Q29sb3JTcGFjZT0iMSIgZXhpZjpOYXRpdmVEaWdlc3Q9IjM2ODY0LDQwOTYw LDQwOTYxLDM3
MTIxLDM3MTIyLDQwOTYyLDQwOTYzLDM3NTEwLDQwOTY0LDM2ODY3LDM2ODY4 LDMzNDM0LDMz
NDM3LDM0ODUwLDM0ODUyLDM0ODU1LDM0ODU2LDM3Mzc3LDM3Mzc4LDM3Mzc5 LDM3MzgwLDM3
MzgxLDM3MzgyLDM3MzgzLDM3Mzg0LDM3Mzg1LDM3Mzg2LDM3Mzk2LDQxNDgz LDQxNDg0LDQx
NDg2LDQxNDg3LDQxNDg4LDQxNDkyLDQxNDkzLDQxNDk1LDQxNzI4LDQxNzI5 LDQxNzMwLDQx
OTg1LDQxOTg2LDQxOTg3LDQxOTg4LDQxOTg5LDQxOTkwLDQxOTkxLDQxOTky LDQxOTkzLDQx
OTk0LDQxOTk1LDQxOTk2LDQyMDE2LDAsMiw0LDUsNiw3LDgsOSwxMCwxMSwx MiwxMywxNCwx
NSwxNiwxNywxOCwyMCwyMiwyMywyNCwyNSwyNiwyNywyOCwzMDtERDhERkJD NjU2QkY3OTM3
NDk2OTlBQUUxM0VFNjJDQiI+IDx4YXBNTTpEZXJpdmVkRnJvbSBzdFJlZjpp bnN0YW5jZUlE
PSJ1dWlkOkU4QTkyQjAwRTg1MERFMTFBQjlBQzJENzM1MUU1RTc0IiBzdFJl Zjpkb2N1bWVu
dElEPSJ1dWlkOkU4QTkyQjAwRTg1MERFMTFBQjlBQzJENzM1MUU1RTc0Ii8+ IDwvcmRmOkRl
c2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDw/eHBhY2tldCBlbmQ9 InciPz7/4gxY
SUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkA BgAxAABhY3Nw
TVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLUhQICAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAAB UAAAADNkZXNj
AAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRn WFlaAAACLAAA
ABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD TAAAAIZ2aWV3
AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxy VFJDAAAEPAAA
CAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAo YykgMTk5OCBI
ZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2 MTk2Ni0yLjEA
AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxY WVogAAAAAAAA
AAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3 hQAAGNpYWVog
AAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3Lmll Yy5jaAAAAAAA
AAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4x IERlZmF1bHQg
UkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYt Mi4xIERlZmF1
bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAA AAAAZGVzYwAA
AAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2 LTIuMQAAAAAA
AAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2 Ni0yLjEAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPt zAAEEwsAA1ye
AAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAA AAAAAAAAAAAA
Ao8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4A IwAoAC0AMgA3
ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQA qQCuALIAtwC8
AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgB PgFFAUwBUgFZ
AWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC DAIUAh0CJgIv
AjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsD FgMhAy0DOAND
A08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUE YwRxBH4EjASa
BKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF 9gYGBhYGJwY3
BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H 0gflB/gICwgf
CDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ +woRCicKPQpU
CmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwM dQyODKcMwAzZ
DPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUP QQ9eD3oPlg+z
D88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUS ZBKEEqMSwxLj
EwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V 4BYDFiYWSRZs
Fo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZ txndGgQaKhpR
GncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd 7B4WHkAeah6U
Hr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUi giKvIt0jCiM4
I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kn eierJ9woDSg/
KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs 1y0MLUEtdi2r
LeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMy mzLUMw0zRjN/
M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4 yDkFOUI5fzm8
Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/ YT+iP+JAI0Bk
QKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJG Z0arRvBHNUd7
R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN 3E4lTm5Ot08A
T0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVV wlYPVlxWqVb3
V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114Xcle Gl5sXr1fD19h
X7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm 6Gc9Z5Nn6Wg/
aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9Fw K3CGcOBxOnGV
cfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl5 53pGeqV7BHtj
e8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qE HYSAhOOFR4Wr
hg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaO zo82j56QBpBu
kNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ /JpomtWbQpuv
nByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTil qaYapoum/adu
p+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx 1rJLssKzOLOu
tCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+ hL7/v3q/9cBw
wOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbL tsw1zLXNNc21
zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZ bNnx2nba+9uA
3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/n qegy6LzpRunQ
6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72 bfb794r4Gfio
+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////7gAOQWRvYmUAZEAAAAAB/9sA hAABAQEBAQEB
AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAgICAgICAgIC AgIDAwMDAwMD
AwMDAQEBAQEBAQEBAQECAgECAgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD AwMDAwMDAwMD
AwMDAwMDAwMDAwMDAwP/wAARCADuAbkDAREAAhEBAxEB/90ABAA4/8QBogAA AAYCAwEAAAAA
AAAAAAAABwgGBQQJAwoCAQALAQAABgMBAQEAAAAAAAAAAAAGBQQDBwIIAQkA CgsQAAIBAwQB
AwMCAwMDAgYJdQECAwQRBRIGIQcTIgAIMRRBMiMVCVFCFmEkMxdScYEYYpEl Q6Gx8CY0cgoZ
wdE1J+FTNoLxkqJEVHNFRjdHYyhVVlcassLS4vJkg3SThGWjs8PT4yk4ZvN1 Kjk6SElKWFla
Z2hpanZ3eHl6hYaHiImKlJWWl5iZmqSlpqeoqaq0tba3uLm6xMXGx8jJytTV 1tfY2drk5ebn
6Onq9PX29/j5+hEAAgEDAgQEAwUEBAQGBgVtAQIDEQQhEgUxBgAiE0FRBzJh FHEIQoEjkRVS
oWIWMwmxJMHRQ3LwF+GCNCWSUxhjRPGisiY1GVQ2RWQnCnODk0Z0wtLi8lVl dVY3hIWjs8PT
4/MpGpSktMTU5PSVpbXF1eX1KEdXZjh2hpamtsbW5vZnd4eXp7fH1+f3SFho eIiYqLjI2Oj4
OUlZaXmJmam5ydnp+So6SlpqeoqaqrrK2ur6/9oADAMBAAIRAxEAPwDcQ/l8 f8yNyP8A4fNZ
/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXobKzszsrJ7u37t7Ye wuvctjev9xY3
auSym9e19w7MyFbl6/Y+0N+O9Bh8J09v6nOLgxm9KWFZpK1JXqI5QYVRUdwv 9Jt8NvaS3t7M
kkyFwEiVwFDvHktNHmqE000pTPGhobu+knuorS0iZInCkvKyEkoj4CxPijgV rWtceqp6t7By
m+497UmeweFwOe2FvT+5mZp9t7nq94bfqqqTZ2z96wVeKztftfZtdURDG7yg hmSXHQNFVQyq
pkQLIzF5bQwC1ltp2kt5oy6llCNh3jIKhnHxRmlGOKcDjp+zuZZzcxzwqk8U mhgrFlyiSAgl
UPwuOKjNeIz0WL5Hx/IDorIbw716WqN59qdd7tk2y3e3Svk3BvrffWmNxKYD bmZ+QfxH2/8A
w/dmTyefwHX2Lb+8vU1FQ1VDumWkh3BtahG7483gezQLz22+pylvbctTpHvX hDw2Y6QoLqJD
q0sEbw9eh30xo1HkkijVpFNrLwTdQ/UKTDXI/LH25pUDJGACcF9+LvZVN2NW U+a6z3VQdjdK
Z/Zrboi3zh+3cn3jtefOZebbeQ2a+z+xcrVZN8jBuTa2Tr6iuoqavraKhSko ZIo6UVheuhL2
Q3zm/cOY9+2/c5r2XZobciT6mZ53iu1kRfD1yVaNipm8WHUPDdCuhdIVTfeI bVLeGSNUEpbG
kAArQ5oOIrSh8wePRk+0u2OrOjtiZ3tLuvsvr/p/rLa/8M/vL2L2lvLbnX+x Nu/xvMY/buG/
ju7t2ZLEbfxH8X3Bl6ShpfuKiP7isqooU1SSIpya6D3RYF+fHQWU7C6kpNnd kdP73+PnZ/xg
+YXygq/lXtrubZeW6a2rtX4ddmfGfrffSVO7MW+R2TXbfjqe/chPls02dpab b0m1KiCoilM0
r0Xuvden/mOfC9OwvjFsWh+Q3T+bxHzF2/3Bkvjp21g+2uqcl012purpjszp fqPOdS7G35Dv
gU2+O4Ny727spaXCYHBQ5SprJMHmIpDBUUaQz+690D/xo/ms/Fjuj4sYn5i9 pd9fEDoTpLff
YFBtTrrO5r5fddZj+Ff3n66wPaW0esfkBk9xYjrnaXS/y/odpZWom3X1fQ5T dn93Ps2eHOZS
Fmli917o4HYPyx+LHUn98P8ASt8lvj/1l/o9+6/v/wD6Qe5Outmf3H+y/wBD v3n98P7x7jxv
92ftP9mI6/8AL974PH/frb2q38axv3Puvde278sfixu/D9i7i2n8lvj/ALo2 /wBP9f7R7Y7a
zu3e5Ous3h+rurOwNiT9pbD7L7FyeN3HU0Wyev8Ae3WVNJuPEZnJvS47JYKN q+nmkpFMo917
pP73+UG1difJXYnQGaTb9HiNw9P5/sfe3ZOU3pjsRjur91Z3u/o7of4x9Y7p xNXQmmpNwfLz
e3ZG6aHYZq8jQVOfyvX2Vx+JpMpUR1f8P917pQYz5Y/FjN776t6tw3yW+P8A l+ze8ev8f2x0
p11jO5Ouq/ffcHVmXw+d3Fiuy+rdo0u45dwdgdf5Pb+18nXU+ZxNPV46ajx1 VMkxjp5WT3Xu
k/VfN34X0OO7rzFd8u/jBR4j417gxW0/kXlKrv3qmnx3QO6s7urIbFwe2u66 6bdiU3Ve4Mzv
bE1WHpKLOtQVNRlaaWkjRqiN4x7r3S/pvkL0FWbVzO+qTvDp+q2Ttzp/bXyF 3DvGm7L2XPtX
BdBb0x27Mxs7vDM7hizTYjF9P7sxGws7VYzc08yYWvpsLXywVLpR1DR+690w bj+WPxY2dt3f
+8N3fJb4/wC1dpdUfZ/6Ut07j7k66we3etf4j2nvXovH/wB/83k9x0uM2d9/ 3b1ruPZ0P8Rl
pvLurAZLErevoaqni917r2M+WPxYze++rercN8lvj/l+ze8ev8f2x0p11jO5 Ouq/ffcHVmXw
+d3Fiuy+rdo0u45dwdgdf5Pb+18nXU+ZxNPV46ajx1VMkxjp5WT3Xuif9nfz KarrD/SnnqX4
hfIDu3rLY3y/2p8OtrdnfH/dfxxy23d5b73l/sr/AFxhKyVu9O7/AI+RR+T5 dfIPMdQ1se3p
91Ue3d1dfZ1dw1uGkpqikpfde6OBj/k90nHh8nU787E6/wCod27O6/zvYvb3 WPZHanUVLvvo
jD7I2J1b2P2pB28u1OwN2bS27/od2l3ZtKt3PkabLV2CxtHuXFVgr5aDKY6r qvde6T+Z+bvw
v2501tP5F7h+XfxgwXx837uCp2nsXvbM9+9U4vprem6qOfctLV7a2n2fXbsg 2TuPcFLU7LzE
clFR101SkmJrFZAaWcJ7r3RX9q/zY/ixl+ovmBv/ADO+Ov37N+En+z57j7r+ L/XXbnXXYXyO
xHVnwX7s7Z6syu/5+sarM7N3Bgf9J+3+u8ZmsdDloaDHUku6KCjfJTRyRV9R 7r3QwbI+evUt
Vkd97X+QmC3B8IexOvNv4DfOd68+WG+fjxgcjP1nunaveO88B2Tid8dQd5dz dOZDb9Rtv4vd
m19ZQjcy7hwuK2DlsplMbQ4gUdfWe690MGT+WPxYwm++0urcz8lvj/iOzeju v8h2x3X11k+5
OuqDffT/AFZiMPgtxZXsvtLaNVuOLcHX/X+M2/ujGV1RmctT0mOho8jSzPMI 6iJn917pP7A+
ZXxq37keiNnDurp/bHcfyP6f2t3j1T0Bme7ekM33Luzr3dW1cpu+nz+09udd 9k75xHZe38fi
NvZVpM7tDIbh2zVR4isqKHJVdHAak+690D/a380j4C9O7iwu3d3fKz4//wDZ QEvxo7SztB3n
0v8A3d+Nnaf+iz5AdpY/E/JfJ5PsHF/6Hf47/stm49uUEGRT+I1W6vBQLS/8 CpaX3Xug/wDk
f/NJ6s+Lfe0/VnYvW/YGe6/j7A+MPTuQ7u63m25uPZ3XHafe+zvlN3L2lS97 PncntLC9S9f/
ABL+Mvx4xHaHYeYfLZLI4PYm+8XmqvE0uKMNfWe690IG3/5l3xYyPafzJ673 duz/AEO7S+EH
+hb/AEpfIrufO9ddffGfdX+mzcfYXXeP/wBGfbuT34+Mzn9we7eqNx9dbo/i MGJ/hXYWFrcA
vnr6Sqjh917r3zM/mSfFj4c/FjcXyX3H3b8f8x/GPj/2b3p8aNlZvv8A662J /s3H9xOuot/4
Ha3Re46+szH9+/79/wAYwlJSV2AoM7p/jtDLHT1H3EEc3uvdKD5MfPjoLoHr 35hVe3uyOn+1
vkH8OvjB238oN9fFTDdzbLxvcse1esOs17IpE3ZtOhfc+9uvNv7qpsph4I81 WYKemgjzlHOs
U4ngSb3Xuhgyfyx+LGE332l1bmfkt8f8R2b0d1/kO2O6+usn3J11Qb76f6sx GHwW4sr2X2lt
Gq3HFuDr/r/Gbf3RjK6ozOWp6THQ0eRpZnmEdREz+690T/rH+Yt2Lu/ffxU6 i3t/Lx+X/X/Z
vyb+P+0/kBP5838WF2J1dt2LD/HP/T9Fu7/SF8i+q++qX/ZY99fJnB7d3HRV 3XWL3Vkqynq5
MPgq+OFre690aDcvzd+F+y+vabtzePy7+MG0+qazcG09p0nZ25e/eqcF17Vb q371nhu6ti7a
pt6ZTdlLtufcG9OnNx4/duJolqTU5HbNfT5SnSShninb3Xug/wDmV8+Ogvh5 173VV7h7I6fz
fyD60+MHdvyg2L8VMz3NsvY3cvcm1emOs+yeyKtNp7TrnzO9n2/lqbqvMQSZ qjwWUpqGPH1k
7RSijnQe690n+2P5kPx72d8WOy/mL0XU/wCz1dJdLf3yrO4s78Ku0vjP2j/o 1271z11ku0uw
dx5/J7w76622lX/3O2lS0k1VhMXlMjuqX+L0L02KnhleWL3Xuhgpflv1LtzH dKUnyJzG3/h1
2t8g9wZXafVPx8+TPbvx4293LvTdWN3Vj9qU+2tnY/rvuXszZPYu4MxU5/DT 01FtfO5ypSPP
Y+CpSnrpzSJ7r3Qf/IT+Y58L/jPPvfD9lfIbp+Pe3Ve4Oi8b2/1jje2uqU7M 6b2r393L0v0r
trtrtrZef3xgcv150/tbL9+bczGez2UWnpqHb1WKuIVDy0sFR7r3Qf4z+Zp1 LnezNw7c251b
3BunonbHcHx86IyHzU2nlvjxur4wVnZnyr69+PO/vj5i9tf3e7+yfyD3nt/s 2T5Wdf4ei3Bh
9gV23ochuFKmproMPS12Vpfde6MBuX5u/C/ZfXtN25vH5d/GDafVNZuDae06 Ts7cvfvVOC69
qt1b96zw3dWxdtU29Mpuyl23PuDenTm48fu3E0S1Jqcjtmvp8pTpJQzxTt7r 3Xtz/Mr41bE3
V33t7sPurp/rvEfGPb/TGZ7y31vnu3pDbm1er8j3xkdx0PX20+yaSu7JTe3V e4MzTYnG1lDJ
uvD4PFZ+m3JjVwdZlahclBj/AHXulBm/lj8WNs/6C/7x/Jb4/wC3/wDZoP4R /stH8b7k66xX
+zEf3g/ut/Af9Bf3+44P9Lf8b/vxhPtP4B/EPuf4xQ+PV93B5Pde6T/w8+Yf QXzr6C2J8i/j
pvvb+9Nk702/tfJZTF43dGy9x7q6u3VuPZe2N9V3UvbVDsXc+78RsnuDZOI3 fQx57AyV0tTj
amUKxZGjkf3XulBu75Y/Fjr/AGJt3tLfnyW+P+yest39fwdsbT7F3d3J11tv Ym6OrKnMddbd
puy9u7uzO46Lb+b6/qNwdwbSoUzNNUS456zdOIhExkyVEs3uvdA/2R8+OgsH stNz9M9kdP8A
yLy9H3B8B+uN1bV6x7m2Xncjs7av8wPv3pnqLqLs7cB2q+8anHbfzmye3hvP bYqaanpt34qg
AoquOnqPvofde6O/7917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xu ve/de697917r
3v3Xuve/de697917r//Q3EP5fH/Mjcj/AOHzWf8AvIbL9jznf/cT29/8Vmw/ wSdBjlr+05n/
AOlvc/4V6Av5bfBCh+QG/M5uTfvQHw5+Qe1qveFFntmJ8kOsqTtHcGxMpujZ PU/WW46Tb2Ny
3S3Z0eAxmbqOtsbVZGtpZ6eFqeCOStCQ0XmUH3X0t5b7esm4z28kMRjISBZQ 1ZZJA1TPER/a
UI0kCmrVQ4N4lvLW4vnis4Zo5pA4LTNGRSONCKCGQH4Kg6hWtKYyaD4r/G2L pTYFVtfdW0up
qGSn3LjqvZ22+usJTrsrr3aW3No9VbW2rtPZ9NU7Y2xFhMVhX6lxdVTUlHQU lLRPR0iwreki
cN3P05h262jkaUW8RXW6BGYtNJNXSHk00LgfGalQ2OAdtUnWS+nmREaaUNpV i4UCKOKmoqhN
dBPwimqmaVNN3z66K7tr/lBvaql6D3h21sbIYbr/ABfxaq9j9Xb033R9Y4DD bA25hsntLr/c
myGhwfxm3zS9n0WUyLbhr59uRPSV2Odcm0VAUoZn5E3LlO15cW3u7pILtC/j KWRBIKtpqrVM
y+H2BFBoaroq9Xhjn3bOcrrmRZ9stzLYsE8M6GfQQF1UZaCI6+7Uc/irQdpM Pk18Xvl78c+z
sd2LvjobfnylwG7Nq9W7qqdq9MdN9n9y5bqDuSfqLaL/ACT7p+M9V1bSVFN0 X3V2D8lk3ZvT
fTIu3V3ymdizeEq6jd8eWxW7MVedbKfceZN0bb7F/oWkJtGCsQsZNRE1KiJt WVkZgQTpdjGQ
8XTn2E5s5U5V9tdiO48xW8V8ocbvbSTQxyvLVwt3CstHvYxblIprONZBIE8W 1jW7R4Nwut+T
FJ3n2T/LL+MmT2C+z/lT3vN2h/KL7N/vBsPcORm6o7g3Bs75rfDrszeXZ1Lv 7rraHaFRhOj8
nQ4Cv3HkN043B5ymw+1FnyopamnpyjDGxW4Sys0umrdCJA5rWrhRqNfPNc9Y q80T7TdczcxX
OwReHsUl/cNbLp06YGlcwrpOVpGVGk8OHQIZn+Xp80N09y9ofKKn330/1B2t 3bt/5C12+ut+
tu3u1q3HYOfsCD+T51xSdIbJ+TFD051x2Tgtv969E/yzNzY3Odp4jae395dV ZXsamrNtYjN1
234MnVKuiLr3xA/l8/K744fIeq+TldhOn6jL7u7g7twu4epNy/N75VfJfI7R 6C+QvUv8sDZG
6+y6b5a/IPoKv7j7k7g2FuT+XZVS4nY+dwmJwtdit3U9JHuzD0+Ehp6v3Xuh g6w+Hfyn+NvV
n8tDL9W4z4/9vd2/Cv4AV3wY7F6+3/3B2L0v1Zub+++3PhvVbu7R2V3Ft34+ d4btqf7p7t+H
dPQ43CV2xaH+NY7c8ldNX4ybFrj8l7r3QP8AQn8ordXx86C3p1Fg9xdP7o3t kfk//Js3tQ9z
SYDI7O3VvzoL+V/sv+WftjKYPfiUmD3Nl8PuCuy/xL7Gyu0ttplc7hcdU7vh 15OmfIZOan91
7oQKT+X737txM/mMXD8YOwsuvT/8+TaeD2F3RHvTdnTW9N1fzNPnn118rfjp truDa1PsyCp3
H0/S7J2XPh+zqKFvuUkqmpMYmUp5Gq0917r3fPw83V80+2vnEm6tibfx+ya7 uD+UX0G+zO69
r5HI9Z9+9BfBr5D7L/mH9zdhY+fI7YyWI3nt/s3EfKzd/VsW3zja/CncOwJ0 rssEyVbS4P3X
uvb+/lt743N82t/d0Gj2/vHqnt/5P/Gn5Y53N7l+ZHza6/x3V+6vjVsf407Y wGyqb4BdQZrb
Pxc+SW4KvOfFLFZvE9gbv3RiqnB5XcFO1dt3cFDtCjxu4Pde6D/qL4C/NDqb b/S2V2xU9P4T
a3w67g2Bvb4f/Afcvyp7W7u6a2FtXDfGD5V/Fzf+Dpvnvvn4iYP5R4Db+6cH 8q6fNYnbe49l
dmU21JOu6fC4bJ0OC3DBR7O917oP9/8A8tD5oYTpD5n7M6ij+MG+97fzGPjB 8gelO5qTsfur
tbqnavxn3V3n8lf5jHycTIdY7i2x8Z+5Mv8AJjb+2Mv/ADJMrt4y5XEdX1NZ TbBpMn4IH3HN
jdve690aDAfAbtPqPYmw929S4D4/5XvrrL+Z/wDOT+YVU7Xye4dx9W7E7+/2 a3MfN3rPaeM7
S7n211Bv/ee2OwNi/HL5WYE1GVbZu7fJWbFpdtQsuMkp83Q+690H+S/lydxb y+WOZ7033trr
+u2/3V8gPih8uuzooPnb87KPYnSXafxw62+MG3W6x2j8M+uMb058cvl99tvP 4qUGU252lvmr
2hkaKsztJU5LZ2UpNp0mFznuvdCB1B8aO0+2f5c/Q2EqcT/ow7N7W+X/AER/ Mm351v2lQbj2
tmOnP9In80PZn80ntr4852GTA1G4K3sDp/b+by2xaWprcXhv43ncVFUVlJgo 6qaCg917pf53
4Vdp4+q/mX786tz/AF/sbuD5n/IDofsTbW+du5Xcexd97u6J6V+OPxP6ozPx 07F7t2ntX/Sb
0v8A6Ra3qzsnBYjd21Dnsx1lR9gtuzb8b7gjehHuvdEA2d/LD+a+zqrfO/8A rk9f9D/I3fny
A7W3b118jcf/ADJvl38qN9/E7qztX44/Aro7dyZPG/Kn4k7s2/8AzF/77bg+ JM+brtkdpw7e
x2Bo8fhKPbW4sNkY6TO7f917oYPk/wDyv+/e6vhfVfHTau7+n6De0/yf/nDd 1plNwZ/elLtU
bV/mC9U/zZdi9M49q7Hdf5XLjcG2cv8AO/aEm54hQmmoqbHZhqGfIvT0UeQ9 17oz+7/5ZfUS
9i/ELdeytvf3zoulPl/hPkh2vuD5Qdu92fKLtPcmH63+LHy56x6Ow+1Ox/kb uTuzfU3+hjvr
v/G7v2rhJszjMFtbIy5rOYoU+aq5jkPde6QGA+LHdnUu+9h5XfKdf1Hxl+I3 y/8AnJ/MV212
J11Xdu9ofI7trMfKXD/N3LZnoyf4n7T6Pqf4D/o8/wBnjzcWOzG29676zu7Z dlUEVNtmlqdy
PT4H3XuiP/DT+UT3n1pt/wCLidp7W2/U0w2//LT7g7ipdy/Nv5hbax3Rvcvw p+MHw06syHVt
N8G/j9uqg+Hnyo3BR78+HdFk8T2TuDedJHi8rnKeafBbkxu0aGg3F7r3RwOv fiJ80Ot+jPhH
1XQ7T+MG4cv/ACudwdU03x0yNV8he1sFjvl5tXZXw9+QXwezmZ7r8PxQzlT8 PNwSbJ7kpd7U
mMwSd0U02Vo5dvSV8NOybh9+6917anw83V8it/ZTuXsrYm38Xsndv81/5Td1 9v8AQvde18jU
QZ/oLrz+Xp3z/Jo21j8fiM/tiqxHaO3/AJI4jZO3OzYospQYrCvs3ec9FFPl UoqWtzXuvdJ+
s/lkdp9N97dTd4/G/Ldf9hf7Lb1/8TqXYm1+/Oxdx7L3j8i+0+s9nfzaus/k J2D8ie59h9J7
+/gHYHa3/DmS9j5PeNHtPc2R3pvvGZiHJY/G/wAWGbh917oH9/8A8tD5oYTp D5n7M6ij+MG+
97fzGPjB8gelO5qTsfurtbqnavxn3V3n8lf5jHycTIdY7i2x8Z+5Mv8AJjb+ 2Mv/ADJMrt4y
5XEdX1NZTbBpMn4IH3HNjdve690n+4P5OHcW/cP8stgYaTr/ACFF2R/w5v2P 0p2/2L80vnZu
DD0faf8AMF2J8tsBitswfAallh+Ivxw/0by/MHJ4XI9i4mbsHI53BYavrE2t R5rdstXtz3Xu
hA7/APh38p8J1187uuNm4z+5Pxl+ZX+lP48Y3oLrTuDsX5d+fsX+Zh8p9r9c dsfzFclhuy/j
5152B8ZP9l+6/wC19y7/AN2dRbT3ruLqzOfdZGohqdp1NDkdx573XurX92dK bqzvzQ6C+RdJ
kNvx7J6r+MHy76U3Di6mqyKbqrN1d/drfCLfWzshhqGLFTYio2/jcR8a87Hk 5Z66nqYamroF
ggqElqJKX3Xuq4MJ/Lw+QnUHwe/l9/GLqYdf1tF8Zfj/AITrvvfo/q35cfJj +XXsTsvvao2l
18+d+ReC+U/xE6uy/fWX/hG+sRveaq2jkdvUWH39WdjS7kzkkOa2/jYqj3Xu iv4b+Ul80Nu/
Fvdnxd663j0/0riOwP5cFN8Z/kLnMN8je1u3+vfmN37hv5Y+2vgxsHJbs6E7 L+LdLTfEfb/W
e9sFislHvzrDdgzW7ds7Po6Pc+1srUZCiO1Pde6sf+WPwq7T73/4c5/ujn+v 8d/s6P8ALA2D
8Kurf7x5XcdH/Ae09q/8OE/xDP7/AP4ZtXMfwvr+b/ZsdueGqx38VyLfZZLV Qp4aX7z3Xugg
+eH8tvfHye793z2NgKPb+9dk9/8Axg64+J3aG2t2fMj5tfFravXm1dgb0+Rm drN67l6g+IOa
25iPnnt/emI+TtfT1vX+8Ny9d01JTbbeio9xQpunIVWI917pP7g/l+/KfKbn 71pdibi6/wCm
OhZPkBtr5YdY/Gyf5B9i/IPYnevyY2V/ME6k+eK9u7u3Z2P8cNs9m/BD/SvW 9Q1+3tx7R2Nm
O0evcdWdhVe4cbt8ZPB1Y3n7r3Q/9KfAClqvkB8g/lJ8mcV9/wBgdvfIDpfv rafU2xvk38jt
7/HHZ2Y61+IHxH6qppt1dI5k9UdAdqdgdc9/9G5jO7U3hmevpc7BFQ7bzMMm LyuPo6PD+690
EHRXwP79+HPTX8tkfHzY3xg3l2t8N/hBvv4ido9U5nsfenx66a3hurvSf4od h90d77T7U2T8
c+5tyZDcFR3H8XqirkoMjsOiqd1yb1rMxXZKgrqJqPK+690T+p/lZdtVe9Ot NkbDq9wbzxH8
v34wfyruiNp7rzPanyH+AGO+TPZnxd6C/mbdO9n4vafyB6CG8O9untv4brb5 77S3dJuDaNFv
Hb2XytPWbDmrpKiPc0uD917o8Hxa+F/yE+HPZOF3r1fsn4/7o2/3R1/19sD5 D7U3F8lfkx/G
OkP7vfLH5l/KDdG9euu0+3Ou/kt2b81uwN1Vvzoz8OXyW8sl1Z/HM7tZcrHH iKTcv8F2p7r3
Q/8AxC6d+U/xw+PfxG+NGQpfj/PtL40/3Q+PW7t60e8Oxdybi7Z+LHTXxnze wOuu29ubcn6+
2RjOofkBvzu3B7Wq83syqr95bcwG1TlYqXcuWr2pJI/de6rgx38tD5oVyfA7 q7cMfxgxPVP8
vDp/479B7F7Kw3dXa2f7C792r0d88/5UPyCq+wt2dR13xn23tvo7cG4unP5d 2YePb9HvTfFN
T7m3HR41stJQwT5k+690IG7P5X/fud3J0FmKTd/T8dN1X8n/AJd917hSpz+9 EnrNq9/fz9/h
F/NR2dj8MsXX80dRuDG/Hz4153D5OKdqemh3lV0FJBPUY2Woy1L7r3V73v3X uve/de697917
r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuv/R 3EP5fH/Mjcj/
AOHzWf8AvIbL9jznf/cT29/8Vmw/wSdBjlr+05n/AOlvc/4V6N5vOo+2w9HJ 9z9pq3ZsKn8v
338P1/d7527S/bfcf3o2h5PvfN4fB93L915PD9lkvJ/DqqP5TRRmncvy/EPm P8OeFG+EileP
5H/B+f8Aq9OPSs9udV6QHYHYEGwoNtKNt7j3fmN37jO1tubc2u224cpksrFt zcW7aoCr3duP
am3qOnpNv7Urqh3qK6HV4hHGHldEZXaWhuzOTOkcUaa2Z9VANSoMIrsas6jC njU0AJ6S3V0L
UQ/ovJJI+lVXTUnSznLsqiiqxyw4UFSQOg+2n2nlaHN7a2hvLrDsrZtRvndW 7aLbmc3Pkeuc
riqjJTUu8OxIMDIu2+6+0Nx0klJtXCVapIYosYrUgjgSihemo43TtqLb3EsG 5wT+GNTBBMCF
Zwtf1I1BozqKBvPCgCgZXcHM8EM+3zQ+IdKljEQWCM1P05HIqqMakUxQmpyk vlr8kct8atsd
a5nB7Cp+wcp2R2nH1pS42qr+yKWDFX627K7HnzT0fUXTHfnYea0U/XL0opsf tup0GrFRPLBT
QTSqdcp8uRcyXW5QzXxt47a18YkCElv1oYdNZ7i1iXM2qrzD4dKhmYDok5u5 lk5ZtdtnisRP
JcXXggEzAL+jNNqpBb3Urf2OmiQn4tTFVUnoAerv5ilLmc3uvFdy9Mdk9eUG LxW1chtTcvXX
TPzZ7awm66vMVe7KbcmCqoNw/Cvp7ce3MrtCHCY6od3x9TRV0OaiEFQZaeqj jP8Ac/buSGG1
l2fd7e4kZnDpNcbdAyBQhRgU3G4R1k1OBRwymM6loykhza/cq3mnuot52ue3 jVEMbwwbjOsh
YyB1Ifbrd0aPShNUKsJBpaqsAdHqDvDrnvXEbjzXXGQ3FV020N0vsrc1Huvr /sLrPP4Tcybc
23u8Yyv2t2ZtbaG5ofNtnd+NrYpvtPt5oatDHIx1BQZu+ybjsU1vBuUcavNF 4iFJYplZNbx1
DwvInxxupGqoKmo6G+zb7tm/wXFxtksjRxS+G4eKWFlfQkmkpMkb/BIjA6aE MKHj0ut2bs2r
sLau5d9b63Lt/Zeydl7fzO7N47x3Zmcdtzau09q7cx1TmNw7l3LuHMVNHiMF t/BYijmqq2tq
poqalponlldUVmBT0b9Eg3N/NH+CezuiflH8l9x95/w7pL4XfIDcHxc+S+9f 9GXcVZ/o1722
rvHY2wM9sb+7lB19Vbt3j9hu3srCUn8TwFBlcPL975Y6t4YZ5Ivde6P/AO/d e6B/C917Vzvf
vZfx0pMfuCPe3VfT/R/de4cpU0uOTatZtXv7enyF2Ls7H4auiys2XqNwY3L/ ABrzsmTinoae
mhpqugaCeoeWojpfde6YKv5L9WYjuzsLovcuW/ufuDrfr/4xb/yu6d3V+3Nv 7Ey/+zd9u92d
F9KbK27m8hno62v7A3F2b0dW4tMbJSQfd1mZxFNQSVlXVvTwe690P/v3Xuig fHv50fH/AOUG
+9+dbdSw/ID+9vV+qDsKm7S+Hfy/+P8Ah9n5j+D7E3LDtHO7s7+6K6y2lRdg Vu0uzcDm6Xbj
V38dq8Fk4snDSSUGqoX3Xujf+/de6B/svuvavVe9Pj1sXcOP3BWZf5KdwZrp TYtRhqXHVGOx
O6sF0F3h8i6vIbsmrsrjqmh2/JsnoLMUsctHDX1JytTRxNAtPJPU0/uvdBB8 hPnR8f8A4v77
2H1t21D8gP729oaYOvabq34d/L/5AYfeGY/g++9yzbRwW7OgeiuzdpVvYFFt LrLPZuq24td/
HaTBYyXJzUkdBpqG917o3/v3Xug/yXaWxMR2ns3pTIZ37fs3sDr/ALL7S2jt r+GZiX+L7E6f
3H1PtPsXO/xmDHybfoP7u7g7x2tT/a1VXDWVf8U10sU0dNVvT+690AHxo+d3 xn+XP8J/0Jbo
7Aqv7z9f0HbGw/8ASh0B8hPj3/pV6sr/AOA6uy+mP9mE6s6u/wBNPX+J/vdg /wCKZnan8Zx2
H/vFhvvpqf8AjOL+7917o3/v3Xuk/trcuO3ZjqnKYum3BS01LuDdm2pYty7T 3VsvItkdl7qz
OzsxU02H3jhsFl6zb9Zl8FPNictDA+Kz+KenyeMqKzG1lJVz+690n+y+0tid P7dxu7Oxc7/d
3b+X7A6n6tx+Q/hmYy/3G++8e09m9KdW4L7XBY/J1sX96OzewMRjPunjWjov u/uKuWnpIpp4
/de6ADK/PX4nYTcXzV2nk+1vttwfy7ev9q9pfMXH/wBxuyZv9D+xN7dWZ/uv bGd+6p9nS0XY
H8T6y2vXZP7Xa0mbrIfB9vLFHVvHA/uvdD/1P2lsTvHqzrTuvq3O/wB6Osu4 Ov8AZvaXXW5f
4ZmMJ/eLYnYG3MbuzaOd/g24sfiNwYj+L7fy9PUfa11JS1lP5NE0Ucisg917 pP5ruvauC796
0+OlXj9wSb27U6f7w7r29lKalxz7Vo9q9A70+PWxd44/M10uVhy9PuDJZf5K YKTGRQUNRTTU
1JXtPPTvFTx1XuvdezXde1cF371p8dKvH7gk3t2p0/3h3Xt7KU1Ljn2rR7V6 B3p8eti7xx+Z
rpcrDl6fcGSy/wAlMFJjIoKGoppqakr2nnp3ip46r3Xuhg9+691737r3Xvfu vde9+691737r
3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9 +691737r3Xvf
uvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691 /9LcQ/l8f8yN
yP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXo3m86j7bD 0cn3P2mrdmwq
fy/ffw/X93vnbtL9t9x/ejaHk+983h8H3cv3Xk8P2WS8n8Oqo/lNFGady/L8 Q+Y/w54Ub4SK
V4/kf8H5/wCr049Kz251XorPyy2FvDf+ydrUezdubh3VPjN15985iNndgVfV e8m25uvp7tXr
PIVu0ewsXu7YWf2fuLHT78hnpsli8zjctj2Q1NFPHUxRH2vs3TwNztzOkUk0 AVWcPoDCaKTu
0I7UKowFFOaA0GQgvUkMu3TpA8ixTFmVSoYgxSpjWyLguK1YYrSpwSRfG/4o dl7G7X2rWZHY
vyM27sxcrlstuvM91fOTuz5M1lJEnVvamx8XT7Eqe1vkx3Vufr/KVdb2NqqJ 9v8A8KapWGKS
pmeSjo/G3bW5s4d0+o3O1l8a3EarCJw1fGhkJJeGIABY2yG1VIoMkjU0j3U+ 3eHt9xEsU5dm
kMNKeDKlAI5ZCSWcfhpStTwBNd8p+vt7SZL46b262673321P1x8iH35vLae3 98bZjzabUrul
vkltOTI4GDuPsrZGzY3pd3dtUkTwQV9POMeYoY0aloKeGAScnXO3WjcxwX+5 Ja/Vbf4aPIJn
TxBd201CIo5nFVjehCUwFJAp0HOc7PcbteW59v22S6NruIlkSNoUfw/pbmIk GaSJDRpExrrk
kA56Kx2vhvlJ2Nu9dyYz4497bdpMDSUTdZ01ZjfjBlMx1nueMxzZLf2FyWC/ mW7Mwea3jlWQ
0Dy5TE1lH/duWswbUz4zM7igzQ22+/5csrYQvzPZMzE+LT6wLMnARsG2iRhG K6gEdT4oSYMJ
IbdoQXuVjzNfXTTx8tXqIqjwaiyZoX4mVWXeI1aRvhJeNl8IvCVMU1wsxvPi Ltzs3Fj5B7r7
S6+zfW2W7O7twO8cTgtxVWwZcpW4zD/Gn479X5TPNj+uezO3sBgKDK7166y7 UdBJn6+sgo1i
8zsWDsDOcbzbrl9hg23cI7mO2smjZkEoUM13dzKtZoYGYrHLHqYRqpatB5Aa 8nWe5Wyb/cbn
t720tzerIquYixVbO0hZqQzTqoaSKTSplZgtKk8SAHyQ+Lnadf8AI7D/ACnp djdf/NvZmyf7
kZzafxV7q3NuPaeY6O3j17VR5+m7o+IYzO4cv8Rcv8gMRLiKgbTfeux9r77b O7syUU/dW3to
Q0e3KQG9DLogHbX8pbffYnxn+Xu7DtHV8jd19f8A87HbvWnUv8ew4/0n77+S HyE/mLZL4C9i
/wB/B2RQ7F2V/dLoX589q4z+EV8cdHX/AOmT7jcbUuR2liBjvde692b8Cvlj u/cXcOK6Z6p/
0FfLrP8AYH8yfdec/mj/AN+ettn/AOm7pP5KdWfNLbPws+PH+mLq7eO4/nPl P9ln3R3r0nL/
AAXdGysZtDaP+hTy7drq1tvbO/inuvdAB2f/AC3d79mb77b3F0d/LX7A+Dnx Yzf+yO/6WPix
1btP+UfRb7+VX+hzD/zRKHeX8C6PzfZHyF+AvYP90+xfkv03uOq/0uvjb0ez 5a/C69xYDb4b
3Xujv/FP4g939AYT5BUW4/jduDvDZPZnwg+L3x62F0z8he2PjVnYNwQTfLj+ ZnufPdH94P1l
19tLo7rLp/o3o75W7MptzbZ2LsfcOzdn7NiqdrbApt+pgqKHK+690f8A+EPx m7C+Nm1d8UO9
d47fp8RvfcGO3Bsn46dX5HszOdBfFrb8OOaGDqnpvOd0bw3pvaq2/tymngwU MW3qXrXq+PC7
exUm2es9k1E2bTK+690UDvf4bdy9qbV+fWzjs7cAxHyH/mv/AMtrv7aVXtPt ODrrdWW+PHSu
O/lI4vu/sLbW+tn762tvbrbcGyKb4078aiekyGH3aKnBJUYdWqKjFy1HuvdF /wDlR8Ke+cj8
0Ogd+9LfHLcG3sR0H3B8EtmfGzsr4xbH/ludedS9Q/BbrTtbp6v+QnVfdHY3 bdLtz+YhsvcE
G0KrtfFx7Q6Wr6frbMdd5Tb+Floaqoye8aKp917oIOjP5Xe7dz7t6M213L8H ev8AcHxl2/8A
L/Z/ZHauR+ZHUnwe3B84e+6Xb/we/mLbP3J298/N4/HLs/tn4/8AzK+w7/7+ 2JHsjc7UWP7H
bLZDN1+5cVV1NJLvPO+690f/AKu+Lne21sP/AC/Nu12xv4Zt/wCMn8z/AOfP ZcuCg3Ns5sP1
T8Nt0bE/mq9W/EPG7RxlFuGSioOv9u9Zd49X7c25tPCo8+1MFUUlAcdQUmKq oqH3XuiP47+X
D3zQ/J/5KdrbkxHzfHYm8NwfPzceY+R/x67N/ludPT9hdGd77f7/AMZ8cOke j+9JuuaP+Yh2
V3B07tDsfr/G7Z2l3LuraPT2yN5bCpstj85JiNl7MoMp7r3Sg+NH8vrduwe0 /iN212f/AC6P
j/UdZdOdgfJTa/WHV+w+gfg91N3t03mO4Nx/y+63qH52fJrYPX/bmQ+Ip+QH XMvxI3ku6N4d
J56bO1OHy21ptu7NxslTmNvba917r2zf5TPbp/l4/CvYfbe9/kB2z8jesuv/ AOWD1Dkdg5vs
vpPq3/ZSOotk/LX4CdyfNTr/AKL7Q+Lm2Oh9wVn93tv/ABax9TSbkyW7d472 p/7i0J2xmlyN
fWyZf3Xuhg3x8HN6Yn5P5B+uPidt+ny9N8n/AISb++KHzR2mnQW29q/Cf4Lf Hrb/AMR8H3j8
HttZOp3pgflH1Jt/tHB9H9tYyi2P1zszLdbZam7fSHKV9HT5vdhxfuvdVgbY /ltb+7o21tzd
vVXXXcGQ+PmQ3B8v8H8Do/izUfy9OvuvfjHPuH+aN/MK7W2L8nNqdifLfpft Tsn4r9P9v9E9
udQZzYXZ/wAVsLnd5VW2dpQZaHHVxw2xEqvde6P/ANmfAnN9gba+Tex+wP5f u3+3e8dy/J+j
+Qe8/l5uXGfEfc+O+Y/xR2X/ADRurfmdtL4L02998dowfInce4KX4k7LwnWe J2x2TtvbPVVF
ldmU+HbPU22aTE5ab3Xuhg6f/lq4fe3c+4u5N6dOf7LVszany/6c7g6k6U8W xD9z8cdo/AX+
WbS7f6F/hXRXamY666l/0PfPn4IdeZ/y4mbJxS/6G/4JQtVbQ3NWS5L3Xuig fFr+Xv8AJjrX
Z3xT2j2J8V/J8mtlf8NTZjY3zc/vT8e81/smPx7+LnRPwb2d8wPhP/pMHZ0v ya2x/pYzXQnd
GO/u71rtzcnWe5/9MGrJZeKmz+65cb7r3QP5D+WX8kc5hOvNq7U+GW4Oj+49 j/CDJ9KfOv5g
7TyHwWO6v5lXZkPy4/lkdn96ZDbWdy3YvYu6fkRuD5W9U/GvuIUUvyT2ht7b 25aneyUO/IKO
jzuegh917o//APL0+D/a3x6796X3svWfcHXvR2C6f/mAYPG7Q7r3V8L6PdXU GR7s3p/K2qNl
bGx/SHwS2L1x8XOktv8AYGc+MvYe6IsJ14m6sVNUzT7jz+YpdzbqrcNRe691 e97917r3v3Xu
ve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de6979 17r3v3Xuve/d
e697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3 v3Xuve/de697
917r/9PcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A 6W9z/hXo3m84
aifD0aUs+Wp5V3ZsKZpMLVZSjrGp6ffO3Z6yCaXD4PcNW+JqaSN46+J6eOln oXmjqamipnlr
II/lBKihPxLwr/EPQHHr5UrUgZApXj+R/wAHSs9udV697917r3v3Xuve/de6 LpF8h9k5PJYT
L4WHtrL7RqsDk51rsJ0J3xl8NmpchPt6q25mMRV43pXJ0+dxk2MjrHp66jzE NGYp1YQVomin
ozN9lv0l0u9upWoZWuLdWDVGCpk1AjIINCDggngWLvFk6BkW4ZTQgrbzsCPU MIyCDggioIyD
TiOuBzmJ3Pg8LuXAV0OTwW4cTjs5hclT6xBkMTlqOGvx1dAJEjkENXR1CSLq VW0sLgH2glik
gllgmQrKjFWHoQaEfkel8Usc8Uc0TaonUMD6gioP5jqrbb384f4v5yk2TmK3 G5Xa23N7ZXYW
PTN7h7w+D7Ve1aTsLN4PCY/O722Ht/5b57tXbmK24+ejqs+kmAatwVFBUzVl PEtLP45QuPaH
maB72FJFluIFlOlLbcqOYlZiscr2CwOz6SsVJdMrFVRjqWsW2/vByxOllM8b xW07xDU9zttU
ErKoaSJL9p0VNQaWsWqJQzOo0tQ8eyvlZ8XeydzYzZXXXyS6D39vLNfefwfa Wyu4evN1bmy3
8Ox9Xlsh/DMDgtxV+Vr/ALDFUE9TN4on8VPDJI1kRiATe8rcz7bbSXu48uX8 FmlNUklvKiLU
hRVmQKKsQBU5JAGT0OLLmrlfcrmKy27mSwuLx66Y47iJ3agLHSquWNFBY0GA CTgdD57Iej7o
AO9Plj8WPi//AHW/2Zf5LfH/AOO/9+P43/cr/Tp3J111J/fD+7P8I/vH/db+ /wDuPb/94P7v
/wB4KD777TzfaffU/l0+aPV7r3Q/+/de6D/eXaWxOv8AcXU+093Z3+Ebg7x7 AyXVvVuP/hmY
r/70b7xHVnZfdeQwX3WMx9bRYT7frLp/ceT+6yMlJRv/AA77dZTV1FLBN7r3 Qge/de697917
r3v3Xuk/uzdm1dhbV3LvrfW5dv7L2Tsvb+Z3ZvHeO7MzjtubV2ntXbmOqcxu Hcu5dw5ipo8R
gtv4LEUc1VW1tVNFTUtNE8srqisw917oIOi/lj8WPlB/en/ZaPkt8f8A5Ef3 H/gn99f9Bfcn
XXbf9z/7zfxf+7n96f7gbj3B/d/+8H936/7H7vw/d/Y1Hi1eGTT7r3Q/+/de 6D/JdpbExHae
zelMhnft+zewOv8AsvtLaO2v4ZmJf4vsTp/cfU+0+xc7/GYMfJt+g/u7uDvH a1P9rVVcNZV/
xTXSxTR01W9P7r3QQbl+bvwv2X3LTfHTePy7+MG0/kHWbg2ntOk6J3L371Tg u5ardW/YMNVb
F21TdYZTdlLvafcG9KbcePkxNEtCanIx19O1OkgniLe690Z/37r3Qf7j7Y6s 2d/f/wDvd2X1
/tX/AEUdf0fbHaX9495bcwf+jXqzI/31/h/Ze/8A+J5Kl/ud1/X/AOjXcfhz OR+2x0v8AyWm
Y/Y1Xi917pP9KfIXoL5KbVyG+vjp3h0/39snE7gqtp5TePSnZey+1Nq43dVD jsVmK7bWQ3Ds
XNZ3EUe4KPEZ2hqpaKSZamOmrIJWQJNGze690MHv3Xuk/tPdm1d+7V21vrYu 5dv702TvTb+G
3Zs7eO08zjtx7V3ZtXceOpsxt7cu2tw4eprMRndv53EVkNVRVtLNLTVVNKks TsjKx917r2Z3
ZtXbmR2nh9w7l2/gsvv3cFTtPYuLzOZx2LyO9N1Ue1dy76q9tbToa6pgqdx7 gpdk7LzGYkoq
NZqlMViayrZBT0s8ie690EGwPlj8WO1+0969F9W/Jb4/9ld29a/3j/0i9O7A 7k663j2nsH+5
246PZ+7v769fbd3Hkd27V/uru3I0+LyX31JB9jkZ46abRM6ofde6H/37r3Qf 7N7S2J2BuLtj
ae0c7/F9wdHdgY3q3tLH/wAMzFB/dffeX6s607rx+C+6yePoqLN/cdZdwbcy f3WOkq6NP4j9
u0oq6eqgh917oQPfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+6917 37r3Xvfuvde9
+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3 Xvfuvde9+691
737r3Xvfuvdf/9TcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GO Wv7Tmf8A6W9z
/hXo3m86f7nD0cf233endmwqjxfY/wAQ0fab527Vfc/b/wB193+P7Lw+bz/a Rfa+Pzfe43x/
xGlj+UVUYr3L8/xD5H/BjjVfiApXj+R/wfl/q9eHSs9udV697917r3v3Xuve /de61p8h1L8q
4vlH8Xe7cV2F83Nq7O6L+MW8ulNw9T4Dorrqv29j8nuDKfDOty3XmzspkPhz und+U6i7Sn+O
WUrN5ZGp3hUbopsimMG1crisfNWxFfvVnuV3uO7T2cVu8EtxIyN9VarVWdiG o06spoRhlBGQ
wBFOinabuztdv22C6Nws0cCKy/TXDUZVUEVWIqRUHIJB8iRnq93onZm58D0x 0ziczn904HKY
TrDrPHZfbElHtRY8TX4famwqbJ4Gb7rbNTk1SOo23W082qpadRl63TKrx49q Gu7ss+77pPDO
TC9zIykUoQXqKYrQj/jx+VFG1I8O17bDLHSVLeNSDWoIQAg54g/4PtqQH4qd pbL6/wDjL8fd
idgdWfJvEb42X011vtTdmKl+Efy6yz4zP7e2jicTk6Bsniuh8ljK/wC0q6Ro xLT1E0Lhbo7L
Y+5d5ks5r3mHfbyy3La3s5ryZ0b942A1K8jMpo1yGFQeBAI8x1EHK9zaWXLm xWe47VuaX0Vp
Ejr+7b5qMqBSNS2rA0pxBI9D0JdRvTbnZne/xGh2B193nTNs/vHeW7d15jd/ xb+RPVO28Dth
/in8ldopkMnu/svqbZm2KdandW7MXQwwNWeeeorI1jjbkgqmhkseX+a/rL6w rLZxoix3lpM7
P9baPQRwzyOaIjsTpoApJI6OIZbe95g5TNht98PCvZHkaSyu4EVPobxKtJNB Ggq7ooGqpLCg
PRj/AJebW+T+8emq3DfEff8At/rrtZtwYGply2Zym39p5HI7VgnlOYw20+yd 49EfK/ZPWO4J
alqapkyeX6o7Dpq7FUtZh4aDF12UpN0YCKupV6qg2l0z3ZJ8p/i/m/h11h2B 8NtwbW+P/wDM
RwXyH3T/ADBemu3fmtuKv33vfsX+VplNl4/sPvfanzXo6LursDfvWWxsX/dT dMPc2+6PHbV2
XV7RSGCr2xXYrbPuvdA/2hsH5F/GDv34bdI/Hit+T+1dk/FHcH8uD4idRYXG 9N/P35CbV+Sf
w9xe9Ojevu+e9+2u0+je0Nr/AMrXovcGF603l2Bt/PUHZnU2T3zQU2xhubGZ LEpltlz4P3Xu
mDG9dfJzsTYHwSXrKf5f4T+YptL5Aba3L8399/JvbvzTzHRPXfyArf5YH8xv ZHbW4Ohs/wB7
7R7E+GfWHX+e7y3lkdt4fd3TO2N4dQbdzGd2rVttjdeDTb+2cv7r3T/2v2N8 pMh8lfjLuLp3
aHzf6Epute4PhL8fdsdPb/6Z/mcfIvI9s/Hhu7+r9g/LLszvfvPa3yK3f/Li 2TuDZOB3f2bt
bK53tDa3ZG7dwYrYcHYO3d71mN3NsHcND7r3RYMzuP5a/fdR9dda7/8An/tL 5tbt+AG+Nx/z
GMf21R/zDt29Wf6U9pfMn+U5gvmPv/4rdW7g3r1/1L2B/o/6l7A7sTBQ/EHL 4jI/w7L01J15
kqCsr9oze/de6sf6U2LuCo+F+QwHfm1fm/8ANOSb5P1WQ+JVPsbrP5P/AAw+ T+08cnVOKj3D
letu1vl384K75odA7fx2Rj7Opa7evdncGwcruDH5rJbNwaVe085srEbi917q z/4h7W+T+zum
qLDfLjf+3+xe1l3BnqmLLYbKbf3ZkcdtWeeI4fDbs7J2d0R8UNk9nbgiqVqa mPJ4jqjrymoc
VVUeHmoMpXYur3Rn/de6rAwPSnfud6z+KHVNFkPk/wBJ7b3j/Oe/mr7g+QNf 1DVb06v3VWfG
DfHYX84Dsbajbz3Pj8UMvs/p/urL5nY64rc9NJjMhDU5/B5fa2Yxe4f7vZml 917ov/dm8fm+
vzk3Vn9g76+T/wAdKnee4Plr1n2Bt7afw2/mP/LnrPpzpDYHw5+S8vxz+Um2 t47g7T7I/ln9
qbg312f1b1Xvui6+6u6y232XJuHc6bEyOTrskN30+f8Ade698Z/i/u75C9+/ G+TuHrf5v7C6
p2F0/wDzG8VhO8Kb5jfzaesd1dv5HKb0/lP47aHYGZre/wDtXYvzQ+Ju3+1c js3fMeM6K3lu
LLYqGp2ZX53FVm6KE0e6a33XujwfF+D5Hdgdp/ylO6/kBtHsBezan+UB8iYP kvuXcfXVVsn+
6/yO7R3H/Ke3Znto7/w1Bt3b+3+t+wNy7g2Zuuoh249JjZU/gmSSmpEjx86Q +691WB0Rtf8A
mEU3UXb9b3H8uvl/sbs3NfH/AGZR/Lj+Gfy6f5mPauH2T8mMt3Z0N/fjbnVv 8Q+Ze79wdo/3
k2+3aO0afN/BXbvX3XuEwWZqt3Jldtx4brbR7r3Sf7P6G7Q3f018vN9b2+M/ zf2D2T8gP5MP
cnR3xS6ywPfX8xX5jY7e3YWzp/5tWe3FgPkFujdONxG6dxbg351T8g+vc913 gvkntfA7mwmV
3bHtbbeNpNz4TKYvH+691Y/3H8O/lPl/kB8bewewvkh2BmN59+/IDrvpH5M7 w+DPXnYvxR2J
iPht8f8A4gfzQOwdn7S3lS5HuP5Mb62n/pB76+Qr4fM7yj3jiZ6SsrtrPtUb a3fjMfuGf3Xu
k/sfbXee9Pk/j9nbrqfm/R9rbs+T/wA29tfMerm3Z8wthfGCl/lwZ3b/AMuM X8P6noHfVJmd
ufC/ZfcEGOqvj00eW6SyFB3fjsgMtUZiogro9+yr7r3RAPhDU/zAez838Cu0 d7/Ir5PvU7l6
f/lhbs6sx+N6C+Zndm1e1vjdmfiP8Udw/KncvbXyDx/y660/ln7e3Bvns/Id ypnq3unZe6u9
KSmtktrvk8lP1rQxe690MEPVsnYHTvw13Z8gMF/M/wAv3P0d8gOpe0v5qGQx WT/mr0G4tr9u
5f4J/N3pTeud+FVL1nkKKLN9f1Hy67gpcZlaX4jR1eyU2rkaWoqIhsenp54f de6M/wBB/HD5
cYnZe8O6tw4/b++6b4ufN/8Am8/LD4d/Dmi6uzfx87l7P7l3937/ADDOvurs T2h8oO0e4N5d
d5Pp/u3rv5G5jJ4Cso+uNrxwR57b2VbLVmNx9Wmd917okHTVX8q8ZuLemw94 dhfP/tH4DYbs
D4wbu7w3Zs/4xfznPjr3tFh939WfzE8Nv/bvTtT8oO7Pkb/NB3r/AA35BbF+ N1TuFOot2jBY
vD1zmfEUGIrN91uV917oz/WFL8leje4Pl38gOrulPk/3V8fKnuDZmc+MHRuR yvd/UfbXZvcu
Z/lQ/wAv7qTpXfPyZ3D37j8l3H290/vHcmDyPW2Yze6QY+nOxDkN09g4fcJx 9RujqP3Xuiwd
NVfyrxm4t6bD3h2F8/8AtH4DYbsD4wbu7w3Zs/4xfznPjr3tFh939WfzE8Nv /bvTtT8oO7Pk
b/NB3r/DfkFsX43VO4U6i3aMFi8PXOZ8RQYis33W5X3Xugf2xU/N/tTbW3Mx 1P8AIr5v7Q6p
xG4Pl/tP4TZSq6C/mP8Ayl7ly3d+yf5o38wrYsG2u666k+XXxp23sjcHW3Tm 1ukcPSUXzkbN
9aCOGWkqkx1Dj+wY6j3Xutx337r3Xvfuvde9+691737r3Xvfuvde9+691737 r3Xvfuvde9+6
91737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv fuvde9+69173
7r3Xvfuvdf/V3EP5fH/Mjcj/AOHzWf8AvIbL9jznf/cT29/8Vmw/wSdBjlr+ 05n/AOlvc/4V
6Nj2AiyYGgV6mkpQN79ZuJa2i25Xws0fY+1JEpkg3TX43GR1dY6iGnmikbI0 07pNj4p69KaC
SPpvgGR8a+n8Q9aD/KOIqaDoUrxP2H/Af9X+HHS39u9V697917r3v3Xuve/d e6LvkfkN8faf
eWMap7m6MjbHYTdeOrcjV7/65GWxFbLldpkYVclUb2psvi4skaCV6mkjx1TD UyUMTzVFK9ND
FVmA2TeWeN12e5KFTnwXPHTShpwPHAINBkUFS87xtC6lbdbcMDw8VPKvlXy6 MBSVdJX0lNX0
FTT1tDW08NXR1lJNHU0lXSVMazU9TTVELPDPTzwuHR0JVlIIJB9oGVkZkdSG BoQcEEeR6Xqy
sqsrAqRUEcCPUdFN2984/j3uik2TlcVU9zptzsbK7Cw+y96Zj4r/ACn2319n avtHN4PbnXk0
PYe4+mcVselxW8M3uXH09DXVGQiopmrIiJdLgkWXHJHMFq97FKtn9RbrK0ka 3tk8qiBWeX9J
LhpC0ao5ZQhYaTjHQSt+eOX7pLKWJr36a5eJY5Gsb5ImM7KkP6z26xBZGdAr Fwp1DOejdewl
0Luve/de697917r3v3Xuk/md2bV25kdp4fcO5dv4LL793BU7T2Li8zmcdi8j vTdVHtXcu+qv
bW06GuqYKnce4KXZOy8xmJKKjWapTFYmsq2QU9LPInuvdKD37r3QP9cfHroL pzdXZ2+uouj+
n+q97d2bgXdnc28euOtNl7H3V25upMjuDMJuXs7cO2MLi8vv3cC5fdmVqhW5 WarqRU5Orl16
6iZn917oYPfuvde9+690n9y7s2rsvHU2Y3juXb+08RWbg2ntOkym5czjsFjq rdW/d1YbYuxd
tU1dlKmlpp9wb03tuPH4fE0SsanI5Wvp6SnSSonijb3XulB7917r3v3Xuve/ de697917r3v3
Xuve/de6T+7Np7V37tXcuxd9ba2/vTZO9Nv5nae8dnbsw2O3HtXdm1dx46pw +4dtbl29mKas
xGd2/ncRWTUtbRVUMtNVU0rxSoyMyn3XulB7917r3v3Xuve/de697917r3v3 Xug/7S6n6s7x
2Jnere6+tOv+4Ost0fwz+8vXXaWzdudgbE3F/BMxj9xYb+O7R3Zjcvt/L/wj cGIpK6l+4p5P
t6ylimTTJGjD3XulBtPae1dhbV21sXYu2tv7L2Tsvb+G2ns7Z208NjtubV2n tXbmOpsPt7bW
2tvYemo8Rgtv4LEUcNLRUVLDFTUtNEkUSKiqo917pQe/de697917r3v3Xuve /de697917r3v
3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de6 97917r3v3Xuv
e/de697917r3v3Xuve/de697917r/9bcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/ 9xPb3/xWbD/B
J0GOWv7Tmf8A6W9z/hXo3m86j7bD0cn3P2mrdmwqfy/ffw/X93vnbtL9t9x/ ejaHk+983h8H
3cv3Xk8P2WS8n8Oqo/lNFGady/L8Q+Y/w54Ub4SKV4/kf8H5/wCr049Kz251 Xr3v3Xuve/de
697917qhDbfyr722bTdU4Dbnym+LW1Oq9qbK6bwWc6m3X8V+w9xdz4+k25sz aeJ7F2zJ3ZSf
NfZ2z8duivy9BkhQVs3XTxYPzQRVNBknpZXqjDfrXeZN33h7bY76SNrmUq6Q SsjAuxVlYIQy
kUIINCMg9FGzXu1R7Xtcdxu9okiwRhlaaNWUhFBVlLAgg4IOQePVs/x2x28q bobomE5PCUFN
T9RdURSYuv2plWy1JBT7N6+StoKqr/vZRxjIiOjzMfkNIgikraNmhYUE6ZH2 9l23rd2SRTGb
qUjFceIfPV9ufmPQ6n9nGnaNqVlIYW0dft0Dyp/qz+VNPxUw38qKq+Mvx9qO zq34ARdjSdNd
b/36j3vlPj9T7yXdi7RxKZ/+9UOarYcwm4jk1kNZ92oqTUFzL6yx95BcyTe5 Scw76thFvpsf
rJvDMYuvD0eI2jRpGnRppp04pSmOseeV7X2xk5c2J9yn2IbgbSLxBI1sJNeg atYYhtVa6tWa
8c9DptLF/AGh+T3wzl+KtX8R5+wm7x3/AB5lOhMh1HV7wGzD8Q/lA2RbJR7B q58wu2hnExwm
aQCmFUacMdZj9h/c5edZOVucBzHHuq2P0cWn6kXHh+J9fZ0p4o069OqlO7Tq 8q9CLbLfkaLm
rk5uWZdqa/8ArZQ30zQGTw/oL2tfDJbRq0VrjVp86dWF/LzdPyf2d01W5n4j 7A2/2L2su4MD
TS4nM4vb+7MjjtqzzyjMZnafW28e9/ihsns7cEVStNTSYzL9r9eU1DiqqszE NflK7F0m18/B
vU6dUQ9jdabE+Tnyn+G+E2j1z1//ADUNwUHx/wD5lmd7S2t/N5OY6E3FsDfe O7F/lO4vH5DN
dEZP4C7sovjr2Bgussztz+A7Wx3TPX1HnNq7nfdzTVVXuGqyu5Pde6f+0Plt 8h/h1378NvjF
F8s9v7oy/TO4P5cHwq7U2P8AJ3vHqXYXbXzwyPc29Ojepe1vmX0v8YNyfGbt b5R97bfqsH3T
WPJvHH/IrbOKxfYmw9wQZDDZqn2zlo91e690gJ/kj3f3DtH+XN2n1z8lNv8A yl+eFV8n8HvP
uT4Ubly3xqx2O+BHfu8v5S380HK9l/H6m6q65230n3JtrcGx9yHcGGxOxO7e xKPNZjK7Ip8B
lt8bYlkz26af3Xul/wBr/wAzbemC+Svxlw/SHyu2/mdk4/uD4S/FLd/Ufyk7 X6C6Z7z+WeR7
q7v6v6Y7v772L8K6f4Ibd+Qe9NwdZydu5fb25qvD9n9Q4rYvcPV+68JlNiIm zszh8/7r3QAZ
D+ZJ8qosJ15lOsvnBt/tX5B9l/CDJ9tfM/4r7srPijtfav8AK+7lyfy4/lkd Udwyblqdh/Gn
dne3xW2/8Q+tvkz2/NW1PeEHaMez6bYz5PdmL3ENv5inrfde6P8A9Kd+7q7A +F+Q3n8jvm9u
CrzmC+T9VtP4w/Jb+Xjmsj8uOzO34B1Tis3mNtbVo+vf5fPW3x8+fu4MHHnO xaTMUWyOgNyb
N2ft7bMlXWom9tgZvc2K917o39Hun+YrvH+Xp8iczlNgbf66+eDdP/IKm+OG Jw2L6v2nkcj2
ZBsHPDovM7s62yfe/wAr+iesdwS9ktBTR4ybtfsPb1diqWjzGTr8XLlK/a+A 917quDtb/ho/
+5G2P9ks/wBlA/2a3/Zv/wCVl/pi/u1/cj/Z+v7u/wDDuHwM/wBIP+za/wB8 P+cx/wDSB/pI
/hX9/P8ASd/v6v76af7x/wC5vX7917oAKL+aL8mM72T3xt3aPzE+IHX23+xP j/2V37jcF8t/
mF8e8D2T/Ly/u58sfh/1bH0r8i8ZsP4DbCovgj8gKPrL5Sbi25Sbc7VT5K/a 9sbYxdBV1GRp
MPnot2e690P+xfnZ2fn+yfgVi2+THyAyPX/cv9zk210u26P5ZU/8ybu/Mbq+ WPa2yMz3h8hP
j3tPp7OdS9r/AMsBOpdg0OVwXanxn3Bis7S7Cjym6JotxYqZ9z7X917pPnqn r34O7f8A5yXd
Hwa+Nvxg6P7j2R83/jN0JtzsrbXVvWfT2O6M+NXbfxg/lNV/f+46nsbCdP8A YGI6g6f6gxHY
G6e1ctlMrtbdOyNs5XGVG6c9t3N0dLkKKr917pAZr57/ACq210F1pn98fOPp /emzq/uDvDB7
V3P8Hu+/ij2t88/mBjtu7L+PT9dbG+GGR+TvwE6A+Dn8wfcG2u3O094YTeWE 6s2FtDK0ppNs
bexGYzW+8Nufbu6Pde6s+/lawwbfT5kbEy/f24N19iYL5v8AzZ3Zur4qbln6 ao8j8WNq9s/P
P5e9kdRblptp7V692t3tg9v/ACr62z9DvjE1u/sxuCmzuKmp6/bb0uIl0Se6 91a/7917r3v3
Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de69 7917r3v3Xuve
/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917 r3v3Xuve/de6
97917r3v3Xuve/de697917r3v3Xuv//X3EP5fH/Mjcj/AOHzWf8AvIbL9jzn f/cT29/8Vmw/
wSdBjlr+05n/AOlvc/4V6N5vP+I/wej/AIX/AMCf72bC8v8Ax9H/ABbv787d /i//AB5/+5b/
AItPn/z3+4v/AJ2f+437v3H8urSNPHUvrw1CvDPD8v4u2vQpWlc+h/wfP/V6 Z6VntzqvXvfu
vde9+691737r3SeqXYbrwsYpqtkbb253arSt3HHQwNHktoqlNU46loJNpVVX VCRmhmrqqHI0
6QyrQxTQzZB4KH+0XB+E+vqPLh+019Kgmm/wn7f8/wCf+r7OlD7v1rppz2Qq MTgs1laOj/iF
XjMTkchS0GnKP99UUdHNUwUejB4fcOaf7mWMJajx9dVHV+1TzSaY2q5KozAV IB9f8gJ/YCfk
etgVIHTt7t1rovPcHb+9tj712FsDr7r7be+dwb12v2HvCZ919hZPr7E4nDde ZbrbC1iR1mI6
57Iq8jkchW9mUpjjNNTxpFBKxlLaVIj2bZrLcLLcL/cNxkgt4JYY/wBOFZmZ plmYYaaEAAQt
U6iakY4noh3bdryyvLGxsbCOaaaKWQ65WiCrE0KnKxSkkmYeQAAOekV/pe+T 3/Pg+lf/AEpX
fH/3LPsw/cnK/wD00F7/ANkUX/bd0i/e3Mf/AEZLP/srk/7Yuh76n35F2n1Z 1p2dBjZMNB2P
1/s3fkOHlqlrpcTFu/buN3DHjZK1IKVayShTIiIyiKMSFNWlb2Ac3awO1bru e1tLra2uJIi1
KavDcpqpU0rStKmnr0e7Xe/vLbNu3ERaPqII5NNa6daBtNaCtK0rQV9B0IHs v6Xde9+690AG
wPjF1F1v2nvXuvCUnYGe7N3z/eOCq3L2h3Z3Z3V/czD7y3HR7s3htHpjDdxd hb62/wDH/r/d
u4MPi6jKbc2LSbdwWQ/gOGSopJI8LiUo/de6H/37r3Xvfuvde9+691737r3X vfuvde9+6917
37r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuv de9+691737r3
Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+ 691737r3Xvfu
vde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3X/9DcQ/l8f8yN yP8A4fNZ/wC8
hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXo3m86f7nD0cf233endmwq jxfY/wAQ0fab
527Vfc/b/wB193+P7Lw+bz/aRfa+Pzfe43x/xGlj+UVUYr3L8/xD5H/BjjVf iApXj+R/wfl/
q9eHSs9udV697917r3v3Xuve/de6SdZT6t87dqvttfh2nvOn+8+x8ng+5zGw pPtv4l/der+0
+7+01+D+NY/7jw6/ssh4fPjWyP1UNPwt/hXzp/z8K+hpVbfhP2j/AC/6uH7P NWe3Oq9JPftP
93sbedL9t979ztPcVP8AZ/Y/xP7vzYesj+2/hv8Adfe/8Q8+rR4P4Ll/LfR9 lVX8EjcwrFKK
V7T8/L0o1f8AeT9h4dWX4l+3/V6f4R16orN8r9z9rt3ac2j777P7jeeYpvP4 /wC9H8N+58ew
qv7T7v7TC+fR5vt/4hW6PN/D4P4l4mXNEX/ej86fh/0v2VPGg1e7fU/s/wBn 7f8AUcEf+T/a
9V1L3x0HuXLP0piJa3qn5R4GP/S93bN1HtCSjk7C+MtXipaLeM/XG7XrN11u LxcU74kY9UjD
VWirlSkV6iQ+Utrfd9g5gttF2St5Zt/i0H1L0Ed8ASniQ0Xuy2o0ai0NagDc zbiu173slwWt
QDaXS/4xP9OmZLM4fw5atjC6RUVNRShRP+zvUf8Azv8A4Af+nAf/ANWr2Zf1 Jk/3zv3/AHKv
+3zpB/W+P/fmyf8Acy/7dOjc/EE3+JnxeJ+p+O3ShP8Asetds+whzf8A8rZz R/0sbn/q8/Qp
5W/5Vnl3/ngt/wDq0nVZW4fnF8p99Yf5Xbj2NJ1/1N318Y/j/wDJvtvqH+WL k+texd7/AC/+
QG4utdibnw/Ve8+0m3Xi+t63efx/3B2buWhwFRQdCYTd21ct2BgKWPbPd+5M ZPkcLUB3o969
8lfj51FtD469R999d96/ID5B1vavy/8A5R+T/wBKm/8A5g92d29Wdo4ffP8A NN+DO8/9KWyu
of8ASRU/EXZP99paaDI42o662ZtnBY3HVslFgKXHYWf7E+690H+3/wCZR87N 77x3NhemvjD/
AKdNpfIn4/75+Uf8vXev9wunejv76dE7b72+LmwIN8/3c3V/MZ37k+8/s+kv l7iewP4Zvd/i
vmMn/dj+BGkxtfuOaTZ3uvdCBtn5+/ITLV3xc3HX706/j+Mu/OwNv9P7/wDl 1/w358mMHt3t
H5Mbj+ZO+fi1WfDv/ZbNx/Kmi+TX8vPsDZma2bSYD/SD2XhN99e5fdWb8dVN gKmlxuF3H7r3
Q/8A+zR9p9c/Mn/ZaMLvnr/5nYXcvYH+/wBdldd7Z3HhPkx8Fdu72of7/wC3 P9mL3HsDb26v
jLkev8jhd1PV7R/0gV/Qu6qjr3aUkWC/0vbzlkjq/de6UHbOAn+RPzQ3H8Y+ 1979wdedObL+
MHVXe/UWF6U7x7l+Lu6u7uzNz9rd3dfd85TIdp9G77627W39t/4x7W2511FL t/CZul29iKnt
qCr3TQ5Osrtlz4b3XuiAUXbvcvx+7g+dfx5+GWL3B2J8g85839rZzbOzN2bC g+Ue6sx8eOh/
5UP8pzY/Ze+dy7t+Qvz++CtNl9wbe3t25sCkrc3nO0M5u3MVObeYY
Re: Creating Stereotype extending AssociationEnd [message #478495 is a reply to message #478492] Thu, 04 June 2009 13:12 Go to previous messageGo to next message
Christian W. Damus is currently offline Christian W. DamusFriend
Messages: 847
Registered: July 2009
Senior Member
--=-YpAQoeXb2vYf8Nr9ZORN
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

Hi, Gilbert,

If you need to constrain a stereotype to be applied only to association
ends, then you can do that with another OCL constraint:

context MyProfile::Event
inv is_association_end: base_Property.association.oclIsUndefined()

HTH,

Christian

On Thu, 2009-06-04 at 11:15 +0200, Gilbert Mirenque wrote:

> Hi Vlad,
>
> > My article is available at:
> > http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html
>
>
> thanks for your article. Nice possibility to apply stereotypes to
> association ends. But I think that it is only possible in this way with
> the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
> display the specified association-names as attributes in the class (see
> the attached screenshots). That means one has first to open the
> generated uml-file, select the association-end-property, and apply the
> stereotype via the uml2tools from eclipse. Well, the stereotype is
> applied but it isn't visible in the diagram. Another issue is that you
> could apply the associationEnd-stereotype to any property of a class -
> not only to associationEnds.
> But a big thank you for your article. I could solve my problem in
> another way. I found out that I can model my concerns better with a
> StateMachine and not with a ClassDiagram. There I extended the
> Pseudostate metaclass.
>
> best regards,
> Gilbert

--=-YpAQoeXb2vYf8Nr9ZORN
Content-Type: text/html; charset="utf-8"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 TRANSITIONAL//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=UTF-8">
<META NAME="GENERATOR" CONTENT="GtkHTML/3.24.1.1">
</HEAD>
<BODY>
Hi, Gilbert,<BR>
<BR>
If you need to constrain a stereotype to be applied only to association ends, then you can do that with another OCL constraint:<BR>
<BR>
&nbsp; context MyProfile::Event<BR>
&nbsp; inv is_association_end: base_Property.association.oclIsUndefined()<BR>
<BR>
HTH,<BR>
<BR>
Christian<BR>
<BR>
On Thu, 2009-06-04 at 11:15 +0200, Gilbert Mirenque wrote:
<BLOCKQUOTE TYPE=CITE>
<PRE>
Hi Vlad,

&gt; My article is available at:
&gt; <A HREF=" http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html"> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html</A>


thanks for your article. Nice possibility to apply stereotypes to
association ends. But I think that it is only possible in this way with
the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
display the specified association-names as attributes in the class (see
the attached screenshots). That means one has first to open the
generated uml-file, select the association-end-property, and apply the
stereotype via the uml2tools from eclipse. Well, the stereotype is
applied but it isn't visible in the diagram. Another issue is that you
could apply the associationEnd-stereotype to any property of a class -
not only to associationEnds.
But a big thank you for your article. I could solve my problem in
another way. I found out that I can model my concerns better with a
StateMachine and not with a ClassDiagram. There I extended the
Pseudostate metaclass.

best regards,
Gilbert
</PRE>
</BLOCKQUOTE>
</BODY>
</HTML>

--=-YpAQoeXb2vYf8Nr9ZORN--
Re: Creating Stereotype extending AssociationEnd [message #478509 is a reply to message #478484] Tue, 09 June 2009 20:42 Go to previous messageGo to next message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

Your article mentions that there's no way to tell whether a property is
being used as an association end, but in fact there is - a property which
has a value for Property::association is effectively an assocation end.
Using a keyword or stereotype to indicate this seems wasteful, especially
given that an application based on UML2 can offer built-in ways to indicate
this information without adding redundant semantic information.

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:2d31576eab6695b1996c2af326655990$1@www.eclipse.org...
> Hi Gilbert,
>
> I was reading your post then I have decided to spend three hours writing a
> short article on this subject. I don't think this is a waste of time to
> read it.
>
> My article is available at:
> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html
>
> Thanks,
>
> Vlad,
>
Re: Creating Stereotype extending AssociationEnd [message #478511 is a reply to message #478509] Tue, 09 June 2009 23:08 Go to previous messageGo to next message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Kenn,

If you look the property view or inside the xmi then you can certainly see
the difference but at Profile metaclass and UML graphical icon design
there is no difference between property and association ends.
This is what I was trying to explain.

The use of "association ends" keyword or stereotype was just an example
because the user wanted to add a stereotype on the association ends.
Adding the name "association ends" as stereotype or keyword is I agree
stupid :-)

The interesting question could be:
When to use stereotype or Keywords in a project ?
What difference do you see between them ?
Should a stereotype be always related to a profile ?
Is-it recommended to use stereotypes or keywords in a project ?

This newsgroup is about EMF therefore I suggest we start a new talk on the
UML2 newsgroup.
Thanks,

Vlad,
Re: Creating Stereotype extending AssociationEnd [message #478512 is a reply to message #478511] Tue, 09 June 2009 23:54 Go to previous messageGo to next message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

James and I already wrote an article on this topic - see
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Custo mizing_UML2_Which_Technique_is_Right_For_You/article.html.
In it, we refer to the use of keywords as "featherweight" extensions. Take a
look and let us know your thoughts.

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:ab1dcbf4dc417c2f6686e513ee3f2c30$1@www.eclipse.org...
> Kenn,
>
> If you look the property view or inside the xmi then you can certainly see
> the difference but at Profile metaclass and UML graphical icon design
> there is no difference between property and association ends.
> This is what I was trying to explain.
> The use of "association ends" keyword or stereotype was just an example
> because the user wanted to add a stereotype on the association ends.
> Adding the name "association ends" as stereotype or keyword is I agree
> stupid :-)
>
> The interesting question could be: When to use stereotype or Keywords in a
> project ?
> What difference do you see between them ?
> Should a stereotype be always related to a profile ?
> Is-it recommended to use stereotypes or keywords in a project ?
>
> This newsgroup is about EMF therefore I suggest we start a new talk on the
> UML2 newsgroup.
> Thanks,
>
> Vlad,
>
>
Re: Creating Stereotype extending AssociationEnd [message #478514 is a reply to message #478512] Wed, 10 June 2009 09:04 Go to previous messageGo to next message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi kenn,

In your article you said : It is important to note that the use of
annotations in this manner is non-standard and therefore not directly
supported by the UML editor. If you decide to export your model with
keywords to XMI, the annotations would be moved into an XMI extension.
Consumers of the XMI format could conceivably continue to use your
keywords if they know how to work with the newly created XMI elements.

If you add a keyword with RSA, Papyrus, Topcased or any other tool then at
the transformation stage you will certainly loose this information but if
you do it with Omondo then you don't loose this information.
As I always say: The best transformation is no Transformation :-)

Concerning MOF based versus UML Extension this is very interesting point.
At Omondo we have added the glue between the four stages. I mean
# Stage 1: UML diagrams (GEF)
# Stage 2: UML Superstrucutre (EclipseUML2 metamodel)
# Stage 3: Model transformation (EMF)
# Stage 4: MOF
My answer to this MOF versus UML Extensions dilema would be "let users do
as they want to use MOF or UML extension as long as they use standard
Ecore".

btw, You have signed this article with James Bruck in June 2008 but it
seems to me that you have already been working for Embarcadero and not
anymore for IBM at that time ? Am I right ?
Re: Creating Stereotype extending AssociationEnd [message #478515 is a reply to message #478514] Wed, 10 June 2009 13:00 Go to previous message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

Yes, this article was written long ago but James has been updating it (thus
the more recent date stamp).

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:25248d7d35128ce82bbbfb25e4b3938b$1@www.eclipse.org...
> Hi kenn,
>
> In your article you said : It is important to note that the use of
> annotations in this manner is non-standard and therefore not directly
> supported by the UML editor. If you decide to export your model with
> keywords to XMI, the annotations would be moved into an XMI extension.
> Consumers of the XMI format could conceivably continue to use your
> keywords if they know how to work with the newly created XMI elements.
> If you add a keyword with RSA, Papyrus, Topcased or any other tool then at
> the transformation stage you will certainly loose this information but if
> you do it with Omondo then you don't loose this information. As I always
> say: The best transformation is no Transformation :-)
>
> Concerning MOF based versus UML Extension this is very interesting point.
> At Omondo we have added the glue between the four stages. I mean # Stage
> 1: UML diagrams (GEF)
> # Stage 2: UML Superstrucutre (EclipseUML2 metamodel)
> # Stage 3: Model transformation (EMF)
> # Stage 4: MOF My answer to this MOF versus UML Extensions dilema would be
> "let users do as they want to use MOF or UML extension as long as they use
> standard Ecore".
>
> btw, You have signed this article with James Bruck in June 2008 but it
> seems to me that you have already been working for Embarcadero and not
> anymore for IBM at that time ? Am I right ?
>
>
Re: Creating Stereotype extending AssociationEnd [message #627637 is a reply to message #478459] Tue, 26 May 2009 18:44 Go to previous message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

thx for the hit to the right NG :)
Re: Creating Stereotype extending AssociationEnd [message #627639 is a reply to message #478462] Wed, 27 May 2009 08:23 Go to previous message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

no suggestions?
Re: Creating Stereotype extending AssociationEnd [message #627640 is a reply to message #478464] Wed, 27 May 2009 15:14 Go to previous message
Rafael Chaves is currently offline Rafael ChavesFriend
Messages: 362
Registered: July 2009
Senior Member
There is no AssociationEnd metaclass in UML 2.*. Association ends are
represented using the Property metaclass.

Cheers,

Rafael
http://abstratt.com/blog/

Gilbert Mirenque wrote:
> no suggestions?
Re: Creating Stereotype extending AssociationEnd [message #627641 is a reply to message #478464] Wed, 27 May 2009 15:24 Go to previous message
Christian W. Damus is currently offline Christian W. DamusFriend
Messages: 847
Registered: July 2009
Senior Member
--=-QG4LWcFXZb7t8qbC46WC
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

It seems that my newsreader doesn't know how to reply to cross-posted
messages, so here is my reply from the EMF newsgroup.

-----8<-----

Hi, Gilbert,

There is no AssociationEnd metaclass: it was removed in UML 2.0.
Instead, association ends are represented by the Property metaclass.
So, your Event stereotype needs to extend Property.

To assert that the ends of a <<dataChannel>> association are <<events>>
you will need to use OCL. e.g.:

context DataChannel
inv ends_are_events: base_Assocation.end->forAll(e |
e.extension_Event->notEmpty())

HTH,

Christian

----->8-----

On Wed, 2009-05-27 at 10:23 +0200, Gilbert Mirenque wrote:

> no suggestions?

--=-QG4LWcFXZb7t8qbC46WC
Content-Type: text/html; charset="utf-8"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 TRANSITIONAL//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=UTF-8">
<META NAME="GENERATOR" CONTENT="GtkHTML/3.24.1.1">
</HEAD>
<BODY>
It seems that my newsreader doesn't know how to reply to cross-posted messages, so here is my reply from the EMF newsgroup.<BR>
<BR>
-----8&lt;-----<BR>
<BR>
Hi, Gilbert,<BR>
<BR>
There is no AssociationEnd metaclass:&nbsp; it was removed in UML 2.0.&nbsp; Instead, association ends are represented by the Property metaclass.&nbsp; So, your Event stereotype needs to extend Property.<BR>
<BR>
To assert that the ends of a &lt;&lt;dataChannel&gt;&gt; association are &lt;&lt;events&gt;&gt; you will need to use OCL.&nbsp; e.g.:<BR>
<BR>
&nbsp; context DataChannel<BR>
&nbsp; inv ends_are_events: base_Assocation.end-&gt;forAll(e | e.extension_Event-&gt;notEmpty())<BR>
<BR>
HTH,<BR>
<BR>
Christian<BR>
<BR>
-----&gt;8-----<BR>
<BR>
On Wed, 2009-05-27 at 10:23 +0200, Gilbert Mirenque wrote:
<BLOCKQUOTE TYPE=CITE>
<PRE>
no suggestions?
</PRE>
</BLOCKQUOTE>
</BODY>
</HTML>

--=-QG4LWcFXZb7t8qbC46WC--
Re: Creating Stereotype extending AssociationEnd [message #627642 is a reply to message #478466] Wed, 27 May 2009 15:42 Go to previous message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

Thanks a lot - especially for that OCL-hint.

best regards
Re: Creating Stereotype extending AssociationEnd [message #627658 is a reply to message #478459] Tue, 02 June 2009 20:47 Go to previous message
Nicolas Rouquette is currently offline Nicolas RouquetteFriend
Messages: 142
Registered: July 2009
Senior Member
Gilbert,

If you want to convey that a <<DataChannel>>-stereotyped Association has
an <<Event>>-stereotyped association end, then you need to define
<<End>> as an extension of whatever metaclass you want to use for
representing the actual <<Event>> in your profile.

For more details on profile development, read the excellent article here:

http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Custo mizing_UML2_Which_Technique_is_Right_For_You/article.html

- Nicolas.

Ed Merks wrote:
> Gilbert,
>
> I've added the UML2 newsgroup to the "to" list of the reply to redirect
> this question to the appropriate group.
>
>
> Gilbert Mirenque wrote:
>> Hello NG,
>> I don't exactly know if this is the right NG. Please point me to the
>> correct one.
>> I recently started to create a UML-profile which is aimed to put some
>> special semantics to my use-cases and class-diagrams. I added a
>> stereotype DataChannel extending the "Association"-metaclass. Now it
>> would be fine if I could create a new stereotype "Event" extending
>> AssociationEnd. But I couldn't select "AssociationEnd" as a metaclass in
>> my profile. And if it is possible - how can I specify that the
>> association-ends of my newly created stereotype DataChannel are of
>> stereotype "Event"? Or isn't it possible at all?
>>
>> greets
>> Gilbert
>>
Re: Creating Stereotype extending AssociationEnd [message #627662 is a reply to message #478464] Wed, 03 June 2009 12:17 Go to previous message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi Gilbert,

I was reading your post then I have decided to spend three hours writing a
short article on this subject. I don't think this is a waste of time to
read it.

My article is available at:
http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html

Thanks,

Vlad,
Re: Creating Stereotype extending AssociationEnd [message #627670 is a reply to message #478484] Thu, 04 June 2009 09:15 Go to previous message
Eclipse UserFriend
Originally posted by: formatzeh.gmx.de

This is a multi-part message in MIME format.
--------------060105080205020100080001
Content-Type: text/plain; charset=ISO-8859-15
Content-Transfer-Encoding: 7bit

Hi Vlad,

> My article is available at:
> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html


thanks for your article. Nice possibility to apply stereotypes to
association ends. But I think that it is only possible in this way with
the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
display the specified association-names as attributes in the class (see
the attached screenshots). That means one has first to open the
generated uml-file, select the association-end-property, and apply the
stereotype via the uml2tools from eclipse. Well, the stereotype is
applied but it isn't visible in the diagram. Another issue is that you
could apply the associationEnd-stereotype to any property of a class -
not only to associationEnds.
But a big thank you for your article. I could solve my problem in
another way. I found out that I can model my concerns better with a
StateMachine and not with a ClassDiagram. There I extended the
Pseudostate metaclass.

best regards,
Gilbert

--------------060105080205020100080001
Content-Type: image/jpeg;
name="appliedStereotype.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="appliedStereotype.jpg"

/9j/4AAQSkZJRgABAgEASABIAAD/4RQiRXhpZgAATU0AKgAAAAgABwESAAMA AAABAAEAAAEa
AAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAA cgEyAAIAAAAU
AAAAjodpAAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhv dG9zaG9wIENT
MyBXaW5kb3dzADIwMDk6MDY6MDQgMTE6MTQ6MzEAAAAAA6ABAAMAAAABAAEA AKACAAQAAAAB
AAABuaADAAQAAAABAAAA7gAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEA AAEeARsABQAA
AAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIABAAAAAEAABLsAAAA AAAAAEgAAAAB
AAAASAAAAAH/2P/gABBKRklGAAECAABIAEgAAP/tAAxBZG9iZV9DTQAB/+4A DkFkb2JlAGSA
AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwR DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwM DAwREQwMDAwM
DBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAVgCgAwEiAAIR AQMRAf/dAAQA
Cv/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEA AAAAAAAAAQAC
AwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIG FJGhsUIjJBVS
wWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePz RieUpIW0lcTU
5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYH BwYFNQEAAhED
ITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcm NcLSRJNUoxdk
RVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//a
AAwDAQACEQMRAD8A9DpqzH0dPdRa1lQrr9VpmSAGu9m32/R/fVUs67V1bfU3 HdivuAdV6jt4
qP08mth9rbP9LV9C2z9L/Lu0sH+hYf8AxbP+oTnBrOYMze/e0RsDvZxs3Gv9 7+UjIA2D30VH
Sj+Dksr6/mBxp6hj+m4ubYaSHvbp7GV2em+pr2ue2x36L+b/AEP/AHbVwY/X hZP2mn0w8wzb
zXpG55G71Pp/8X+j/pH89YDHZ0vEybXV3Psu6fV+kqivcGhp26V1ss3Obu2e 79KgM6R0Z5fl
Pdk4dzGOfbda41PFQDa3+pkuHv2tprsdk+s/K9lN9uR6lVOwmPUahaJdDoW0 KfrBINWVQA4v
carGl5busY5rPUbt3MqZ61f+u+lxV9YnNdGTjghsMIBdLpsO632N/mv0Ff6P Z9p2Xv8A1L1q
/s9LFq+r2I9725t2+qxx9KxxY6aD611WNRsqfXUzd+mpw2MqfV+is/QexTyK fq8XbR1M4pNp
sIqvbWC/I32sa7TZ+m+1uurZ/wBqP5z9N6aaubLcfrhY+xmXX9odWRtd7qt4 FrKrWMDf0bbP
1e539tM3D+sDrg9+fWwB7nvYxktGlTKq2Nd7vT9P7Q+xr3P/AEnpf8Yq/wCz +hD0K6sm2kuB
qqfU5zI9LfjNxrrWM2sdTbm7KcTJ/wAP+irq/na0OjG+rbPbiZb3OeKzvocX hwe+qmr+jsNb
tjq27/8AQerZlW+n/SElNx2P9ZnOePtdNdZaWiGS8OP+FY8s2ez9yyn/AElX +EryKYjE+sLb
Te3NY0Pc79XtAexshm0te1ldlmz0t3p/ov5y/wDmf0X2Wh6H1XbTU23qLsqq WvbYbPWYOXy2
8Nt+zM9u/wDR20+n6fq/8IpO6X9WwasYdSsYWjZRUy8Ndt1r9GjY1tmzb+j9 Kn+d/VfU9T0c
P00puU4n1kBb62XVbU47Xhsh4rcfc9t2xjH31td9NlNH/F1fzSnbh/WIUtpp zKoLHNsseD6k
kVBr63tbt3t23v8Aof4T6CPj9a6Qaw2vIbDRtY1wLXO2sFm2qtzWvtd6fu2V MUz1zowbudm0
NbDHEusaABY0WU7iT7fWrdvq/wBIkpr2Yf1gaXGjMr987vUZuIMUMrNUANZ/ N5Fr2bf523/R
/wAywxPrDXW7bmMse6SA8CW/zugeK2td/wBp/wDB1e/fZ/wFuukkpy8ej6wN O7IyKbSK3N2t
bsYXkscyzbsst/R7bGfz+z9J/Nfo/wBITAo6w2/1M++uyssMV1AiHucHfSLW 72VsbsY76a0E
klKSSSSUpJJJJT//0PS8H+hYf/Fs/wCoVpVcH+hYf/Fs/wCoVpE7nzQNg5dl w35wbgy9lTyX
Gv226aV7mhz7fU/Obs/qesmxLdjLi7Erc9lRc77MHEvALopDb66fe/8AMZ6q 0wfe75Krnl/2
O0iCAR7XaTDmy2ZH0v3UQencoI69nLty8Zu1tvRXF7TeMXbUCyGzq9zq2Pxv tdm7/BfpP+vs
9Qbs3o7c+sN6Pd9p3QwClrSS703W5HpOextjcV7vTuytv6u+z9F7M39PoYjs p1N5xm1ss3sh
hmNsM9U7ZO2z093p/mfQQx/zmZYNvoWMd/OG06gy3d6DaRX+g+n6PrPtv/0v /CAijSQbFr35
jKq6COnFzdzxt2agCxrLDjsZXZv9T+k17/s/q0/pFXozcQVepidGsrDQ2x7H 0it21rXub6Xp
ttbZkM27K6nvqZ+l/n/51XXjrjqPca2PPpz6Mbx7P0/pm8Pp2/aNmzez+jer /h/TQQ760mt7
XsxQ7a8Mcwu3Tts9L6fs/nfQ3fo/ob/5tBLLp32HKttA6Z9lFTGNa66trS4O D63Vt27mbaqv
Z7LH/wA96X76unpvTzYbDj1l7uXFomSd5P8AWc/3Kykkpru6dgPDA7GqIq3G sFjfaXfT2ae3
f+chHo3Sjc277JUHtk6NABJ/Oewex7m/mPf/ADe+z0/5yxXUklKSSSSUpJJJ JSkkkklKSSSS
U//R9Lwf6Fh/8Wz/AKhWlVwf6Fh/8Wz/AKhWkTufNA2DEfTd8lVca8ymxlF2 18ghwkwQQ9vt
9v7itD6bvkqz8LCoxcgNpArsa51rRI3aaif6qQUWtjtbdiX2HMcGOsbGQPY2 K9ntZY4+/Hse
PTe9np7/ANJ6T/8ACqm3AxQ71aurGhrS4WBjms3mtxY+2+XbrL/1a37Rkf4T Zb/N/pVbt6hh
W4FbrKR6L7BWwP8AY1rmfpK7GlzWuq9N9f6J/wDg3/QXM9ay6cF+M7pWDiV1 2Uvvd6geHB1T
/Qa+j0baPd7/AFPU2+z+k2W1+n6qfHHPJICI+bb6BaZxiDZ21L0NmPhekMe7 qQtcXMZsvc17
HPqYarA+rc3fY/8An3+/+l11Xf4P9IJnSmXMdTX1h+QH7mhjnNsaQWuca3Vt c1rv0V7LPb/w
Xp7P0S5cZXVCA4dP6YWhrqW6WhuwAMfSxpyNv2b02+lX/wBp/s/6Ov8AV0an qvXWOBZi9Oaa
t1m8tuJBPqPfdJuNjsh7r7/o/rX6a7/CX7LJPuebtH/Git+8Y/H7C91Vl4r8 dl7LmuofAZYX
aEzs+k7+Umr6hg2gGvIrduO1vuGpn0/b/Wf9D99cKzqPWGVHHGN06uioF1eM 2uwsaSfRLqaa
rB6XrfaLGXWts9L0vW/wVn6SDMzqfqMyDi9O32OB9UtveSW/pqrHPOR7/Udu e61/83/2p/S+
pWl9zzdh/jRV7+PufsL6BTk497Q6mxtgLWv9pB9rxurd/bb9FD/aOBu2/aK5 A3fSERDnfS+j
9Fj3Lhx1jr7dobT08EVgAgv3OqrIY2iz17X2up/S/wBH+n/171EKzN6te4Md h9OsFe3aCLg1
pLa27WTkBtTa2vpY/wChT/NM/nfTrS+55uw/xoq+8Y+5+wvftzcR9npNuYX6 QJGsl7fZ+/7q
rPofuI683HX+q4we4Y2BtYfWLIuc0Ore5rXsqfk+nv8AW/SUf6f+dxvUsq9l 8fW76yljXD9n
7n/Rr22kkez3tLb3ep7rWN/R/wBT+d/Ro/cs/Yf40UfeMfc/YXuUlxDvrT9a 2a2M6fWAYJIt
JmJ+gy51jt35mxn6T/Bb6vehf88vrMHtYa8EOc4sjbYSC1vrO0Ze51ns/wBD 6v6T9D/OpDk8
x2A/xoq+8Y+5+wveJLiT9Z/rYHtaa8Da5wAdtsJhzm1NdsZe930rPooGN9df rHkRtZiNkAj9
Fa4+4vZ7gMj2M3V/pLf5uv8AR/6RL7nmIuhp/Wir7xj2s/YXvUlwuR9bfrZR VZY+rBHpse/R
tr/oMsu/Mv8Azm0PXb0vNlNb3RL2hxjiSJUWTDPHXFXquqIl8v8AdXwyRnfD 08Kf/9L0vB/o
WH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMG/Td8lNRH03fJO5waC5xAaBJJ 4ACCWE/oZn82
Z+SzOr9NZmX02W4VGWGMImxjXuaS5jva+xvtZsa//ri0DfQykG2xrG/QJcdu sfR935yqdQor
yaW3jIYylgduuLmgQQ6s+/b7du7fv3ey1idDQgnREtRTQf8AV/BrZjbOjYWT Ib9pf9npa8mW
tf8AoXmutnsc9+/17v8AR+j+eqg6Na3Ge531a6bZkMqaWNa2pofafT9Vga9j vSrZuu2Oda/+
a/4X9HtnFyH1Yv2fMDRU1h2gSyyC12/9G+l/vrbY36foe/f6KqDpvVGY1uOz rbvUZUysPfXW
41uiub7Nx9V77vTt/nbf8P8A8HUkZG9yoRHZp5fQm1l4xegdPuDANrnVUs3n ePofS9v2f6fq
en+l/m0zein1Du+rfTjXLRo2oEiLHXW79j/+Arrp9P8A0tnrrSv6dmuve2nq jqHPmyqoDcWt
FQxd8Wvfv2Wv9b6P2f1PT/Q+r+lUMfE6p9qey/qoftBIxWtYSWOa6uu+1zBT kV77f0u2h9df
6P0qnocUu5VwjsHNd0S9rWgfV/ptrnsYd/o0s2PLahf6tfqWep6dr8h7K6n/ AKStno+v/h7j
P6Mxxayv6u4TKzc1hLm0GKg1j7cj0/ov3276qqt/qf4az0v5tbOF/P2H7aMs 11VU2tkS22s3
erbYyp3o12Xb/cxlFX8z/wBt2mXVWOeyt7XurO2xrSCWmN218fR9qXEe5VQ7 BxsX6v8ATnWs
GT0XBqYaQ52ympwbbJD6/Uhr3fo9n+A/69YrX/Nr6u/+VeHrz+gr/wDILSSS 4j3KqHYOafq1
9XSZPS8Mnx9Cv/yCR+rf1eJJPTMQk8k0V6/9BaSSXEe5VQ7BzP8Amz9XP/Kv D/7Yr/8AIJz9
W/q6eel4Z/6xX/5BaSSXEe5VQ7BzP+bP1cIj9lYcf8RX/wCQWkAGgNaIAEAD gBOkkSTumgNn
/9P0vB/oWH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMW/Td8knsa9jmO1a4E HtodOyYfTd8l
NBLS/ZeFXjNprY5jKnGxgY9zCHEOGj2Oa785VM+rp9dVOFZQ59QD3Mc51jY3 n0LB6wa5/vZk
2b/f/NLXcJaQO4IWf1L7RNZqqFjocI2hwHtdslzqn+31djH+7+b/ADE6Opo7 dlshWo37uff0
36vuON9qxzj2ZAcTjA7RFrttwtcw7P5/IZ/Nv3/9a9RApzPqfVjevXuoqpo9 V7QyxsMua0bn
vDfpurzPzbf8Jv8A8D+i1rLr66MVhwzZU4M9b2g7DLG7W0Mbu9u57/5vZ+jV X9pdX+y2Ps6N
Nra2PLG2NdvtJr31NG3/AAT32+//AIH/AEdnrIHcrhs1epH6q1gtzGPaKwwm sbtrQ1zMRu/Y
702+n6VXss+mz+j+p6lvqFxuofVnGsdXVbY1pdX7Xi5zQ97rMprWtsDnU2Od S627+b9T9H6q
tX5vVKbL/T6c3IaHauadheRT6nDm2b/0+yht3/pL3tT1TPvvcw9Lcytm4Oue 7hzWFzmBnpb7
fftp30epS/8AwNtyCnNtyPqq51T8plzbK2Vuxqnl8hr21201UVMd+b9qZT/w Vv6P/uOtDD6l
0LADcbEte/1La8eus73Q9zK3Mprfd7WMrosrs9L1NlP83/O/olexnWWWCu7F FDG0VPa0w7a9
3qttx9zP0X6BtdX83++rPo1cbG8k8Dl30nf2pSUgxuo4uU9raHF4fUL2OiAW OJZ+dD/zf3Va
TbW7t8DdEbu8eEp0lKSSSSUpJJJJSkkkklP/1PS8H+hYf/Fs/wCoVpfKqSJ3 PmgbB+lbqrWu
z7M24WYDqzFDmvaGtH85vtAduY9R6e0F+VXiOpbaaWeneNz3BpN32Z1mO5tX 6uyz1/RY3I/6
4vmxJP8A0Dv/ANytPzjb/un6POH1r0b9uc4b3O3SwksH6Td9nd6Qfa5tbqdn pM9P1f5v/hG+
yfWEY9oZnMk3Ndjl9TyWta97/RtjZY5lr/Qqss+h9m9VfOKSjXv0hVjfWMZN Trsuva2d1YG4
ObFP0rW0U1ssZZu/wX6wz1fQ+x+r+qPRh/WUNaLs+su5e4VjmXHaxpZ9H+bZ /wBvf9yKPsXz
ckkp+lsnH6o5jAzK9PJLrTS4Mcaw1w/RsyNo9N/pf4Oy1tf/ABVv+FgzD639 p3WZ8H3FjG1T
XEsG13t9vs93856r3v8A0PpV1Xev82JJKfpHExettzWPtzQ+oEnJqdWYM+ps ZRZtqr2sY7H9
7G/pLWWW/ov5hbK+VUklP1UkvlVJJT9VJL5VSSU/VSS+VUklP1UkvlVJJT// 2f/tGVRQaG90
b3Nob3AgMy4wADhCSU0EJQAAAAAAEAAAAAAAAAAAAAAAAAAAAAA4QklNBC8A AAAAAErAjQEA
SAAAAEgAAAAAAAAAAAAAANACAABAAgAAAAAAAAAAAAAYAwAAZAIAAAABwAMA ALAEAAABAA8n
AQBsbHVuAAAAAAAAAAAAADhCSU0D7QAAAAAAEABIAAAAAQACAEgAAAABAAI4 QklNBCYAAAAA
AA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAHg4QklNBBkAAAAAAAQA AAAeOEJJTQPz
AAAAAAAJAAAAAAAAAAABADhCSU0ECgAAAAAAAQAAOEJJTScQAAAAAAAKAAEA AAAAAAAAAjhC
SU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAA AQAyAAAAAQBa
AAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA//// ////////////
/////////////wPoAAAAAP////////////////////////////8D6AAAAAD/ ////////////
////////////////A+gAAAAA/////////////////////////////wPoAAA4 QklNBAAAAAAA
AAIAADhCSU0EAgAAAAAAAgAAOEJJTQQwAAAAAAABAQA4QklNBC0AAAAAAAYA AQAAAAI4QklN
BAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0E GgAAAAADSwAA
AAYAAAAAAAAAAAAAAO4AAAG5AAAACwBVAG4AYgBlAG4AYQBuAG4AdAAtADEA AAABAAAAAAAA
AAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAbkAAADuAAAAAAAAAAAAAAAAAAAA AAEAAAAAAAAA
AAAAAAAAAAAAAAAAEAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpj AAAAAQAAAAAA
AFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAA QnRvbWxvbmcA
AADuAAAAAFJnaHRsb25nAAABuQAAAAZzbGljZXNWbExzAAAAAU9iamMAAAAB AAAAAAAFc2xp
Y2UAAAASAAAAB3NsaWNlSURsb25nAAAAAAAAAAdncm91cElEbG9uZwAAAAAA AAAGb3JpZ2lu
ZW51bQAAAAxFU2xpY2VPcmlnaW4AAAANYXV0b0dlbmVyYXRlZAAAAABUeXBl ZW51bQAAAApF
U2xpY2VUeXBlAAAAAEltZyAAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3Qx AAAABAAAAABU
b3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAA7gAA AABSZ2h0bG9u
ZwAAAbkAAAADdXJsVEVYVAAAAAEAAAAAAABudWxsVEVYVAAAAAEAAAAAAABN c2dlVEVYVAAA
AAEAAAAAAAZhbHRUYWdURVhUAAAAAQAAAAAADmNlbGxUZXh0SXNIVE1MYm9v bAEAAAAIY2Vs
bFRleHRURVhUAAAAAQAAAAAACWhvcnpBbGlnbmVudW0AAAAPRVNsaWNlSG9y ekFsaWduAAAA
B2RlZmF1bHQAAAAJdmVydEFsaWduZW51bQAAAA9FU2xpY2VWZXJ0QWxpZ24A AAAHZGVmYXVs
dAAAAAtiZ0NvbG9yVHlwZWVudW0AAAARRVNsaWNlQkdDb2xvclR5cGUAAAAA Tm9uZQAAAAl0
b3BPdXRzZXRsb25nAAAAAAAAAApsZWZ0T3V0c2V0bG9uZwAAAAAAAAAMYm90 dG9tT3V0c2V0
bG9uZwAAAAAAAAALcmlnaHRPdXRzZXRsb25nAAAAAAA4QklNBCgAAAAAAAwA AAABP/AAAAAA
AAA4QklNBBQAAAAAAAQAAAADOEJJTQQMAAAAABMIAAAAAQAAAKAAAABWAAAB 4AAAoUAAABLs
ABgAAf/Y/+AAEEpGSUYAAQIAAEgASAAA/+0ADEFkb2JlX0NNAAH/7gAOQWRv YmUAZIAAAAAB
/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwM DAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBER DAwMDAwMEQwM
DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABWAKADASIAAhEBAxEB /90ABAAK/8QB
PwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAA AAABAAIDBAUG
BwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGx QiMkFVLBYjM0
coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5Sk hbSVxNTk9KW1
xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1 AQACEQMhMRIE
QVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJE k1SjF2RFVTZ0
ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eX p7fH/9oADAMB
AAIRAxEAPwD0OmrMfR091FrWVCuv1WmZIAa72bfb9H99VSzrtXVt9Tcd2K+4 B1XqO3io/Tya
2H2ts/0tX0LbP0v8u7Swf6Fh/wDFs/6hOcGs5gzN797RGwO9nGzca/3v5SMg DYPfRUdKP4OS
yvr+YHGnqGP6bi5thpIe9unsZXZ6b6mva57bHfov5v8AQ/8AdtXBj9eFk/aa fTDzDNvNekbn
kbvU+n/xf6P+kfz1gMdnS8TJtdXc+y7p9X6SqK9waGnbpXWyzc5u7Z7v0qAz pHRnl+U92Th3
MY59t1rjU8VANrf6mS4e/a2mux2T6z8r2U325HqVU7CY9RqFol0OhbQp+sEg 1ZVADi9xqsaX
lu6xjms9Ru3cypnrV/676XFX1ic10ZOOCGwwgF0umw7rfY3+a/QV/o9n2nZe /wDUvWr+z0sW
r6vYj3vbm3b6rHH0rHFjpoPrXVY1Gyp9dTN36anDYyp9X6Kz9B7FPIp+rxdt HUzik2mwiq9t
YL8jfaxrtNn6b7W66tn/AGo/nP03ppq5stx+uFj7GZdf2h1ZG13uq3gWsqtY wN/Rts/V7nf2
0zcP6wOuD359bAHue9jGS0aVMqrY13u9P0/tD7Gvc/8ASel/xir/ALP6EPQr qybaS4Gqp9Tn
Mj0t+M3GutYzax1NubspxMn/AA/6Kur+drQ6Mb6ts9uJlvc54rO+hxeHB76q av6Ow1u2Orbv
/wBB6tmVb6f9ISU3HY/1mc54+1011lpaIZLw4/4VjyzZ7P3LKf8ASVf4SvIp iMT6wttN7c1j
Q9zv1e0B7GyGbS17WV2WbPS3en+i/nL/AOZ/RfZaHofVdtNTbeouyqpa9ths 9Zg5fLbw237M
z27/ANHbT6fp+r/wik7pf1bBqxh1KxhaNlFTLw123Wv0aNjW2bNv6P0qf539 V9T1PRw/TSm5
TifWQFvrZdVtTjteGyHitx9z23bGMffW1302U0f8XV/NKduH9YhS2mnMqgsc 2yx4PqSRUGvr
e1u3e3be/wCh/hPoI+P1rpBrDa8hsNG1jXAtc7awWbaq3Na+13p+7ZUxTPXO jBu52bQ1sMcS
6xoAFjRZTuJPt9at2+r/AEiSmvZh/WBpcaMyv3zu9Rm4gxQys1QA1n83kWvZ t/nbf9H/ADLD
E+sNdbtuYyx7pIDwJb/O6B4ra13/AGn/AMHV799n/AW66SSnLx6PrA07sjIp tIrc3a1uxheS
xzLNuyy39HtsZ/P7P0n81+j/AEhMCjrDb/Uz767KywxXUCIe5wd9ItbvZWxu xjvprQSSUpJJ
JJSkkkklP//Q9Lwf6Fh/8Wz/AKhWlVwf6Fh/8Wz/AKhWkTufNA2Dl2XDfnBu DL2VPJca/bbp
pXuaHPt9T85uz+p6ybEt2MuLsStz2VFzvswcS8AuikNvrp97/wAxnqrTB97v kqueX/Y7SIIB
HtdpMObLZkfS/dRB6dygjr2cu3Lxm7W29FcXtN4xdtQLIbOr3OrY/G+12bv8 F+k/6+z1Buze
jtz6w3o932ndDAKWtJLvTdbkek57G2NxXu9O7K2/q77P0Xszf0+hiOynU3nG bWyzeyGGY2wz
1Ttk7bPT3en+Z9BDH/OZlg2+hYx384bTqDLd3oNpFf6D6fo+s+2//S/8ICKN JBsWvfmMqroI
6cXN3PG3ZqALGssOOxldm/1P6TXv+z+rT+kVejNxBV6mJ0aysNDbHsfSK3bW te5vpem21tmQ
zbsrqe+pn6X+f/nVdeOuOo9xrY8+nPoxvHs/T+mbw+nb9o2bN7P6N6v+H9NB DvrSa3tezFDt
rwxzC7dO2z0vp+z+d9Dd+j+hv/m0EsunfYcq20Dpn2UVMY1rrq2tLg4PrdW3 buZtqq9nssf/
AD3pfvq6em9PNhsOPWXu5cWiZJ3k/wBZz/crKSSmu7p2A8MDsaoircawWN9p d9PZp7d/5yEe
jdKNzbvslQe2To0AEn857B7Hub+Y9/8AN77PT/nLFdSSUpJJJJSkkkklKSSS SUpJJJJT/9H0
vB/oWH/xbP8AqFaVXB/oWH/xbP8AqFaRO580DYMR9N3yVVxrzKbGUXbXyCHC TBBD2+32/uK0
Ppu+SrPwsKjFyA2kCuxrnWtEjdpqJ/qpBRa2O1t2JfYcxwY6xsZA9jYr2e1l jj78ex49N72e
nv8A0npP/wAKqbcDFDvVq6saGtLhYGOazea3Fj7b5dusv/VrftGR/hNlv83+ lVu3qGFbgVus
pHovsFbA/wBjWuZ+krsaXNa6r031/on/AODf9Bcz1rLpwX4zulYOJXXZS+93 qB4cHVP9Br6P
Rto93v8AU9Tb7P6TZbX6fqp8cc8kgIj5tvoFpnGINnbUvQ2Y+F6Qx7upC1xc xmy9zXsc+phq
sD6tzd9j/wCff7/6XXVd/g/0gmdKZcx1NfWH5AfuaGOc2xpBa5xrdW1zWu/R Xss9v/Bens/R
LlxldUIDh0/phaGupbpaG7AAx9LGnI2/ZvTb6Vf/AGn+z/o6/wBXRqeq9dY4 FmL05pq3Wby2
4kE+o990m42OyHuvv+j+tfprv8Jfssk+55u0f8aK37xj8fsL3VWXivx2Xsua 6h8BlhdoTOz6
Tv5SavqGDaAa8it247W+4amfT9v9Z/0P31wrOo9YZUccY3Tq6KgXV4za7Cxp J9EuppqsHpet
9osZda2z0vS9b/BWfpIMzOp+ozIOL07fY4H1S295Jb+mqsc85Hv9R257rX/z f/an9L6laX3P
N2H+NFXv4+5+wvoFOTj3tDqbG2Ata/2kH2vG6t39tv0UP9o4G7b9orkDd9IR EOd9L6P0WPcu
HHWOvt2htPTwRWACC/c6qshjaLPXtfa6n9L/AEf6f/XvUQrM3q17gx2H06wV 7doIuDWktrbt
ZOQG1Nra+lj/AKFP80z+d9OtL7nm7D/Gir7xj7n7C9+3NxH2ek25hfpAkayX t9n7/uqs+h+4
jrzcdf6rjB7hjYG1h9Ysi5zQ6t7mteyp+T6e/wBb9JR/p/53G9Syr2Xx9bvr KWNcP2fuf9Gv
baSR7Pe0tvd6nutY39H/AFP539Gj9yz9h/jRR94x9z9he5SXEO+tP1rZrYzp 9YBgki0mYn6D
LnWO3fmbGfpP8Fvq96F/zy+swe1hrwQ5ziyNthILW+s7Rl7nWez/AEPq/pP0 P86kOTzHYD/G
ir7xj7n7C94kuJP1n+tge1prwNrnAB22wmHObU12xl73fSs+igY311+seRG1 mI2QCP0Vrj7i
9nuAyPYzdX+kt/m6/wBH/pEvueYi6Gn9aKvvGPaz9he9SXC5H1t+tlFVlj6s Eemx79G2v+gy
y78y/wDObQ9dvS82U1vdEvaHGOJIlRZMM8dcVeq6oiXy/wB1fDJGd8PTwp// 0vS8H+hYf/Fs
/wCoVpVcH+hYf/Fs/wCoVpE7nzQNgwb9N3yU1EfTd8k7nBoLnEBoEkngAIJY T+hmfzZn5LM6
v01mZfTZbhUZYYwibGNe5pLmO9r7G+1mxr/+uLQN9DKQbbGsb9Alx26x9H3f nKp1CivJpbeM
hjKWB264uaBBDqz79vt27t+/d7LWJ0NCCdES1FNB/wBX8GtmNs6NhZMhv2l/ 2elryZa1/wCh
ea62exz37/Xu/wBH6P56qDo1rcZ7nfVrptmQyppY1ramh9p9P1WBr2O9Ktm6 7Y51r/5r/hf0
e2cXIfVi/Z8wNFTWHaBLLILXb/0b6X++ttjfp+h79/oqoOm9UZjW47Otu9Rl TKw99dbjW6K5
vs3H1Xvu9O3+dt/w/wDwdSRkb3KhEdmnl9CbWXjF6B0+4MA2udVSzed4+h9L 2/Z/p+p6f6X+
bTN6KfUO76t9ONctGjagSIsddbv2P/4Cuun0/wDS2eutK/p2a697aeqOoc+b KqgNxa0VDF3x
a9+/Za/1vo/Z/U9P9D6v6VQx8Tqn2p7L+qh+0EjFa1hJY5rq677XMFORXvt/ S7aH11/o/Sqe
hxS7lXCOwc13RL2taB9X+m2uexh3+jSzY8tqF/q1+pZ6np2vyHsrqf8ApK2e j6/+HuM/ozHF
rK/q7hMrNzWEubQYqDWPtyPT+i/fbvqqq3+p/hrPS/m1s4X8/YftoyzXVVTa 2RLbazd6ttjK
nejXZdv9zGUVfzP/AG3aZdVY57K3te6s7bGtIJaY3bXx9H2pcR7lVDsHGxfq /wBOdawZPRcG
phpDnbKanBtskPr9SGvd+j2f4D/r1itf82vq7/5V4evP6Cv/AMgtJJLiPcqo dg5p+rX1dJk9
LwyfH0K//IJH6t/V4kk9MxCTyTRXr/0FpJJcR7lVDsHM/wCbP1c/8q8P/tiv /wAgnP1b+rp5
6Xhn/rFf/kFpJJcR7lVDsHM/5s/VwiP2Vhx/xFf/AJBaQAaA1ogAQAOAE6SR JO6aA2f/0/S8
H+hYf/Fs/wCoVpVcH+hYf/Fs/wCoVpE7nzQNgxb9N3ySexr2OY7VrgQe2h07 Jh9N3yU0EtL9
l4VeM2mtjmMqcbGBj3MIcQ4aPY5rvzlUz6un11U4VlDn1APcxznWNjefQsHr Brn+9mTZv9/8
0tdwlpA7ghZ/UvtE1mqoWOhwjaHAe12yXOqf7fV2Mf7v5v8AMTo6mjt2WyFa jfu59/Tfq+44
32rHOPZkBxOMDtEWu23C1zDs/n8hn82/f/1r1ECnM+p9WN69e6iqmj1XtDLG wy5rRue8N+m6
vM/Nt/wm/wDwP6LWsuvroxWHDNlTgz1vaDsMsbtbQxu727nv/m9n6NVf2l1f 7LY+zo02trY8
sbY12+0mvfU0bf8ABPfb7/8Agf8AR2esgdyuGzV6kfqrWC3MY9orDCaxu2tD XMxG79jvTb6f
pVeyz6bP6P6nqW+oXG6h9Wcax1dVtjWl1fteLnND3usymta2wOdTY51Lrbv5 v1P0fqq1fm9U
psv9Ppzchodq5p2F5FPqcObZv/T7KG3f+kve1PVM++9zD0tzK2bg657uHNYX OYGelvt9+2nf
R6lL/wDA23IKc23I+qrnVPymXNsrZW7GqeXyGvbXbTVRUx35v2plP/BW/o/+ 460MPqXQsANx
sS17/Utrx66zvdD3Mrcymt93tYyuiyuz0vU2U/zf87+iV7GdZZYK7sUUMbRU 9rTDtr3eq23H
3M/RfoG11fzf76s+jVxsbyTwOXfSd/alJSDG6ji5T2tocXh9QvY6IBY4ln50 P/N/dVpNtbu3
wN0Ru7x4SnSUpJJJJSkkkklKSSSSU//U9Lwf6Fh/8Wz/AKhWl8qpInc+aBsH 6Vuqta7Pszbh
ZgOrMUOa9oa0fzm+0B25j1Hp7QX5VeI6ltppZ6d43PcGk3fZnWY7m1fq7LPX 9Fjcj/ri+bEk
/wDQO/8A3K0/ONv+6fo84fWvRv25zhvc7dLCSwfpN32d3pB9rm1up2ekz0/V /m/+Eb7J9YRj
2hmcyTc12OX1PJa1r3v9G2NljmWv9Cqyz6H2b1V84pKNe/SFWN9Yxk1Ouy69 rZ3Vgbg5sU/S
tbRTWyxlm7/BfrDPV9D7H6v6o9GH9ZQ1ouz6y7l7hWOZcdrGln0f5tn/AG9/ 3Io+xfNySSn6
WycfqjmMDMr08kutNLgxxrDXD9GzI2j03+l/g7LW1/8AFW/4WDMPrf2ndZnw fcWMbVNcSwbX
e32+z3fznqve/wDQ+lXVd6/zYkkp+kcTF623NY+3ND6gScmp1Zgz6mxlFm2q vaxjsf3sb+kt
ZZb+i/mFsr5VSSU/VSS+VUklP1UkvlVJJT9VJL5VSSU/VSS+VUklP//ZOEJJ TQQhAAAAAABV
AAAAAQEAAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAEwBB AGQAbwBiAGUA
IABQAGgAbwB0AG8AcwBoAG8AcAAgAEMAUwAzAAAAAQA4QklNBAYAAAAAAAcA CAAAAAEBAP/h
D85odHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdp bj0i77u/IiBp
ZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1s bnM6eD0iYWRv
YmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDQuMS1jMDM2 IDQ2LjI3Njcy
MCwgTW9uIEZlYiAxOSAyMDA3IDIyOjQwOjA4ICAgICAgICAiPiA8cmRmOlJE RiB4bWxuczpy
ZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1u cyMiPiA8cmRm
OkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczpkYz0iaHR0cDovL3B1 cmwub3JnL2Rj
L2VsZW1lbnRzLzEuMS8iIHhtbG5zOnhhcD0iaHR0cDovL25zLmFkb2JlLmNv bS94YXAvMS4w
LyIgeG1sbnM6eGFwTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9t bS8iIHhtbG5z
OnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVz b3VyY2VSZWYj
IiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGhvdG9z aG9wLzEuMC8i
IHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIiB4 bWxuczpleGlm
PSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgZGM6Zm9ybWF0PSJp bWFnZS9qcGVn
IiB4YXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDUzMgV2luZG93 cyIgeGFwOkNy
ZWF0ZURhdGU9IjIwMDktMDYtMDRUMTE6MTQ6MzErMDI6MDAiIHhhcDpNb2Rp ZnlEYXRlPSIy
MDA5LTA2LTA0VDExOjE0OjMxKzAyOjAwIiB4YXA6TWV0YWRhdGFEYXRlPSIy MDA5LTA2LTA0
VDExOjE0OjMxKzAyOjAwIiB4YXBNTTpEb2N1bWVudElEPSJ1dWlkOkU5QTky QjAwRTg1MERF
MTFBQjlBQzJENzM1MUU1RTc0IiB4YXBNTTpJbnN0YW5jZUlEPSJ1dWlkOkVB QTkyQjAwRTg1
MERFMTFBQjlBQzJENzM1MUU1RTc0IiBwaG90b3Nob3A6Q29sb3JNb2RlPSIz IiBwaG90b3No
b3A6SUNDUHJvZmlsZT0ic1JHQiBJRUM2MTk2Ni0yLjEiIHBob3Rvc2hvcDpI aXN0b3J5PSIi
IHRpZmY6T3JpZW50YXRpb249IjEiIHRpZmY6WFJlc29sdXRpb249IjcyMDAw MC8xMDAwMCIg
dGlmZjpZUmVzb2x1dGlvbj0iNzIwMDAwLzEwMDAwIiB0aWZmOlJlc29sdXRp b25Vbml0PSIy
IiB0aWZmOk5hdGl2ZURpZ2VzdD0iMjU2LDI1NywyNTgsMjU5LDI2MiwyNzQs Mjc3LDI4NCw1
MzAsNTMxLDI4MiwyODMsMjk2LDMwMSwzMTgsMzE5LDUyOSw1MzIsMzA2LDI3 MCwyNzEsMjcy
LDMwNSwzMTUsMzM0MzI7MDI3MjA4MkNGM0FCRjQ1REQyRTIyMDQ2NUVGNDk2 NDMiIGV4aWY6
UGl4ZWxYRGltZW5zaW9uPSI0NDEiIGV4aWY6UGl4ZWxZRGltZW5zaW9uPSIy MzgiIGV4aWY6
Q29sb3JTcGFjZT0iMSIgZXhpZjpOYXRpdmVEaWdlc3Q9IjM2ODY0LDQwOTYw LDQwOTYxLDM3
MTIxLDM3MTIyLDQwOTYyLDQwOTYzLDM3NTEwLDQwOTY0LDM2ODY3LDM2ODY4 LDMzNDM0LDMz
NDM3LDM0ODUwLDM0ODUyLDM0ODU1LDM0ODU2LDM3Mzc3LDM3Mzc4LDM3Mzc5 LDM3MzgwLDM3
MzgxLDM3MzgyLDM3MzgzLDM3Mzg0LDM3Mzg1LDM3Mzg2LDM3Mzk2LDQxNDgz LDQxNDg0LDQx
NDg2LDQxNDg3LDQxNDg4LDQxNDkyLDQxNDkzLDQxNDk1LDQxNzI4LDQxNzI5 LDQxNzMwLDQx
OTg1LDQxOTg2LDQxOTg3LDQxOTg4LDQxOTg5LDQxOTkwLDQxOTkxLDQxOTky LDQxOTkzLDQx
OTk0LDQxOTk1LDQxOTk2LDQyMDE2LDAsMiw0LDUsNiw3LDgsOSwxMCwxMSwx MiwxMywxNCwx
NSwxNiwxNywxOCwyMCwyMiwyMywyNCwyNSwyNiwyNywyOCwzMDtERDhERkJD NjU2QkY3OTM3
NDk2OTlBQUUxM0VFNjJDQiI+IDx4YXBNTTpEZXJpdmVkRnJvbSBzdFJlZjpp bnN0YW5jZUlE
PSJ1dWlkOkU4QTkyQjAwRTg1MERFMTFBQjlBQzJENzM1MUU1RTc0IiBzdFJl Zjpkb2N1bWVu
dElEPSJ1dWlkOkU4QTkyQjAwRTg1MERFMTFBQjlBQzJENzM1MUU1RTc0Ii8+ IDwvcmRmOkRl
c2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAg
ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDw/eHBhY2tldCBlbmQ9 InciPz7/4gxY
SUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkA BgAxAABhY3Nw
TVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLUhQICAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAAB UAAAADNkZXNj
AAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRn WFlaAAACLAAA
ABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD TAAAAIZ2aWV3
AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxy VFJDAAAEPAAA
CAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAo YykgMTk5OCBI
ZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2 MTk2Ni0yLjEA
AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxY WVogAAAAAAAA
AAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3 hQAAGNpYWVog
AAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3Lmll Yy5jaAAAAAAA
AAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4x IERlZmF1bHQg
UkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYt Mi4xIERlZmF1
bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAA AAAAZGVzYwAA
AAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2 LTIuMQAAAAAA
AAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2 Ni0yLjEAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPt zAAEEwsAA1ye
AAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAA AAAAAAAAAAAA
Ao8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4A IwAoAC0AMgA3
ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQA qQCuALIAtwC8
AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgB PgFFAUwBUgFZ
AWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC DAIUAh0CJgIv
AjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsD FgMhAy0DOAND
A08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUE YwRxBH4EjASa
BKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF 9gYGBhYGJwY3
BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H 0gflB/gICwgf
CDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ +woRCicKPQpU
CmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwM dQyODKcMwAzZ
DPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUP QQ9eD3oPlg+z
D88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUS ZBKEEqMSwxLj
EwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V 4BYDFiYWSRZs
Fo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZ txndGgQaKhpR
GncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd 7B4WHkAeah6U
Hr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUi giKvIt0jCiM4
I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kn eierJ9woDSg/
KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs 1y0MLUEtdi2r
LeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMy mzLUMw0zRjN/
M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4 yDkFOUI5fzm8
Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/ YT+iP+JAI0Bk
QKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJG Z0arRvBHNUd7
R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN 3E4lTm5Ot08A
T0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVV wlYPVlxWqVb3
V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114Xcle Gl5sXr1fD19h
X7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm 6Gc9Z5Nn6Wg/
aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9Fw K3CGcOBxOnGV
cfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl5 53pGeqV7BHtj
e8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qE HYSAhOOFR4Wr
hg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaO zo82j56QBpBu
kNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ /JpomtWbQpuv
nByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTil qaYapoum/adu
p+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx 1rJLssKzOLOu
tCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+ hL7/v3q/9cBw
wOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbL tsw1zLXNNc21
zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZ bNnx2nba+9uA
3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/n qegy6LzpRunQ
6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72 bfb794r4Gfio
+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////7gAOQWRvYmUAZEAAAAAB/9sA hAABAQEBAQEB
AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAgICAgICAgIC AgIDAwMDAwMD
AwMDAQEBAQEBAQEBAQECAgECAgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD AwMDAwMDAwMD
AwMDAwMDAwMDAwMDAwP/wAARCADuAbkDAREAAhEBAxEB/90ABAA4/8QBogAA AAYCAwEAAAAA
AAAAAAAABwgGBQQJAwoCAQALAQAABgMBAQEAAAAAAAAAAAAGBQQDBwIIAQkA CgsQAAIBAwQB
AwMCAwMDAgYJdQECAwQRBRIGIQcTIgAIMRRBMiMVCVFCFmEkMxdScYEYYpEl Q6Gx8CY0cgoZ
wdE1J+FTNoLxkqJEVHNFRjdHYyhVVlcassLS4vJkg3SThGWjs8PT4yk4ZvN1 Kjk6SElKWFla
Z2hpanZ3eHl6hYaHiImKlJWWl5iZmqSlpqeoqaq0tba3uLm6xMXGx8jJytTV 1tfY2drk5ebn
6Onq9PX29/j5+hEAAgEDAgQEAwUEBAQGBgVtAQIDEQQhEgUxBgAiE0FRBzJh FHEIQoEjkRVS
oWIWMwmxJMHRQ3LwF+GCNCWSUxhjRPGisiY1GVQ2RWQnCnODk0Z0wtLi8lVl dVY3hIWjs8PT
4/MpGpSktMTU5PSVpbXF1eX1KEdXZjh2hpamtsbW5vZnd4eXp7fH1+f3SFho eIiYqLjI2Oj4
OUlZaXmJmam5ydnp+So6SlpqeoqaqrrK2ur6/9oADAMBAAIRAxEAPwDcQ/l8 f8yNyP8A4fNZ
/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXobKzszsrJ7u37t7Ye wuvctjev9xY3
auSym9e19w7MyFbl6/Y+0N+O9Bh8J09v6nOLgxm9KWFZpK1JXqI5QYVRUdwv 9Jt8NvaS3t7M
kkyFwEiVwFDvHktNHmqE000pTPGhobu+knuorS0iZInCkvKyEkoj4CxPijgV rWtceqp6t7By
m+497UmeweFwOe2FvT+5mZp9t7nq94bfqqqTZ2z96wVeKztftfZtdURDG7yg hmSXHQNFVQyq
pkQLIzF5bQwC1ltp2kt5oy6llCNh3jIKhnHxRmlGOKcDjp+zuZZzcxzwqk8U mhgrFlyiSAgl
UPwuOKjNeIz0WL5Hx/IDorIbw716WqN59qdd7tk2y3e3Svk3BvrffWmNxKYD bmZ+QfxH2/8A
w/dmTyefwHX2Lb+8vU1FQ1VDumWkh3BtahG7483gezQLz22+pylvbctTpHvX hDw2Y6QoLqJD
q0sEbw9eh30xo1HkkijVpFNrLwTdQ/UKTDXI/LH25pUDJGACcF9+LvZVN2NW U+a6z3VQdjdK
Z/Zrboi3zh+3cn3jtefOZebbeQ2a+z+xcrVZN8jBuTa2Tr6iuoqavraKhSko ZIo6UVheuhL2
Q3zm/cOY9+2/c5r2XZobciT6mZ53iu1kRfD1yVaNipm8WHUPDdCuhdIVTfeI bVLeGSNUEpbG
kAArQ5oOIrSh8wePRk+0u2OrOjtiZ3tLuvsvr/p/rLa/8M/vL2L2lvLbnX+x Nu/xvMY/buG/
ju7t2ZLEbfxH8X3Bl6ShpfuKiP7isqooU1SSIpya6D3RYF+fHQWU7C6kpNnd kdP73+PnZ/xg
+YXygq/lXtrubZeW6a2rtX4ddmfGfrffSVO7MW+R2TXbfjqe/chPls02dpab b0m1KiCoilM0
r0Xuvden/mOfC9OwvjFsWh+Q3T+bxHzF2/3Bkvjp21g+2uqcl012purpjszp fqPOdS7G35Dv
gU2+O4Ny727spaXCYHBQ5SprJMHmIpDBUUaQz+690D/xo/ms/Fjuj4sYn5i9 pd9fEDoTpLff
YFBtTrrO5r5fddZj+Ff3n66wPaW0esfkBk9xYjrnaXS/y/odpZWom3X1fQ5T dn93Ps2eHOZS
Fmli917o4HYPyx+LHUn98P8ASt8lvj/1l/o9+6/v/wD6Qe5Outmf3H+y/wBD v3n98P7x7jxv
92ftP9mI6/8AL974PH/frb2q38axv3Puvde278sfixu/D9i7i2n8lvj/ALo2 /wBP9f7R7Y7a
zu3e5Ous3h+rurOwNiT9pbD7L7FyeN3HU0Wyev8Ae3WVNJuPEZnJvS47JYKN q+nmkpFMo917
pP73+UG1difJXYnQGaTb9HiNw9P5/sfe3ZOU3pjsRjur91Z3u/o7of4x9Y7p xNXQmmpNwfLz
e3ZG6aHYZq8jQVOfyvX2Vx+JpMpUR1f8P917pQYz5Y/FjN776t6tw3yW+P8A l+ze8ev8f2x0
p11jO5Ouq/ffcHVmXw+d3Fiuy+rdo0u45dwdgdf5Pb+18nXU+ZxNPV46ajx1 VMkxjp5WT3Xu
k/VfN34X0OO7rzFd8u/jBR4j417gxW0/kXlKrv3qmnx3QO6s7urIbFwe2u66 6bdiU3Ve4Mzv
bE1WHpKLOtQVNRlaaWkjRqiN4x7r3S/pvkL0FWbVzO+qTvDp+q2Ttzp/bXyF 3DvGm7L2XPtX
BdBb0x27Mxs7vDM7hizTYjF9P7sxGws7VYzc08yYWvpsLXywVLpR1DR+690w bj+WPxY2dt3f
+8N3fJb4/wC1dpdUfZ/6Ut07j7k66we3etf4j2nvXovH/wB/83k9x0uM2d9/ 3b1ruPZ0P8Rl
pvLurAZLErevoaqni917r2M+WPxYze++rercN8lvj/l+ze8ev8f2x0p11jO5 Ouq/ffcHVmXw
+d3Fiuy+rdo0u45dwdgdf5Pb+18nXU+ZxNPV46ajx1VMkxjp5WT3Xuif9nfz KarrD/SnnqX4
hfIDu3rLY3y/2p8OtrdnfH/dfxxy23d5b73l/sr/AFxhKyVu9O7/AI+RR+T5 dfIPMdQ1se3p
91Ue3d1dfZ1dw1uGkpqikpfde6OBj/k90nHh8nU787E6/wCod27O6/zvYvb3 WPZHanUVLvvo
jD7I2J1b2P2pB28u1OwN2bS27/od2l3ZtKt3PkabLV2CxtHuXFVgr5aDKY6r qvde6T+Z+bvw
v2501tP5F7h+XfxgwXx837uCp2nsXvbM9+9U4vprem6qOfctLV7a2n2fXbsg 2TuPcFLU7LzE
clFR101SkmJrFZAaWcJ7r3RX9q/zY/ixl+ovmBv/ADO+Ov37N+En+z57j7r+ L/XXbnXXYXyO
xHVnwX7s7Z6syu/5+sarM7N3Bgf9J+3+u8ZmsdDloaDHUku6KCjfJTRyRV9R 7r3QwbI+evUt
Vkd97X+QmC3B8IexOvNv4DfOd68+WG+fjxgcjP1nunaveO88B2Tid8dQd5dz dOZDb9Rtv4vd
m19ZQjcy7hwuK2DlsplMbQ4gUdfWe690MGT+WPxYwm++0urcz8lvj/iOzeju v8h2x3X11k+5
OuqDffT/AFZiMPgtxZXsvtLaNVuOLcHX/X+M2/ujGV1RmctT0mOho8jSzPMI 6iJn917pP7A+
ZXxq37keiNnDurp/bHcfyP6f2t3j1T0Bme7ekM33Luzr3dW1cpu+nz+09udd 9k75xHZe38fi
NvZVpM7tDIbh2zVR4isqKHJVdHAak+690D/a380j4C9O7iwu3d3fKz4//wDZ QEvxo7SztB3n
0v8A3d+Nnaf+iz5AdpY/E/JfJ5PsHF/6Hf47/stm49uUEGRT+I1W6vBQLS/8 CpaX3Xug/wDk
f/NJ6s+Lfe0/VnYvW/YGe6/j7A+MPTuQ7u63m25uPZ3XHafe+zvlN3L2lS97 PncntLC9S9f/
ABL+Mvx4xHaHYeYfLZLI4PYm+8XmqvE0uKMNfWe690IG3/5l3xYyPafzJ673 duz/AEO7S+EH
+hb/AEpfIrufO9ddffGfdX+mzcfYXXeP/wBGfbuT34+Mzn9we7eqNx9dbo/i MGJ/hXYWFrcA
vnr6Sqjh917r3zM/mSfFj4c/FjcXyX3H3b8f8x/GPj/2b3p8aNlZvv8A662J /s3H9xOuot/4
Ha3Re46+szH9+/79/wAYwlJSV2AoM7p/jtDLHT1H3EEc3uvdKD5MfPjoLoHr 35hVe3uyOn+1
vkH8OvjB238oN9fFTDdzbLxvcse1esOs17IpE3ZtOhfc+9uvNv7qpsph4I81 WYKemgjzlHOs
U4ngSb3Xuhgyfyx+LGE332l1bmfkt8f8R2b0d1/kO2O6+usn3J11Qb76f6sx GHwW4sr2X2lt
Gq3HFuDr/r/Gbf3RjK6ozOWp6THQ0eRpZnmEdREz+690T/rH+Yt2Lu/ffxU6 i3t/Lx+X/X/Z
vyb+P+0/kBP5838WF2J1dt2LD/HP/T9Fu7/SF8i+q++qX/ZY99fJnB7d3HRV 3XWL3Vkqynq5
MPgq+OFre690aDcvzd+F+y+vabtzePy7+MG0+qazcG09p0nZ25e/eqcF17Vb q371nhu6ti7a
pt6ZTdlLtufcG9OnNx4/duJolqTU5HbNfT5SnSShninb3Xug/wDmV8+Ogvh5 173VV7h7I6fz
fyD60+MHdvyg2L8VMz3NsvY3cvcm1emOs+yeyKtNp7TrnzO9n2/lqbqvMQSZ qjwWUpqGPH1k
7RSijnQe690n+2P5kPx72d8WOy/mL0XU/wCz1dJdLf3yrO4s78Ku0vjP2j/o 1271z11ku0uw
dx5/J7w76622lX/3O2lS0k1VhMXlMjuqX+L0L02KnhleWL3Xuhgpflv1LtzH dKUnyJzG3/h1
2t8g9wZXafVPx8+TPbvx4293LvTdWN3Vj9qU+2tnY/rvuXszZPYu4MxU5/DT 01FtfO5ypSPP
Y+CpSnrpzSJ7r3Qf/IT+Y58L/jPPvfD9lfIbp+Pe3Ve4Oi8b2/1jje2uqU7M 6b2r393L0v0r
trtrtrZef3xgcv150/tbL9+bczGez2UWnpqHb1WKuIVDy0sFR7r3Qf4z+Zp1 LnezNw7c251b
3BunonbHcHx86IyHzU2nlvjxur4wVnZnyr69+PO/vj5i9tf3e7+yfyD3nt/s 2T5Wdf4ei3Bh
9gV23ochuFKmproMPS12Vpfde6MBuX5u/C/ZfXtN25vH5d/GDafVNZuDae06 Ts7cvfvVOC69
qt1b96zw3dWxdtU29Mpuyl23PuDenTm48fu3E0S1Jqcjtmvp8pTpJQzxTt7r 3Xtz/Mr41bE3
V33t7sPurp/rvEfGPb/TGZ7y31vnu3pDbm1er8j3xkdx0PX20+yaSu7JTe3V e4MzTYnG1lDJ
uvD4PFZ+m3JjVwdZlahclBj/AHXulBm/lj8WNs/6C/7x/Jb4/wC3/wDZoP4R /stH8b7k66xX
+zEf3g/ut/Af9Bf3+44P9Lf8b/vxhPtP4B/EPuf4xQ+PV93B5Pde6T/w8+Yf QXzr6C2J8i/j
pvvb+9Nk702/tfJZTF43dGy9x7q6u3VuPZe2N9V3UvbVDsXc+78RsnuDZOI3 fQx57AyV0tTj
amUKxZGjkf3XulBu75Y/Fjr/AGJt3tLfnyW+P+yest39fwdsbT7F3d3J11tv Ym6OrKnMddbd
puy9u7uzO46Lb+b6/qNwdwbSoUzNNUS456zdOIhExkyVEs3uvdA/2R8+OgsH stNz9M9kdP8A
yLy9H3B8B+uN1bV6x7m2Xncjs7av8wPv3pnqLqLs7cB2q+8anHbfzmye3hvP bYqaanpt34qg
AoquOnqPvofde6O/7917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xu ve/de697917r
3v3Xuve/de697917r//Q3EP5fH/Mjcj/AOHzWf8AvIbL9jznf/cT29/8Vmw/ wSdBjlr+05n/
AOlvc/4V6Av5bfBCh+QG/M5uTfvQHw5+Qe1qveFFntmJ8kOsqTtHcGxMpujZ PU/WW46Tb2Ny
3S3Z0eAxmbqOtsbVZGtpZ6eFqeCOStCQ0XmUH3X0t5b7esm4z28kMRjISBZQ 1ZZJA1TPER/a
UI0kCmrVQ4N4lvLW4vnis4Zo5pA4LTNGRSONCKCGQH4Kg6hWtKYyaD4r/G2L pTYFVtfdW0up
qGSn3LjqvZ22+usJTrsrr3aW3No9VbW2rtPZ9NU7Y2xFhMVhX6lxdVTUlHQU lLRPR0iwreki
cN3P05h262jkaUW8RXW6BGYtNJNXSHk00LgfGalQ2OAdtUnWS+nmREaaUNpV i4UCKOKmoqhN
dBPwimqmaVNN3z66K7tr/lBvaql6D3h21sbIYbr/ABfxaq9j9Xb033R9Y4DD bA25hsntLr/c
myGhwfxm3zS9n0WUyLbhr59uRPSV2Odcm0VAUoZn5E3LlO15cW3u7pILtC/j KWRBIKtpqrVM
y+H2BFBoaroq9Xhjn3bOcrrmRZ9stzLYsE8M6GfQQF1UZaCI6+7Uc/irQdpM Pk18Xvl78c+z
sd2LvjobfnylwG7Nq9W7qqdq9MdN9n9y5bqDuSfqLaL/ACT7p+M9V1bSVFN0 X3V2D8lk3ZvT
fTIu3V3ymdizeEq6jd8eWxW7MVedbKfceZN0bb7F/oWkJtGCsQsZNRE1KiJt WVkZgQTpdjGQ
8XTn2E5s5U5V9tdiO48xW8V8ocbvbSTQxyvLVwt3CstHvYxblIprONZBIE8W 1jW7R4Nwut+T
FJ3n2T/LL+MmT2C+z/lT3vN2h/KL7N/vBsPcORm6o7g3Bs75rfDrszeXZ1Lv 7rraHaFRhOj8
nQ4Cv3HkN043B5ymw+1FnyopamnpyjDGxW4Sys0umrdCJA5rWrhRqNfPNc9Y q80T7TdczcxX
OwReHsUl/cNbLp06YGlcwrpOVpGVGk8OHQIZn+Xp80N09y9ofKKn330/1B2t 3bt/5C12+ut+
tu3u1q3HYOfsCD+T51xSdIbJ+TFD051x2Tgtv969E/yzNzY3Odp4jae395dV ZXsamrNtYjN1
234MnVKuiLr3xA/l8/K744fIeq+TldhOn6jL7u7g7twu4epNy/N75VfJfI7R 6C+QvUv8sDZG
6+y6b5a/IPoKv7j7k7g2FuT+XZVS4nY+dwmJwtdit3U9JHuzD0+Ehp6v3Xuh g6w+Hfyn+NvV
n8tDL9W4z4/9vd2/Cv4AV3wY7F6+3/3B2L0v1Zub+++3PhvVbu7R2V3Ft34+ d4btqf7p7t+H
dPQ43CV2xaH+NY7c8ldNX4ybFrj8l7r3QP8AQn8ordXx86C3p1Fg9xdP7o3t kfk//Js3tQ9z
SYDI7O3VvzoL+V/sv+WftjKYPfiUmD3Nl8PuCuy/xL7Gyu0ttplc7hcdU7vh 15OmfIZOan91
7oQKT+X737txM/mMXD8YOwsuvT/8+TaeD2F3RHvTdnTW9N1fzNPnn118rfjp truDa1PsyCp3
H0/S7J2XPh+zqKFvuUkqmpMYmUp5Gq0917r3fPw83V80+2vnEm6tibfx+ya7 uD+UX0G+zO69
r5HI9Z9+9BfBr5D7L/mH9zdhY+fI7YyWI3nt/s3EfKzd/VsW3zja/CncOwJ0 rssEyVbS4P3X
uvb+/lt743N82t/d0Gj2/vHqnt/5P/Gn5Y53N7l+ZHza6/x3V+6vjVsf407Y wGyqb4BdQZrb
Pxc+SW4KvOfFLFZvE9gbv3RiqnB5XcFO1dt3cFDtCjxu4Pde6D/qL4C/NDqb b/S2V2xU9P4T
a3w67g2Bvb4f/Afcvyp7W7u6a2FtXDfGD5V/Fzf+Dpvnvvn4iYP5R4Db+6cH 8q6fNYnbe49l
dmU21JOu6fC4bJ0OC3DBR7O917oP9/8A8tD5oYTpD5n7M6ij+MG+97fzGPjB 8gelO5qTsfur
tbqnavxn3V3n8lf5jHycTIdY7i2x8Z+5Mv8AJjb+2Mv/ADJMrt4y5XEdX1NZ TbBpMn4IH3HN
jdve690aDAfAbtPqPYmw929S4D4/5XvrrL+Z/wDOT+YVU7Xye4dx9W7E7+/2 a3MfN3rPaeM7
S7n211Bv/ee2OwNi/HL5WYE1GVbZu7fJWbFpdtQsuMkp83Q+690H+S/lydxb y+WOZ7033trr
+u2/3V8gPih8uuzooPnb87KPYnSXafxw62+MG3W6x2j8M+uMb058cvl99tvP 4qUGU252lvmr
2hkaKsztJU5LZ2UpNp0mFznuvdCB1B8aO0+2f5c/Q2EqcT/ow7N7W+X/AER/ Mm351v2lQbj2
tmOnP9In80PZn80ntr4852GTA1G4K3sDp/b+by2xaWprcXhv43ncVFUVlJgo 6qaCg917pf53
4Vdp4+q/mX786tz/AF/sbuD5n/IDofsTbW+du5Xcexd97u6J6V+OPxP6ozPx 07F7t2ntX/Sb
0v8A6Ra3qzsnBYjd21Dnsx1lR9gtuzb8b7gjehHuvdEA2d/LD+a+zqrfO/8A rk9f9D/I3fny
A7W3b118jcf/ADJvl38qN9/E7qztX44/Aro7dyZPG/Kn4k7s2/8AzF/77bg+ JM+brtkdpw7e
x2Bo8fhKPbW4sNkY6TO7f917oYPk/wDyv+/e6vhfVfHTau7+n6De0/yf/nDd 1plNwZ/elLtU
bV/mC9U/zZdi9M49q7Hdf5XLjcG2cv8AO/aEm54hQmmoqbHZhqGfIvT0UeQ9 17oz+7/5ZfUS
9i/ELdeytvf3zoulPl/hPkh2vuD5Qdu92fKLtPcmH63+LHy56x6Ow+1Ox/kb uTuzfU3+hjvr
v/G7v2rhJszjMFtbIy5rOYoU+aq5jkPde6QGA+LHdnUu+9h5XfKdf1Hxl+I3 y/8AnJ/MV212
J11Xdu9ofI7trMfKXD/N3LZnoyf4n7T6Pqf4D/o8/wBnjzcWOzG29676zu7Z dlUEVNtmlqdy
PT4H3XuiP/DT+UT3n1pt/wCLidp7W2/U0w2//LT7g7ipdy/Nv5hbax3Rvcvw p+MHw06syHVt
N8G/j9uqg+Hnyo3BR78+HdFk8T2TuDedJHi8rnKeafBbkxu0aGg3F7r3RwOv fiJ80Ot+jPhH
1XQ7T+MG4cv/ACudwdU03x0yNV8he1sFjvl5tXZXw9+QXwezmZ7r8PxQzlT8 PNwSbJ7kpd7U
mMwSd0U02Vo5dvSV8NOybh9+6917anw83V8it/ZTuXsrYm38Xsndv81/5Td1 9v8AQvde18jU
QZ/oLrz+Xp3z/Jo21j8fiM/tiqxHaO3/AJI4jZO3OzYospQYrCvs3ec9FFPl UoqWtzXuvdJ+
s/lkdp9N97dTd4/G/Ldf9hf7Lb1/8TqXYm1+/Oxdx7L3j8i+0+s9nfzaus/k J2D8ie59h9J7
+/gHYHa3/DmS9j5PeNHtPc2R3pvvGZiHJY/G/wAWGbh917oH9/8A8tD5oYTp D5n7M6ij+MG+
97fzGPjB8gelO5qTsfurtbqnavxn3V3n8lf5jHycTIdY7i2x8Z+5Mv8AJjb+ 2Mv/ADJMrt4y
5XEdX1NZTbBpMn4IH3HNjdve690n+4P5OHcW/cP8stgYaTr/ACFF2R/w5v2P 0p2/2L80vnZu
DD0faf8AMF2J8tsBitswfAallh+Ivxw/0by/MHJ4XI9i4mbsHI53BYavrE2t R5rdstXtz3Xu
hA7/APh38p8J1187uuNm4z+5Pxl+ZX+lP48Y3oLrTuDsX5d+fsX+Zh8p9r9c dsfzFclhuy/j
5152B8ZP9l+6/wC19y7/AN2dRbT3ruLqzOfdZGohqdp1NDkdx573XurX92dK bqzvzQ6C+RdJ
kNvx7J6r+MHy76U3Di6mqyKbqrN1d/drfCLfWzshhqGLFTYio2/jcR8a87Hk 5Z66nqYamroF
ggqElqJKX3Xuq4MJ/Lw+QnUHwe/l9/GLqYdf1tF8Zfj/AITrvvfo/q35cfJj +XXsTsvvao2l
18+d+ReC+U/xE6uy/fWX/hG+sRveaq2jkdvUWH39WdjS7kzkkOa2/jYqj3Xu iv4b+Ul80Nu/
Fvdnxd663j0/0riOwP5cFN8Z/kLnMN8je1u3+vfmN37hv5Y+2vgxsHJbs6E7 L+LdLTfEfb/W
e9sFislHvzrDdgzW7ds7Po6Pc+1srUZCiO1Pde6sf+WPwq7T73/4c5/ujn+v 8d/s6P8ALA2D
8Kurf7x5XcdH/Ae09q/8OE/xDP7/AP4ZtXMfwvr+b/ZsdueGqx38VyLfZZLV Qp4aX7z3Xugg
+eH8tvfHye793z2NgKPb+9dk9/8Axg64+J3aG2t2fMj5tfFravXm1dgb0+Rm drN67l6g+IOa
25iPnnt/emI+TtfT1vX+8Ny9d01JTbbeio9xQpunIVWI917pP7g/l+/KfKbn 71pdibi6/wCm
OhZPkBtr5YdY/Gyf5B9i/IPYnevyY2V/ME6k+eK9u7u3Z2P8cNs9m/BD/SvW 9Q1+3tx7R2Nm
O0evcdWdhVe4cbt8ZPB1Y3n7r3Q/9KfAClqvkB8g/lJ8mcV9/wBgdvfIDpfv rafU2xvk38jt
7/HHZ2Y61+IHxH6qppt1dI5k9UdAdqdgdc9/9G5jO7U3hmevpc7BFQ7bzMMm LyuPo6PD+690
EHRXwP79+HPTX8tkfHzY3xg3l2t8N/hBvv4ido9U5nsfenx66a3hurvSf4od h90d77T7U2T8
c+5tyZDcFR3H8XqirkoMjsOiqd1yb1rMxXZKgrqJqPK+690T+p/lZdtVe9Ot NkbDq9wbzxH8
v34wfyruiNp7rzPanyH+AGO+TPZnxd6C/mbdO9n4vafyB6CG8O9untv4brb5 77S3dJuDaNFv
Hb2XytPWbDmrpKiPc0uD917o8Hxa+F/yE+HPZOF3r1fsn4/7o2/3R1/19sD5 D7U3F8lfkx/G
OkP7vfLH5l/KDdG9euu0+3Ou/kt2b81uwN1Vvzoz8OXyW8sl1Z/HM7tZcrHH iKTcv8F2p7r3
Q/8AxC6d+U/xw+PfxG+NGQpfj/PtL40/3Q+PW7t60e8Oxdybi7Z+LHTXxnze wOuu29ubcn6+
2RjOofkBvzu3B7Wq83syqr95bcwG1TlYqXcuWr2pJI/de6rgx38tD5oVyfA7 q7cMfxgxPVP8
vDp/479B7F7Kw3dXa2f7C792r0d88/5UPyCq+wt2dR13xn23tvo7cG4unP5d 2YePb9HvTfFN
T7m3HR41stJQwT5k+690IG7P5X/fud3J0FmKTd/T8dN1X8n/AJd917hSpz+9 EnrNq9/fz9/h
F/NR2dj8MsXX80dRuDG/Hz4153D5OKdqemh3lV0FJBPUY2Woy1L7r3V73v3X uve/de697917
r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuv/R 3EP5fH/Mjcj/
AOHzWf8AvIbL9jznf/cT29/8Vmw/wSdBjlr+05n/AOlvc/4V6N5vOo+2w9HJ 9z9pq3ZsKn8v
338P1/d7527S/bfcf3o2h5PvfN4fB93L915PD9lkvJ/DqqP5TRRmncvy/EPm P8OeFG+EileP
5H/B+f8Aq9OPSs9udV6QHYHYEGwoNtKNt7j3fmN37jO1tubc2u224cpksrFt zcW7aoCr3duP
am3qOnpNv7Urqh3qK6HV4hHGHldEZXaWhuzOTOkcUaa2Z9VANSoMIrsas6jC njU0AJ6S3V0L
UQ/ovJJI+lVXTUnSznLsqiiqxyw4UFSQOg+2n2nlaHN7a2hvLrDsrZtRvndW 7aLbmc3Pkeuc
riqjJTUu8OxIMDIu2+6+0Nx0klJtXCVapIYosYrUgjgSihemo43TtqLb3EsG 5wT+GNTBBMCF
Zwtf1I1BozqKBvPCgCgZXcHM8EM+3zQ+IdKljEQWCM1P05HIqqMakUxQmpyk vlr8kct8atsd
a5nB7Cp+wcp2R2nH1pS42qr+yKWDFX627K7HnzT0fUXTHfnYea0U/XL0opsf tup0GrFRPLBT
QTSqdcp8uRcyXW5QzXxt47a18YkCElv1oYdNZ7i1iXM2qrzD4dKhmYDok5u5 lk5ZtdtnisRP
JcXXggEzAL+jNNqpBb3Urf2OmiQn4tTFVUnoAerv5ilLmc3uvFdy9Mdk9eUG LxW1chtTcvXX
TPzZ7awm66vMVe7KbcmCqoNw/Cvp7ce3MrtCHCY6od3x9TRV0OaiEFQZaeqj jP8Ac/buSGG1
l2fd7e4kZnDpNcbdAyBQhRgU3G4R1k1OBRwymM6loykhza/cq3mnuot52ue3 jVEMbwwbjOsh
YyB1Ifbrd0aPShNUKsJBpaqsAdHqDvDrnvXEbjzXXGQ3FV020N0vsrc1Huvr /sLrPP4Tcybc
23u8Yyv2t2ZtbaG5ofNtnd+NrYpvtPt5oatDHIx1BQZu+ybjsU1vBuUcavNF 4iFJYplZNbx1
DwvInxxupGqoKmo6G+zb7tm/wXFxtksjRxS+G4eKWFlfQkmkpMkb/BIjA6aE MKHj0ut2bs2r
sLau5d9b63Lt/Zeydl7fzO7N47x3Zmcdtzau09q7cx1TmNw7l3LuHMVNHiMF t/BYijmqq2tq
poqalponlldUVmBT0b9Eg3N/NH+CezuiflH8l9x95/w7pL4XfIDcHxc+S+9f 9GXcVZ/o1722
rvHY2wM9sb+7lB19Vbt3j9hu3srCUn8TwFBlcPL975Y6t4YZ5Ivde6P/AO/d e6B/C917Vzvf
vZfx0pMfuCPe3VfT/R/de4cpU0uOTatZtXv7enyF2Ls7H4auiys2XqNwY3L/ ABrzsmTinoae
mhpqugaCeoeWojpfde6YKv5L9WYjuzsLovcuW/ufuDrfr/4xb/yu6d3V+3Nv 7Ey/+zd9u92d
F9KbK27m8hno62v7A3F2b0dW4tMbJSQfd1mZxFNQSVlXVvTwe690P/v3Xuig fHv50fH/AOUG
+9+dbdSw/ID+9vV+qDsKm7S+Hfy/+P8Ah9n5j+D7E3LDtHO7s7+6K6y2lRdg Vu0uzcDm6Xbj
V38dq8Fk4snDSSUGqoX3Xujf+/de6B/svuvavVe9Pj1sXcOP3BWZf5KdwZrp TYtRhqXHVGOx
O6sF0F3h8i6vIbsmrsrjqmh2/JsnoLMUsctHDX1JytTRxNAtPJPU0/uvdBB8 hPnR8f8A4v77
2H1t21D8gP729oaYOvabq34d/L/5AYfeGY/g++9yzbRwW7OgeiuzdpVvYFFt LrLPZuq24td/
HaTBYyXJzUkdBpqG917o3/v3Xug/yXaWxMR2ns3pTIZ37fs3sDr/ALL7S2jt r+GZiX+L7E6f
3H1PtPsXO/xmDHybfoP7u7g7x2tT/a1VXDWVf8U10sU0dNVvT+690AHxo+d3 xn+XP8J/0Jbo
7Aqv7z9f0HbGw/8ASh0B8hPj3/pV6sr/AOA6uy+mP9mE6s6u/wBNPX+J/vdg /wCKZnan8Zx2
H/vFhvvpqf8AjOL+7917o3/v3Xuk/trcuO3ZjqnKYum3BS01LuDdm2pYty7T 3VsvItkdl7qz
OzsxU02H3jhsFl6zb9Zl8FPNictDA+Kz+KenyeMqKzG1lJVz+690n+y+0tid P7dxu7Oxc7/d
3b+X7A6n6tx+Q/hmYy/3G++8e09m9KdW4L7XBY/J1sX96OzewMRjPunjWjov u/uKuWnpIpp4
/de6ADK/PX4nYTcXzV2nk+1vttwfy7ev9q9pfMXH/wBxuyZv9D+xN7dWZ/uv bGd+6p9nS0XY
H8T6y2vXZP7Xa0mbrIfB9vLFHVvHA/uvdD/1P2lsTvHqzrTuvq3O/wB6Osu4 Ov8AZvaXXW5f
4ZmMJ/eLYnYG3MbuzaOd/g24sfiNwYj+L7fy9PUfa11JS1lP5NE0Ucisg917 pP5ruvauC796
0+OlXj9wSb27U6f7w7r29lKalxz7Vo9q9A70+PWxd44/M10uVhy9PuDJZf5K YKTGRQUNRTTU
1JXtPPTvFTx1XuvdezXde1cF371p8dKvH7gk3t2p0/3h3Xt7KU1Ljn2rR7V6 B3p8eti7xx+Z
rpcrDl6fcGSy/wAlMFJjIoKGoppqakr2nnp3ip46r3Xuhg9+691737r3Xvfu vde9+691737r
3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9 +691737r3Xvf
uvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691 /9LcQ/l8f8yN
yP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXo3m86j7bD 0cn3P2mrdmwq
fy/ffw/X93vnbtL9t9x/ejaHk+983h8H3cv3Xk8P2WS8n8Oqo/lNFGady/L8 Q+Y/w54Ub4SK
V4/kf8H5/wCr049Kz251XorPyy2FvDf+ydrUezdubh3VPjN15985iNndgVfV e8m25uvp7tXr
PIVu0ewsXu7YWf2fuLHT78hnpsli8zjctj2Q1NFPHUxRH2vs3TwNztzOkUk0 AVWcPoDCaKTu
0I7UKowFFOaA0GQgvUkMu3TpA8ixTFmVSoYgxSpjWyLguK1YYrSpwSRfG/4o dl7G7X2rWZHY
vyM27sxcrlstuvM91fOTuz5M1lJEnVvamx8XT7Eqe1vkx3Vufr/KVdb2NqqJ 9v8A8KapWGKS
pmeSjo/G3bW5s4d0+o3O1l8a3EarCJw1fGhkJJeGIABY2yG1VIoMkjU0j3U+ 3eHt9xEsU5dm
kMNKeDKlAI5ZCSWcfhpStTwBNd8p+vt7SZL46b262673321P1x8iH35vLae3 98bZjzabUrul
vkltOTI4GDuPsrZGzY3pd3dtUkTwQV9POMeYoY0aloKeGAScnXO3WjcxwX+5 Ja/Vbf4aPIJn
TxBd201CIo5nFVjehCUwFJAp0HOc7PcbteW59v22S6NruIlkSNoUfw/pbmIk GaSJDRpExrrk
kA56Kx2vhvlJ2Nu9dyYz4497bdpMDSUTdZ01ZjfjBlMx1nueMxzZLf2FyWC/ mW7Mwea3jlWQ
0Dy5TE1lH/duWswbUz4zM7igzQ22+/5csrYQvzPZMzE+LT6wLMnARsG2iRhG K6gEdT4oSYMJ
IbdoQXuVjzNfXTTx8tXqIqjwaiyZoX4mVWXeI1aRvhJeNl8IvCVMU1wsxvPi Ltzs3Fj5B7r7
S6+zfW2W7O7twO8cTgtxVWwZcpW4zD/Gn479X5TPNj+uezO3sBgKDK7166y7 UdBJn6+sgo1i
8zsWDsDOcbzbrl9hg23cI7mO2smjZkEoUM13dzKtZoYGYrHLHqYRqpatB5Aa 8nWe5Wyb/cbn
t720tzerIquYixVbO0hZqQzTqoaSKTSplZgtKk8SAHyQ+Lnadf8AI7D/ACnp djdf/NvZmyf7
kZzafxV7q3NuPaeY6O3j17VR5+m7o+IYzO4cv8Rcv8gMRLiKgbTfeux9r77b O7syUU/dW3to
Q0e3KQG9DLogHbX8pbffYnxn+Xu7DtHV8jd19f8A87HbvWnUv8ew4/0n77+S HyE/mLZL4C9i
/wB/B2RQ7F2V/dLoX589q4z+EV8cdHX/AOmT7jcbUuR2liBjvde692b8Cvlj u/cXcOK6Z6p/
0FfLrP8AYH8yfdec/mj/AN+ettn/AOm7pP5KdWfNLbPws+PH+mLq7eO4/nPl P9ln3R3r0nL/
AAXdGysZtDaP+hTy7drq1tvbO/inuvdAB2f/AC3d79mb77b3F0d/LX7A+Dnx Yzf+yO/6WPix
1btP+UfRb7+VX+hzD/zRKHeX8C6PzfZHyF+AvYP90+xfkv03uOq/0uvjb0ez 5a/C69xYDb4b
3Xujv/FP4g939AYT5BUW4/jduDvDZPZnwg+L3x62F0z8he2PjVnYNwQTfLj+ ZnufPdH94P1l
19tLo7rLp/o3o75W7MptzbZ2LsfcOzdn7NiqdrbApt+pgqKHK+690f8A+EPx m7C+Nm1d8UO9
d47fp8RvfcGO3Bsn46dX5HszOdBfFrb8OOaGDqnpvOd0bw3pvaq2/tymngwU MW3qXrXq+PC7
exUm2es9k1E2bTK+690UDvf4bdy9qbV+fWzjs7cAxHyH/mv/AMtrv7aVXtPt ODrrdWW+PHSu
O/lI4vu/sLbW+tn762tvbrbcGyKb4078aiekyGH3aKnBJUYdWqKjFy1HuvdF /wDlR8Ke+cj8
0Ogd+9LfHLcG3sR0H3B8EtmfGzsr4xbH/ludedS9Q/BbrTtbp6v+QnVfdHY3 bdLtz+YhsvcE
G0KrtfFx7Q6Wr6frbMdd5Tb+Floaqoye8aKp917oIOjP5Xe7dz7t6M213L8H ev8AcHxl2/8A
L/Z/ZHauR+ZHUnwe3B84e+6Xb/we/mLbP3J298/N4/HLs/tn4/8AzK+w7/7+ 2JHsjc7UWP7H
bLZDN1+5cVV1NJLvPO+690f/AKu+Lne21sP/AC/Nu12xv4Zt/wCMn8z/AOfP ZcuCg3Ns5sP1
T8Nt0bE/mq9W/EPG7RxlFuGSioOv9u9Zd49X7c25tPCo8+1MFUUlAcdQUmKq oqH3XuiP47+X
D3zQ/J/5KdrbkxHzfHYm8NwfPzceY+R/x67N/ludPT9hdGd77f7/AMZ8cOke j+9JuuaP+Yh2
V3B07tDsfr/G7Z2l3LuraPT2yN5bCpstj85JiNl7MoMp7r3Sg+NH8vrduwe0 /iN212f/AC6P
j/UdZdOdgfJTa/WHV+w+gfg91N3t03mO4Nx/y+63qH52fJrYPX/bmQ+Ip+QH XMvxI3ku6N4d
J56bO1OHy21ptu7NxslTmNvba917r2zf5TPbp/l4/CvYfbe9/kB2z8jesuv/ AOWD1Dkdg5vs
vpPq3/ZSOotk/LX4CdyfNTr/AKL7Q+Lm2Oh9wVn93tv/ABax9TSbkyW7d472 p/7i0J2xmlyN
fWyZf3Xuhg3x8HN6Yn5P5B+uPidt+ny9N8n/AISb++KHzR2mnQW29q/Cf4Lf Hrb/AMR8H3j8
HttZOp3pgflH1Jt/tHB9H9tYyi2P1zszLdbZam7fSHKV9HT5vdhxfuvdVgbY /ltb+7o21tzd
vVXXXcGQ+PmQ3B8v8H8Do/izUfy9OvuvfjHPuH+aN/MK7W2L8nNqdifLfpft Tsn4r9P9v9E9
udQZzYXZ/wAVsLnd5VW2dpQZaHHVxw2xEqvde6P/ANmfAnN9gba+Tex+wP5f u3+3e8dy/J+j
+Qe8/l5uXGfEfc+O+Y/xR2X/ADRurfmdtL4L02998dowfInce4KX4k7LwnWe J2x2TtvbPVVF
ldmU+HbPU22aTE5ab3Xuhg6f/lq4fe3c+4u5N6dOf7LVszany/6c7g6k6U8W xD9z8cdo/AX+
WbS7f6F/hXRXamY666l/0PfPn4IdeZ/y4mbJxS/6G/4JQtVbQ3NWS5L3Xuig fFr+Xv8AJjrX
Z3xT2j2J8V/J8mtlf8NTZjY3zc/vT8e81/smPx7+LnRPwb2d8wPhP/pMHZ0v ya2x/pYzXQnd
GO/u71rtzcnWe5/9MGrJZeKmz+65cb7r3QP5D+WX8kc5hOvNq7U+GW4Oj+49 j/CDJ9KfOv5g
7TyHwWO6v5lXZkPy4/lkdn96ZDbWdy3YvYu6fkRuD5W9U/GvuIUUvyT2ht7b 25aneyUO/IKO
jzuegh917o//APL0+D/a3x6796X3svWfcHXvR2C6f/mAYPG7Q7r3V8L6PdXU GR7s3p/K2qNl
bGx/SHwS2L1x8XOktv8AYGc+MvYe6IsJ14m6sVNUzT7jz+YpdzbqrcNRe691 e97917r3v3Xu
ve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de6979 17r3v3Xuve/d
e697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3 v3Xuve/de697
917r/9PcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A 6W9z/hXo3m84
aifD0aUs+Wp5V3ZsKZpMLVZSjrGp6ffO3Z6yCaXD4PcNW+JqaSN46+J6eOln oXmjqamipnlr
II/lBKihPxLwr/EPQHHr5UrUgZApXj+R/wAHSs9udV697917r3v3Xuve/de6 LpF8h9k5PJYT
L4WHtrL7RqsDk51rsJ0J3xl8NmpchPt6q25mMRV43pXJ0+dxk2MjrHp66jzE NGYp1YQVomin
ozN9lv0l0u9upWoZWuLdWDVGCpk1AjIINCDggngWLvFk6BkW4ZTQgrbzsCPU MIyCDggioIyD
TiOuBzmJ3Pg8LuXAV0OTwW4cTjs5hclT6xBkMTlqOGvx1dAJEjkENXR1CSLq VW0sLgH2glik
gllgmQrKjFWHoQaEfkel8Usc8Uc0TaonUMD6gioP5jqrbb384f4v5yk2TmK3 G5Xa23N7ZXYW
PTN7h7w+D7Ve1aTsLN4PCY/O722Ht/5b57tXbmK24+ejqs+kmAatwVFBUzVl PEtLP45QuPaH
maB72FJFluIFlOlLbcqOYlZiscr2CwOz6SsVJdMrFVRjqWsW2/vByxOllM8b xW07xDU9zttU
ErKoaSJL9p0VNQaWsWqJQzOo0tQ8eyvlZ8XeydzYzZXXXyS6D39vLNfefwfa Wyu4evN1bmy3
8Ox9Xlsh/DMDgtxV+Vr/ALDFUE9TN4on8VPDJI1kRiATe8rcz7bbSXu48uX8 FmlNUklvKiLU
hRVmQKKsQBU5JAGT0OLLmrlfcrmKy27mSwuLx66Y47iJ3agLHSquWNFBY0GA CTgdD57Iej7o
AO9Plj8WPi//AHW/2Zf5LfH/AOO/9+P43/cr/Tp3J111J/fD+7P8I/vH/db+ /wDuPb/94P7v
/wB4KD777TzfaffU/l0+aPV7r3Q/+/de6D/eXaWxOv8AcXU+093Z3+Ebg7x7 AyXVvVuP/hmY
r/70b7xHVnZfdeQwX3WMx9bRYT7frLp/ceT+6yMlJRv/AA77dZTV1FLBN7r3 Qge/de697917
r3v3Xuk/uzdm1dhbV3LvrfW5dv7L2Tsvb+Z3ZvHeO7MzjtubV2ntXbmOqcxu Hcu5dw5ipo8R
gtv4LEUc1VW1tVNFTUtNE8srqisw917oIOi/lj8WPlB/en/ZaPkt8f8A5Ef3 H/gn99f9Bfcn
XXbf9z/7zfxf+7n96f7gbj3B/d/+8H936/7H7vw/d/Y1Hi1eGTT7r3Q/+/de 6D/JdpbExHae
zelMhnft+zewOv8AsvtLaO2v4ZmJf4vsTp/cfU+0+xc7/GYMfJt+g/u7uDvH a1P9rVVcNZV/
xTXSxTR01W9P7r3QQbl+bvwv2X3LTfHTePy7+MG0/kHWbg2ntOk6J3L371Tg u5ardW/YMNVb
F21TdYZTdlLvafcG9KbcePkxNEtCanIx19O1OkgniLe690Z/37r3Qf7j7Y6s 2d/f/wDvd2X1
/tX/AEUdf0fbHaX9495bcwf+jXqzI/31/h/Ze/8A+J5Kl/ud1/X/AOjXcfhz OR+2x0v8AyWm
Y/Y1Xi917pP9KfIXoL5KbVyG+vjp3h0/39snE7gqtp5TePSnZey+1Nq43dVD jsVmK7bWQ3Ds
XNZ3EUe4KPEZ2hqpaKSZamOmrIJWQJNGze690MHv3Xuk/tPdm1d+7V21vrYu 5dv702TvTb+G
3Zs7eO08zjtx7V3ZtXceOpsxt7cu2tw4eprMRndv53EVkNVRVtLNLTVVNKks TsjKx917r2Z3
ZtXbmR2nh9w7l2/gsvv3cFTtPYuLzOZx2LyO9N1Ue1dy76q9tbToa6pgqdx7 gpdk7LzGYkoq
NZqlMViayrZBT0s8ie690EGwPlj8WO1+0969F9W/Jb4/9ld29a/3j/0i9O7A 7k663j2nsH+5
246PZ+7v769fbd3Hkd27V/uru3I0+LyX31JB9jkZ46abRM6ofde6H/37r3Qf 7N7S2J2BuLtj
ae0c7/F9wdHdgY3q3tLH/wAMzFB/dffeX6s607rx+C+6yePoqLN/cdZdwbcy f3WOkq6NP4j9
u0oq6eqgh917oQPfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+6917 37r3Xvfuvde9
+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3 Xvfuvde9+691
737r3Xvfuvdf/9TcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/9xPb3/xWbD/BJ0GO Wv7Tmf8A6W9z
/hXo3m86f7nD0cf233endmwqjxfY/wAQ0fab527Vfc/b/wB193+P7Lw+bz/a Rfa+Pzfe43x/
xGlj+UVUYr3L8/xD5H/BjjVfiApXj+R/wfl/q9eHSs9udV697917r3v3Xuve /de61p8h1L8q
4vlH8Xe7cV2F83Nq7O6L+MW8ulNw9T4Dorrqv29j8nuDKfDOty3XmzspkPhz und+U6i7Sn+O
WUrN5ZGp3hUbopsimMG1crisfNWxFfvVnuV3uO7T2cVu8EtxIyN9VarVWdiG o06spoRhlBGQ
wBFOinabuztdv22C6Nws0cCKy/TXDUZVUEVWIqRUHIJB8iRnq93onZm58D0x 0ziczn904HKY
TrDrPHZfbElHtRY8TX4famwqbJ4Gb7rbNTk1SOo23W082qpadRl63TKrx49q Gu7ss+77pPDO
TC9zIykUoQXqKYrQj/jx+VFG1I8O17bDLHSVLeNSDWoIQAg54g/4PtqQH4qd pbL6/wDjL8fd
idgdWfJvEb42X011vtTdmKl+Efy6yz4zP7e2jicTk6Bsniuh8ljK/wC0q6Ro xLT1E0Lhbo7L
Y+5d5ks5r3mHfbyy3La3s5ryZ0b942A1K8jMpo1yGFQeBAI8x1EHK9zaWXLm xWe47VuaX0Vp
Ejr+7b5qMqBSNS2rA0pxBI9D0JdRvTbnZne/xGh2B193nTNs/vHeW7d15jd/ xb+RPVO28Dth
/in8ldopkMnu/svqbZm2KdandW7MXQwwNWeeeorI1jjbkgqmhkseX+a/rL6w rLZxoix3lpM7
P9baPQRwzyOaIjsTpoApJI6OIZbe95g5TNht98PCvZHkaSyu4EVPobxKtJNB Ggq7ooGqpLCg
PRj/AJebW+T+8emq3DfEff8At/rrtZtwYGply2Zym39p5HI7VgnlOYw20+yd 49EfK/ZPWO4J
alqapkyeX6o7Dpq7FUtZh4aDF12UpN0YCKupV6qg2l0z3ZJ8p/i/m/h11h2B 8NtwbW+P/wDM
RwXyH3T/ADBemu3fmtuKv33vfsX+VplNl4/sPvfanzXo6LursDfvWWxsX/dT dMPc2+6PHbV2
XV7RSGCr2xXYrbPuvdA/2hsH5F/GDv34bdI/Hit+T+1dk/FHcH8uD4idRYXG 9N/P35CbV+Sf
w9xe9Ojevu+e9+2u0+je0Nr/AMrXovcGF603l2Bt/PUHZnU2T3zQU2xhubGZ LEpltlz4P3Xu
mDG9dfJzsTYHwSXrKf5f4T+YptL5Aba3L8399/JvbvzTzHRPXfyArf5YH8xv ZHbW4Ohs/wB7
7R7E+GfWHX+e7y3lkdt4fd3TO2N4dQbdzGd2rVttjdeDTb+2cv7r3T/2v2N8 pMh8lfjLuLp3
aHzf6Epute4PhL8fdsdPb/6Z/mcfIvI9s/Hhu7+r9g/LLszvfvPa3yK3f/Li 2TuDZOB3f2bt
bK53tDa3ZG7dwYrYcHYO3d71mN3NsHcND7r3RYMzuP5a/fdR9dda7/8An/tL 5tbt+AG+Nx/z
GMf21R/zDt29Wf6U9pfMn+U5gvmPv/4rdW7g3r1/1L2B/o/6l7A7sTBQ/EHL 4jI/w7L01J15
kqCsr9oze/de6sf6U2LuCo+F+QwHfm1fm/8ANOSb5P1WQ+JVPsbrP5P/AAw+ T+08cnVOKj3D
letu1vl384K75odA7fx2Rj7Opa7evdncGwcruDH5rJbNwaVe085srEbi917q z/4h7W+T+zum
qLDfLjf+3+xe1l3BnqmLLYbKbf3ZkcdtWeeI4fDbs7J2d0R8UNk9nbgiqVqa mPJ4jqjrymoc
VVUeHmoMpXYur3Rn/de6rAwPSnfud6z+KHVNFkPk/wBJ7b3j/Oe/mr7g+QNf 1DVb06v3VWfG
DfHYX84Dsbajbz3Pj8UMvs/p/urL5nY64rc9NJjMhDU5/B5fa2Yxe4f7vZml 917ov/dm8fm+
vzk3Vn9g76+T/wAdKnee4Plr1n2Bt7afw2/mP/LnrPpzpDYHw5+S8vxz+Um2 t47g7T7I/ln9
qbg312f1b1Xvui6+6u6y232XJuHc6bEyOTrskN30+f8Ade698Z/i/u75C9+/ G+TuHrf5v7C6
p2F0/wDzG8VhO8Kb5jfzaesd1dv5HKb0/lP47aHYGZre/wDtXYvzQ+Ju3+1c js3fMeM6K3lu
LLYqGp2ZX53FVm6KE0e6a33XujwfF+D5Hdgdp/ylO6/kBtHsBezan+UB8iYP kvuXcfXVVsn+
6/yO7R3H/Ke3Znto7/w1Bt3b+3+t+wNy7g2Zuuoh249JjZU/gmSSmpEjx86Q +691WB0Rtf8A
mEU3UXb9b3H8uvl/sbs3NfH/AGZR/Lj+Gfy6f5mPauH2T8mMt3Z0N/fjbnVv 8Q+Ze79wdo/3
k2+3aO0afN/BXbvX3XuEwWZqt3Jldtx4brbR7r3Sf7P6G7Q3f018vN9b2+M/ zf2D2T8gP5MP
cnR3xS6ywPfX8xX5jY7e3YWzp/5tWe3FgPkFujdONxG6dxbg351T8g+vc913 gvkntfA7mwmV
3bHtbbeNpNz4TKYvH+691Y/3H8O/lPl/kB8bewewvkh2BmN59+/IDrvpH5M7 w+DPXnYvxR2J
iPht8f8A4gfzQOwdn7S3lS5HuP5Mb62n/pB76+Qr4fM7yj3jiZ6SsrtrPtUb a3fjMfuGf3Xu
k/sfbXee9Pk/j9nbrqfm/R9rbs+T/wA29tfMerm3Z8wthfGCl/lwZ3b/AMuM X8P6noHfVJmd
ufC/ZfcEGOqvj00eW6SyFB3fjsgMtUZiogro9+yr7r3RAPhDU/zAez838Cu0 d7/Ir5PvU7l6
f/lhbs6sx+N6C+Zndm1e1vjdmfiP8Udw/KncvbXyDx/y660/ln7e3Bvns/Id ypnq3unZe6u9
KSmtktrvk8lP1rQxe690MEPVsnYHTvw13Z8gMF/M/wAv3P0d8gOpe0v5qGQx WT/mr0G4tr9u
5f4J/N3pTeud+FVL1nkKKLN9f1Hy67gpcZlaX4jR1eyU2rkaWoqIhsenp54f de6M/wBB/HD5
cYnZe8O6tw4/b++6b4ufN/8Am8/LD4d/Dmi6uzfx87l7P7l3937/ADDOvurs T2h8oO0e4N5d
d5Pp/u3rv5G5jJ4Cso+uNrxwR57b2VbLVmNx9Wmd917okHTVX8q8ZuLemw94 dhfP/tH4DYbs
D4wbu7w3Zs/4xfznPjr3tFh939WfzE8Nv/bvTtT8oO7Pkb/NB3r/AA35BbF+ N1TuFOot2jBY
vD1zmfEUGIrN91uV917oz/WFL8leje4Pl38gOrulPk/3V8fKnuDZmc+MHRuR yvd/UfbXZvcu
Z/lQ/wAv7qTpXfPyZ3D37j8l3H290/vHcmDyPW2Yze6QY+nOxDkN09g4fcJx 9RujqP3Xuiwd
NVfyrxm4t6bD3h2F8/8AtH4DYbsD4wbu7w3Zs/4xfznPjr3tFh939WfzE8Nv /bvTtT8oO7Pk
b/NB3r/DfkFsX43VO4U6i3aMFi8PXOZ8RQYis33W5X3Xugf2xU/N/tTbW3Mx 1P8AIr5v7Q6p
xG4Pl/tP4TZSq6C/mP8Ayl7ly3d+yf5o38wrYsG2u666k+XXxp23sjcHW3Tm 1ukcPSUXzkbN
9aCOGWkqkx1Dj+wY6j3Xutx337r3Xvfuvde9+691737r3Xvfuvde9+691737 r3Xvfuvde9+6
91737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv fuvde9+69173
7r3Xvfuvdf/V3EP5fH/Mjcj/AOHzWf8AvIbL9jznf/cT29/8Vmw/wSdBjlr+ 05n/AOlvc/4V
6Nj2AiyYGgV6mkpQN79ZuJa2i25Xws0fY+1JEpkg3TX43GR1dY6iGnmikbI0 07pNj4p69KaC
SPpvgGR8a+n8Q9aD/KOIqaDoUrxP2H/Af9X+HHS39u9V697917r3v3Xuve/d e6LvkfkN8faf
eWMap7m6MjbHYTdeOrcjV7/65GWxFbLldpkYVclUb2psvi4skaCV6mkjx1TD UyUMTzVFK9ND
FVmA2TeWeN12e5KFTnwXPHTShpwPHAINBkUFS87xtC6lbdbcMDw8VPKvlXy6 MBSVdJX0lNX0
FTT1tDW08NXR1lJNHU0lXSVMazU9TTVELPDPTzwuHR0JVlIIJB9oGVkZkdSG BoQcEEeR6Xqy
sqsrAqRUEcCPUdFN2984/j3uik2TlcVU9zptzsbK7Cw+y96Zj4r/ACn2319n avtHN4PbnXk0
PYe4+mcVselxW8M3uXH09DXVGQiopmrIiJdLgkWXHJHMFq97FKtn9RbrK0ka 3tk8qiBWeX9J
LhpC0ao5ZQhYaTjHQSt+eOX7pLKWJr36a5eJY5Gsb5ImM7KkP6z26xBZGdAr Fwp1DOejdewl
0Luve/de697917r3v3Xuk/md2bV25kdp4fcO5dv4LL793BU7T2Li8zmcdi8j vTdVHtXcu+qv
bW06GuqYKnce4KXZOy8xmJKKjWapTFYmsq2QU9LPInuvdKD37r3QP9cfHroL pzdXZ2+uouj+
n+q97d2bgXdnc28euOtNl7H3V25upMjuDMJuXs7cO2MLi8vv3cC5fdmVqhW5 WarqRU5Orl16
6iZn917oYPfuvde9+690n9y7s2rsvHU2Y3juXb+08RWbg2ntOkym5czjsFjq rdW/d1YbYuxd
tU1dlKmlpp9wb03tuPH4fE0SsanI5Wvp6SnSSonijb3XulB7917r3v3Xuve/ de697917r3v3
Xuve/de6T+7Np7V37tXcuxd9ba2/vTZO9Nv5nae8dnbsw2O3HtXdm1dx46pw +4dtbl29mKas
xGd2/ncRWTUtbRVUMtNVU0rxSoyMyn3XulB7917r3v3Xuve/de697917r3v3 Xug/7S6n6s7x
2Jnere6+tOv+4Ost0fwz+8vXXaWzdudgbE3F/BMxj9xYb+O7R3Zjcvt/L/wj cGIpK6l+4p5P
t6ylimTTJGjD3XulBtPae1dhbV21sXYu2tv7L2Tsvb+G2ns7Z208NjtubV2n tXbmOpsPt7bW
2tvYemo8Rgtv4LEUcNLRUVLDFTUtNEkUSKiqo917pQe/de697917r3v3Xuve /de697917r3v
3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de6 97917r3v3Xuv
e/de697917r3v3Xuve/de697917r/9bcQ/l8f8yNyP8A4fNZ/wC8hsv2POd/ 9xPb3/xWbD/B
J0GOWv7Tmf8A6W9z/hXo3m86j7bD0cn3P2mrdmwqfy/ffw/X93vnbtL9t9x/ ejaHk+983h8H
3cv3Xk8P2WS8n8Oqo/lNFGady/L8Q+Y/w54Ub4SKV4/kf8H5/wCr049Kz251 Xr3v3Xuve/de
697917qhDbfyr722bTdU4Dbnym+LW1Oq9qbK6bwWc6m3X8V+w9xdz4+k25sz aeJ7F2zJ3ZSf
NfZ2z8duivy9BkhQVs3XTxYPzQRVNBknpZXqjDfrXeZN33h7bY76SNrmUq6Q SsjAuxVlYIQy
kUIINCMg9FGzXu1R7Xtcdxu9okiwRhlaaNWUhFBVlLAgg4IOQePVs/x2x28q bobomE5PCUFN
T9RdURSYuv2plWy1JBT7N6+StoKqr/vZRxjIiOjzMfkNIgikraNmhYUE6ZH2 9l23rd2SRTGb
qUjFceIfPV9ufmPQ6n9nGnaNqVlIYW0dft0Dyp/qz+VNPxUw38qKq+Mvx9qO zq34ARdjSdNd
b/36j3vlPj9T7yXdi7RxKZ/+9UOarYcwm4jk1kNZ92oqTUFzL6yx95BcyTe5 Scw76thFvpsf
rJvDMYuvD0eI2jRpGnRppp04pSmOseeV7X2xk5c2J9yn2IbgbSLxBI1sJNeg atYYhtVa6tWa
8c9DptLF/AGh+T3wzl+KtX8R5+wm7x3/AB5lOhMh1HV7wGzD8Q/lA2RbJR7B q58wu2hnExwm
aQCmFUacMdZj9h/c5edZOVucBzHHuq2P0cWn6kXHh+J9fZ0p4o069OqlO7Tq 8q9CLbLfkaLm
rk5uWZdqa/8ArZQ30zQGTw/oL2tfDJbRq0VrjVp86dWF/LzdPyf2d01W5n4j 7A2/2L2su4MD
TS4nM4vb+7MjjtqzzyjMZnafW28e9/ihsns7cEVStNTSYzL9r9eU1DiqqszE NflK7F0m18/B
vU6dUQ9jdabE+Tnyn+G+E2j1z1//ADUNwUHx/wD5lmd7S2t/N5OY6E3FsDfe O7F/lO4vH5DN
dEZP4C7sovjr2Bgussztz+A7Wx3TPX1HnNq7nfdzTVVXuGqyu5Pde6f+0Plt 8h/h1378NvjF
F8s9v7oy/TO4P5cHwq7U2P8AJ3vHqXYXbXzwyPc29Ojepe1vmX0v8YNyfGbt b5R97bfqsH3T
WPJvHH/IrbOKxfYmw9wQZDDZqn2zlo91e690gJ/kj3f3DtH+XN2n1z8lNv8A yl+eFV8n8HvP
uT4Ubly3xqx2O+BHfu8v5S380HK9l/H6m6q65230n3JtrcGx9yHcGGxOxO7e xKPNZjK7Ip8B
lt8bYlkz26af3Xul/wBr/wAzbemC+Svxlw/SHyu2/mdk4/uD4S/FLd/Ufyk7 X6C6Z7z+WeR7
q7v6v6Y7v772L8K6f4Ibd+Qe9NwdZydu5fb25qvD9n9Q4rYvcPV+68JlNiIm zszh8/7r3QAZ
D+ZJ8qosJ15lOsvnBt/tX5B9l/CDJ9tfM/4r7srPijtfav8AK+7lyfy4/lkd Udwyblqdh/Gn
dne3xW2/8Q+tvkz2/NW1PeEHaMez6bYz5PdmL3ENv5inrfde6P8A9Kd+7q7A +F+Q3n8jvm9u
CrzmC+T9VtP4w/Jb+Xjmsj8uOzO34B1Tis3mNtbVo+vf5fPW3x8+fu4MHHnO xaTMUWyOgNyb
N2ft7bMlXWom9tgZvc2K917o39Hun+YrvH+Xp8iczlNgbf66+eDdP/IKm+OG Jw2L6v2nkcj2
ZBsHPDovM7s62yfe/wAr+iesdwS9ktBTR4ybtfsPb1diqWjzGTr8XLlK/a+A 917quDtb/ho/
+5G2P9ks/wBlA/2a3/Zv/wCVl/pi/u1/cj/Z+v7u/wDDuHwM/wBIP+za/wB8 P+cx/wDSB/pI
/hX9/P8ASd/v6v76af7x/wC5vX7917oAKL+aL8mM72T3xt3aPzE+IHX23+xP j/2V37jcF8t/
mF8e8D2T/Ly/u58sfh/1bH0r8i8ZsP4DbCovgj8gKPrL5Sbi25Sbc7VT5K/a 9sbYxdBV1GRp
MPnot2e690P+xfnZ2fn+yfgVi2+THyAyPX/cv9zk210u26P5ZU/8ybu/Mbq+ WPa2yMz3h8hP
j3tPp7OdS9r/AMsBOpdg0OVwXanxn3Bis7S7Cjym6JotxYqZ9z7X917pPnqn r34O7f8A5yXd
Hwa+Nvxg6P7j2R83/jN0JtzsrbXVvWfT2O6M+NXbfxg/lNV/f+46nsbCdP8A YGI6g6f6gxHY
G6e1ctlMrtbdOyNs5XGVG6c9t3N0dLkKKr917pAZr57/ACq210F1pn98fOPp /emzq/uDvDB7
V3P8Hu+/ij2t88/mBjtu7L+PT9dbG+GGR+TvwE6A+Dn8wfcG2u3O094YTeWE 6s2FtDK0ppNs
bexGYzW+8Nufbu6Pde6s+/lawwbfT5kbEy/f24N19iYL5v8AzZ3Zur4qbln6 ao8j8WNq9s/P
P5e9kdRblptp7V692t3tg9v/ACr62z9DvjE1u/sxuCmzuKmp6/bb0uIl0Se6 91a/7917r3v3
Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de69 7917r3v3Xuve
/de697917r3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917 r3v3Xuve/de6
97917r3v3Xuve/de697917r3v3Xuv//X3EP5fH/Mjcj/AOHzWf8AvIbL9jzn f/cT29/8Vmw/
wSdBjlr+05n/AOlvc/4V6N5vP+I/wej/AIX/AMCf72bC8v8Ax9H/ABbv787d /i//AB5/+5b/
AItPn/z3+4v/AJ2f+437v3H8urSNPHUvrw1CvDPD8v4u2vQpWlc+h/wfP/V6 Z6VntzqvXvfu
vde9+691737r3SeqXYbrwsYpqtkbb253arSt3HHQwNHktoqlNU46loJNpVVX VCRmhmrqqHI0
6QyrQxTQzZB4KH+0XB+E+vqPLh+019Kgmm/wn7f8/wCf+r7OlD7v1rppz2Qq MTgs1laOj/iF
XjMTkchS0GnKP99UUdHNUwUejB4fcOaf7mWMJajx9dVHV+1TzSaY2q5KozAV IB9f8gJ/YCfk
etgVIHTt7t1rovPcHb+9tj712FsDr7r7be+dwb12v2HvCZ919hZPr7E4nDde ZbrbC1iR1mI6
57Iq8jkchW9mUpjjNNTxpFBKxlLaVIj2bZrLcLLcL/cNxkgt4JYY/wBOFZmZ plmYYaaEAAQt
U6iakY4noh3bdryyvLGxsbCOaaaKWQ65WiCrE0KnKxSkkmYeQAAOekV/pe+T 3/Pg+lf/AEpX
fH/3LPsw/cnK/wD00F7/ANkUX/bd0i/e3Mf/AEZLP/srk/7Yuh76n35F2n1Z 1p2dBjZMNB2P
1/s3fkOHlqlrpcTFu/buN3DHjZK1IKVayShTIiIyiKMSFNWlb2Ac3awO1bru e1tLra2uJIi1
KavDcpqpU0rStKmnr0e7Xe/vLbNu3ERaPqII5NNa6daBtNaCtK0rQV9B0IHs v6Xde9+690AG
wPjF1F1v2nvXuvCUnYGe7N3z/eOCq3L2h3Z3Z3V/czD7y3HR7s3htHpjDdxd hb62/wDH/r/d
u4MPi6jKbc2LSbdwWQ/gOGSopJI8LiUo/de6H/37r3Xvfuvde9+691737r3X vfuvde9+6917
37r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuv de9+691737r3
Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+ 691737r3Xvfu
vde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3X/9DcQ/l8f8yN yP8A4fNZ/wC8
hsv2POd/9xPb3/xWbD/BJ0GOWv7Tmf8A6W9z/hXo3m86f7nD0cf233endmwq jxfY/wAQ0fab
527Vfc/b/wB193+P7Lw+bz/aRfa+Pzfe43x/xGlj+UVUYr3L8/xD5H/BjjVf iApXj+R/wfl/
q9eHSs9udV697917r3v3Xuve/de6SdZT6t87dqvttfh2nvOn+8+x8ng+5zGw pPtv4l/der+0
+7+01+D+NY/7jw6/ssh4fPjWyP1UNPwt/hXzp/z8K+hpVbfhP2j/AC/6uH7P NWe3Oq9JPftP
93sbedL9t979ztPcVP8AZ/Y/xP7vzYesj+2/hv8Adfe/8Q8+rR4P4Ll/LfR9 lVX8EjcwrFKK
V7T8/L0o1f8AeT9h4dWX4l+3/V6f4R16orN8r9z9rt3ac2j777P7jeeYpvP4 /wC9H8N+58ew
qv7T7v7TC+fR5vt/4hW6PN/D4P4l4mXNEX/ej86fh/0v2VPGg1e7fU/s/wBn 7f8AUcEf+T/a
9V1L3x0HuXLP0piJa3qn5R4GP/S93bN1HtCSjk7C+MtXipaLeM/XG7XrN11u LxcU74kY9UjD
VWirlSkV6iQ+Utrfd9g5gttF2St5Zt/i0H1L0Ed8ASniQ0Xuy2o0ai0NagDc zbiu173slwWt
QDaXS/4xP9OmZLM4fw5atjC6RUVNRShRP+zvUf8Azv8A4Af+nAf/ANWr2Zf1 Jk/3zv3/AHKv
+3zpB/W+P/fmyf8Acy/7dOjc/EE3+JnxeJ+p+O3ShP8Asetds+whzf8A8rZz R/0sbn/q8/Qp
5W/5Vnl3/ngt/wDq0nVZW4fnF8p99Yf5Xbj2NJ1/1N318Y/j/wDJvtvqH+WL k+texd7/AC/+
QG4utdibnw/Ve8+0m3Xi+t63efx/3B2buWhwFRQdCYTd21ct2BgKWPbPd+5M ZPkcLUB3o969
8lfj51FtD469R999d96/ID5B1vavy/8A5R+T/wBKm/8A5g92d29Wdo4ffP8A NN+DO8/9KWyu
of8ASRU/EXZP99paaDI42o662ZtnBY3HVslFgKXHYWf7E+690H+3/wCZR87N 77x3NhemvjD/
AKdNpfIn4/75+Uf8vXev9wunejv76dE7b72+LmwIN8/3c3V/MZ37k+8/s+kv l7iewP4Zvd/i
vmMn/dj+BGkxtfuOaTZ3uvdCBtn5+/ITLV3xc3HX706/j+Mu/OwNv9P7/wDl 1/w358mMHt3t
H5Mbj+ZO+fi1WfDv/ZbNx/Kmi+TX8vPsDZma2bSYD/SD2XhN99e5fdWb8dVN gKmlxuF3H7r3
Q/8A+zR9p9c/Mn/ZaMLvnr/5nYXcvYH+/wBdldd7Z3HhPkx8Fdu72of7/wC3 P9mL3HsDb26v
jLkev8jhd1PV7R/0gV/Qu6qjr3aUkWC/0vbzlkjq/de6UHbOAn+RPzQ3H8Y+ 1979wdedObL+
MHVXe/UWF6U7x7l+Lu6u7uzNz9rd3dfd85TIdp9G77627W39t/4x7W2511FL t/CZul29iKnt
qCr3TQ5Osrtlz4b3XuiAUXbvcvx+7g+dfx5+GWL3B2J8g85839rZzbOzN2bC g+Ue6sx8eOh/
5UP8pzY/Ze+dy7t+Qvz++CtNl9wbe3t25sCkrc3nO0M5u3MVObeYY
Re: Creating Stereotype extending AssociationEnd [message #627672 is a reply to message #478492] Thu, 04 June 2009 13:12 Go to previous message
Christian W. Damus is currently offline Christian W. DamusFriend
Messages: 847
Registered: July 2009
Senior Member
--=-YpAQoeXb2vYf8Nr9ZORN
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

Hi, Gilbert,

If you need to constrain a stereotype to be applied only to association
ends, then you can do that with another OCL constraint:

context MyProfile::Event
inv is_association_end: base_Property.association.oclIsUndefined()

HTH,

Christian

On Thu, 2009-06-04 at 11:15 +0200, Gilbert Mirenque wrote:

> Hi Vlad,
>
> > My article is available at:
> > http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html
>
>
> thanks for your article. Nice possibility to apply stereotypes to
> association ends. But I think that it is only possible in this way with
> the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
> display the specified association-names as attributes in the class (see
> the attached screenshots). That means one has first to open the
> generated uml-file, select the association-end-property, and apply the
> stereotype via the uml2tools from eclipse. Well, the stereotype is
> applied but it isn't visible in the diagram. Another issue is that you
> could apply the associationEnd-stereotype to any property of a class -
> not only to associationEnds.
> But a big thank you for your article. I could solve my problem in
> another way. I found out that I can model my concerns better with a
> StateMachine and not with a ClassDiagram. There I extended the
> Pseudostate metaclass.
>
> best regards,
> Gilbert

--=-YpAQoeXb2vYf8Nr9ZORN
Content-Type: text/html; charset="utf-8"

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 TRANSITIONAL//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=UTF-8">
<META NAME="GENERATOR" CONTENT="GtkHTML/3.24.1.1">
</HEAD>
<BODY>
Hi, Gilbert,<BR>
<BR>
If you need to constrain a stereotype to be applied only to association ends, then you can do that with another OCL constraint:<BR>
<BR>
&nbsp; context MyProfile::Event<BR>
&nbsp; inv is_association_end: base_Property.association.oclIsUndefined()<BR>
<BR>
HTH,<BR>
<BR>
Christian<BR>
<BR>
On Thu, 2009-06-04 at 11:15 +0200, Gilbert Mirenque wrote:
<BLOCKQUOTE TYPE=CITE>
<PRE>
Hi Vlad,

&gt; My article is available at:
&gt; <A HREF=" http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html"> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html</A>


thanks for your article. Nice possibility to apply stereotypes to
association ends. But I think that it is only possible in this way with
the Omondo Modeler because other UML-Tools, such as TOPCASED, don't
display the specified association-names as attributes in the class (see
the attached screenshots). That means one has first to open the
generated uml-file, select the association-end-property, and apply the
stereotype via the uml2tools from eclipse. Well, the stereotype is
applied but it isn't visible in the diagram. Another issue is that you
could apply the associationEnd-stereotype to any property of a class -
not only to associationEnds.
But a big thank you for your article. I could solve my problem in
another way. I found out that I can model my concerns better with a
StateMachine and not with a ClassDiagram. There I extended the
Pseudostate metaclass.

best regards,
Gilbert
</PRE>
</BLOCKQUOTE>
</BODY>
</HTML>

--=-YpAQoeXb2vYf8Nr9ZORN--
Re: Creating Stereotype extending AssociationEnd [message #627686 is a reply to message #478484] Tue, 09 June 2009 20:42 Go to previous message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

Your article mentions that there's no way to tell whether a property is
being used as an association end, but in fact there is - a property which
has a value for Property::association is effectively an assocation end.
Using a keyword or stereotype to indicate this seems wasteful, especially
given that an application based on UML2 can offer built-in ways to indicate
this information without adding redundant semantic information.

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:2d31576eab6695b1996c2af326655990$1@www.eclipse.org...
> Hi Gilbert,
>
> I was reading your post then I have decided to spend three hours writing a
> short article on this subject. I don't think this is a waste of time to
> read it.
>
> My article is available at:
> http://www.forum-omondo.com/documentation_eclipseuml_2008/As sociation_ends_stereotypes.html
>
> Thanks,
>
> Vlad,
>
Re: Creating Stereotype extending AssociationEnd [message #627688 is a reply to message #478509] Tue, 09 June 2009 23:08 Go to previous message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Kenn,

If you look the property view or inside the xmi then you can certainly see
the difference but at Profile metaclass and UML graphical icon design
there is no difference between property and association ends.
This is what I was trying to explain.

The use of "association ends" keyword or stereotype was just an example
because the user wanted to add a stereotype on the association ends.
Adding the name "association ends" as stereotype or keyword is I agree
stupid :-)

The interesting question could be:
When to use stereotype or Keywords in a project ?
What difference do you see between them ?
Should a stereotype be always related to a profile ?
Is-it recommended to use stereotypes or keywords in a project ?

This newsgroup is about EMF therefore I suggest we start a new talk on the
UML2 newsgroup.
Thanks,

Vlad,
Re: Creating Stereotype extending AssociationEnd [message #627689 is a reply to message #478511] Tue, 09 June 2009 23:54 Go to previous message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

James and I already wrote an article on this topic - see
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Custo mizing_UML2_Which_Technique_is_Right_For_You/article.html
In it, we refer to the use of keywords as "featherweight" extensions. Take a
look and let us know your thoughts.

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:ab1dcbf4dc417c2f6686e513ee3f2c30$1@www.eclipse.org...
> Kenn,
>
> If you look the property view or inside the xmi then you can certainly see
> the difference but at Profile metaclass and UML graphical icon design
> there is no difference between property and association ends.
> This is what I was trying to explain.
> The use of "association ends" keyword or stereotype was just an example
> because the user wanted to add a stereotype on the association ends.
> Adding the name "association ends" as stereotype or keyword is I agree
> stupid :-)
>
> The interesting question could be: When to use stereotype or Keywords in a
> project ?
> What difference do you see between them ?
> Should a stereotype be always related to a profile ?
> Is-it recommended to use stereotypes or keywords in a project ?
>
> This newsgroup is about EMF therefore I suggest we start a new talk on the
> UML2 newsgroup.
> Thanks,
>
> Vlad,
>
>
Re: Creating Stereotype extending AssociationEnd [message #627691 is a reply to message #478512] Wed, 10 June 2009 09:04 Go to previous message
Vlad Varnica is currently offline Vlad VarnicaFriend
Messages: 546
Registered: July 2009
Location: Milton Keynes - UK
Senior Member
Hi kenn,

In your article you said : It is important to note that the use of
annotations in this manner is non-standard and therefore not directly
supported by the UML editor. If you decide to export your model with
keywords to XMI, the annotations would be moved into an XMI extension.
Consumers of the XMI format could conceivably continue to use your
keywords if they know how to work with the newly created XMI elements.

If you add a keyword with RSA, Papyrus, Topcased or any other tool then at
the transformation stage you will certainly loose this information but if
you do it with Omondo then you don't loose this information.
As I always say: The best transformation is no Transformation :-)

Concerning MOF based versus UML Extension this is very interesting point.
At Omondo we have added the glue between the four stages. I mean
# Stage 1: UML diagrams (GEF)
# Stage 2: UML Superstrucutre (EclipseUML2 metamodel)
# Stage 3: Model transformation (EMF)
# Stage 4: MOF
My answer to this MOF versus UML Extensions dilema would be "let users do
as they want to use MOF or UML extension as long as they use standard
Ecore".

btw, You have signed this article with James Bruck in June 2008 but it
seems to me that you have already been working for Embarcadero and not
anymore for IBM at that time ? Am I right ?
Re: Creating Stereotype extending AssociationEnd [message #627694 is a reply to message #478514] Wed, 10 June 2009 13:00 Go to previous message
Kenn Hussey is currently offline Kenn HusseyFriend
Messages: 1618
Registered: July 2009
Senior Member
Vlad,

Yes, this article was written long ago but James has been updating it (thus
the more recent date stamp).

Kenn

"Vlad Varnica" <varnica@omondo.com> wrote in message
news:25248d7d35128ce82bbbfb25e4b3938b$1@www.eclipse.org...
> Hi kenn,
>
> In your article you said : It is important to note that the use of
> annotations in this manner is non-standard and therefore not directly
> supported by the UML editor. If you decide to export your model with
> keywords to XMI, the annotations would be moved into an XMI extension.
> Consumers of the XMI format could conceivably continue to use your
> keywords if they know how to work with the newly created XMI elements.
> If you add a keyword with RSA, Papyrus, Topcased or any other tool then at
> the transformation stage you will certainly loose this information but if
> you do it with Omondo then you don't loose this information. As I always
> say: The best transformation is no Transformation :-)
>
> Concerning MOF based versus UML Extension this is very interesting point.
> At Omondo we have added the glue between the four stages. I mean # Stage
> 1: UML diagrams (GEF)
> # Stage 2: UML Superstrucutre (EclipseUML2 metamodel)
> # Stage 3: Model transformation (EMF)
> # Stage 4: MOF My answer to this MOF versus UML Extensions dilema would be
> "let users do as they want to use MOF or UML extension as long as they use
> standard Ecore".
>
> btw, You have signed this article with James Bruck in June 2008 but it
> seems to me that you have already been working for Embarcadero and not
> anymore for IBM at that time ? Am I right ?
>
>
Previous Topic:Flatten the packaging structure like in the UML2 metamodel
Next Topic:Re: Preserve EEnums literal by UML import
Goto Forum:
  


Current Time: Sun Dec 21 14:33:01 GMT 2014

Powered by FUDForum. Page generated in 0.03051 seconds
.:: Contact :: Home ::.

Powered by: FUDforum 3.0.2.
Copyright ©2001-2010 FUDforum Bulletin Board Software