Eclipse Community Forums
Forum Search:

Search      Help    Register    Login    Home
Home » Modeling » OCL » eContainer()
eContainer() [message #43535] Sun, 18 November 2007 11:31 Go to next message
Philipp W. Kutter is currently offline Philipp W. Kutter
Messages: 301
Registered: July 2009
Senior Member
Hi.
I tried to evaluate the following constraint, used to implement a
derived attribute:

let c: EObject = eContainer() in
if eContainer().isOclUndefined() then name else
let cAsNamed: NamedElement = c.oclAsType(NamedElement) in
if cAsNamed.isOclUndefined() then name else
concat(cAsNamed.qualifiedName, concat('::',name))
endif
endif


It did not work, and as well

let c: EObject = eContainer() in
if c.isOclUndefined() then name else 'ZZZZZ' endif

did not work.

It seems eContainer() is not working. Is this true?

Best, Philipp
Re: eContainer() [message #43566 is a reply to message #43535] Mon, 19 November 2007 13:08 Go to previous messageGo to next message
Eclipse User
Originally posted by: cdamus.ca.ibm.com

Hi, Philipp,

If the EClasses in your Ecore model explicitly specialize EObject, then
eContainer() will work. Otherwise, eContainer() is not a feature of your
metaclasses and is not recognized by OCL. Rather, it is just a
"pseudo-feature" supporting the EMF run-time.

This, in a nutshell, is the problem reported in
https://bugs.eclipse.org/bugs/show_bug.cgi?id=152003

I imagine that the recent addition of a parsing/evaluation options API could
introduce a new Option<ProblemHandler.Severity> for the Ecore binding that
can provide access to eContainer(), eContents(), eClass(), etc. and report
the problem (as an error by default). Would make a nifty contribution :-)

cW

Philipp W. Kutter wrote:

> Hi.
> I tried to evaluate the following constraint, used to implement a
> derived attribute:
>
> let c: EObject = eContainer() in
> if eContainer().isOclUndefined() then name else
> let cAsNamed: NamedElement = c.oclAsType(NamedElement) in
> if cAsNamed.isOclUndefined() then name else
> concat(cAsNamed.qualifiedName, concat('::',name))
> endif
> endif
>
>
> It did not work, and as well
>
> let c: EObject = eContainer() in
> if c.isOclUndefined() then name else 'ZZZZZ' endif
>
> did not work.
>
> It seems eContainer() is not working. Is this true?
>
> Best, Philipp
Re: eContainer() [message #43634 is a reply to message #43566] Tue, 20 November 2007 11:19 Go to previous messageGo to next message
Philipp W. Kutter is currently offline Philipp W. Kutter
Messages: 301
Registered: July 2009
Senior Member
This is a multi-part message in MIME format.
--------------050906020304030805070705
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

Hi, Christian.
I tried what you tell me below, in your example from the
tutorial and it works perfect.y.


The only thing I changed is, I added a class Industry,
which has a containment reference "company" to Company. Both Industry
and Company inherit explicitly from EObject as you said.

Then I add a derived reference "industry", and I add a "derive" OCL
as in your example, with the following definition:

eContainer().oclAsType(Industry)

(see as well the screenshot)


One of my developers looked into the API and we will communicate, if we
have a more elegant solution.

Best, and thanks, Philipp

Christian W. Damus wrote:
> Hi, Philipp,
>
> If the EClasses in your Ecore model explicitly specialize EObject, then
> eContainer() will work. Otherwise, eContainer() is not a feature of your
> metaclasses and is not recognized by OCL. Rather, it is just a
> "pseudo-feature" supporting the EMF run-time.
>
> This, in a nutshell, is the problem reported in
> https://bugs.eclipse.org/bugs/show_bug.cgi?id=152003
>
> I imagine that the recent addition of a parsing/evaluation options API could
> introduce a new Option<ProblemHandler.Severity> for the Ecore binding that
> can provide access to eContainer(), eContents(), eClass(), etc. and report
> the problem (as an error by default). Would make a nifty contribution :-)
>
> cW
>
> Philipp W. Kutter wrote:
>
>> Hi.
>> I tried to evaluate the following constraint, used to implement a
>> derived attribute:
>>
>> let c: EObject = eContainer() in
>> if eContainer().isOclUndefined() then name else
>> let cAsNamed: NamedElement = c.oclAsType(NamedElement) in
>> if cAsNamed.isOclUndefined() then name else
>> concat(cAsNamed.qualifiedName, concat('::',name))
>> endif
>> endif
>>
>>
>> It did not work, and as well
>>
>> let c: EObject = eContainer() in
>> if c.isOclUndefined() then name else 'ZZZZZ' endif
>>
>> did not work.
>>
>> It seems eContainer() is not working. Is this true?
>>
>> Best, Philipp
>


--------------050906020304030805070705
Content-Type: image/jpeg;
name="OclScreenshot.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="OclScreenshot.jpg"

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgIC AgUEBAMEBgUG
BgYFBgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgIC AgUDAwUKBwYH
CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK CgoKCgr/wAAR
CAGOAvMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcI CQoL/8QAtRAA
AgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS 0fAkM2JyggkK
FhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1 dnd4eXqDhIWG
h4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW 19jZ2uHi4+Tl
5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcI CQoL/8QAtREA
AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMz UvAVYnLRChYk
NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0 dXZ3eHl6goOE
hYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU 1dbX2Nna4uPk
5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9bfiR8SP20PHv7aHir9nP 9nP4q/C/wfon
g/4X+F/El1deNfhfqPiG6v7rVtR8Q2rIjWuuackEUaaLEQCkjM07ncAAK0P+ Fc/8FTf+jyP2
f/8AxGnXP/mzo+HP/KU34yf9m/8Aw0/9PnjuuZ/bt+MNv4U+M/gjwDPq/wAQ baCbw3rF/eRe
DYtWgSdvOso4GaazULMUPnbowzNGJULBBNGzcGZY5Zdg5V+XmtZWva92l+tz swGDljsUqKdr
pu++yb/Sx03/AArn/gqb/wBHkfs//wDiNOuf/NnR/wAK5/4Km/8AR5H7P/8A 4jTrn/zZ18df
AT9ovSfCvhbw7r2i698YLfHxgdtSjEWvz293DP4hdrhPsyB1uJZfMl3xqryy SyMpUybgfrX/
AIKv+IPFXhz9jOe48HN4we7vfih8PtMmsvAHid9F1nUbW88Z6LaXVhaXyXVo baW5t5pbYSG5
gUCc7pY1JYc+VZo8y504crjbrfe/kux0Znljy5x97mUr9LbW833ND/hXP/BU 3/o8j9n/AP8A
Eadc/wDmzo/4Vz/wVN/6PI/Z/wD/ABGnXP8A5s68/wDhLqngT9kj4WfFT9r3 x/8As1/tP+CN
P+HPw/v9X1LT/iz8e5fGP9r2FvBLe3I0+zbxVqtqlyi2aqJJhbt+/CJIUebb 2HjL9rD9rj4H
eC73xL+0T+yN4Pspb7UNH0fwbceBPi7Lq+nT6zqms2GjWVpqct5pFhcWET3W pW8nn21rfBbe
3vXZFljtoLv1zyzQ/wCFc/8ABU3/AKPI/Z//APEadc/+bOj/AIVz/wAFTf8A o8j9n/8A8Rp1
z/5s64/x7/wUS+MvwP0Txf4e+NH7KGn3XxC8Kah4AePwj8OPiKNUtdW07xZ4 lfw/ZG3v9Ssd
MC30dxa3rtbzRRW5VbbN2vnSm28//aK/4LZeFf2Y/GnjPwl8U4fgfo138J9P s3+J3hjX/wBo
VNP8S3V02jWesXMXhnS5tLB12L7PexwWss8unNdXcc0LR26oJWAPcP8AhXP/ AAVN/wCjyP2f
/wDxGnXP/mzo/wCFc/8ABU3/AKPI/Z//APEadc/+bOs//goDoE/j3x9+zn8I rzxv4w0XRPGH
xwu7DxKvgrxzqnh66v7WHwV4pvo7d7vS7i3uBELqztZSiyBWaBNwIGK8v/aW 8X2v/BPH/hM/
BPhbV/iB4t8BX/7MHxH+IWseHfFHxc1y81WK/wDDv9ixquna7d3M+pab9qg1 eWOQpM6wPaWs
9rHbym6a6APYP+Fc/wDBU3/o8j9n/wD8Rp1z/wCbOj/hXP8AwVN/6PI/Z/8A /Eadc/8Amzry
/wDbQ/4K0+IP2R/iZ4v0y2/Zh1DxT4K+G+npe+PvEmkr4gvrq1jWyj1C5WFd I0HUNNt5Us5o
2WHVtS0uQswklW3spba/uOg/ak/4KJfGX4HeH/jn8T/hT+yhp/jrwb+z3p90 njyWb4ijStZn
1GLw/aa7iys5LGS3msUtdRsTNcSXkVwoW98m0uXhgjuwDsP+Fc/8FTf+jyP2 f/8AxGnXP/mz
o/4Vz/wVN/6PI/Z//wDEadc/+bOuf8f/APBQnx34N8R/HW2s/wBmn7ToXwX8 Qab4ct/EFz4y
ij/4STW9S07QbuxtLe0it5br5W1opOkcc1y+y0TT7bVbq7azt/P/AAj/AMFg vGN98OvG2oeL
v2NfEEfjbwX4g8BWv/CF6a+sad/a9n4q8Q/2HZvay+KtG0OY3KTQ3jFJLdLN tkCC+DPP9lAP
YP8AhXP/AAVN/wCjyP2f/wDxGnXP/mzo/wCFc/8ABU3/AKPI/Z//APEadc/+ bOuP0z/gol8Z
dJ8Vaj4e+Kn7KGn6TaeB/ih4e8AfFDXdF+Io1C1t9Z199JXSU0VZLGCfVIkG u6W99JeRaYLd
Zn+zf2i0TLX0/c3PipfFVlZ2ejae+iPp9y+oahJqbpdQXSvALeKO3EJSWJ0a 6Z5WmRo2hhVY
5RMzQgHiH/Cuf+Cpv/R5H7P/AP4jTrn/AM2dH/Cuf+Cpv/R5H7P/AP4jTrn/ AM2deP8A7W//
AAWq+Fn7K/xd+I3gbWdT+D9vp/wi8n/hNdJ8a/HODQvGGqZ0m11eT+wNCaxm XVt1pewxW/m3
dp596k9ufKSNbh+w+KX/AAUi+Jnw3+JnxI0qx/Y81DX/AAb8L/ih4d8Davr2 l+N7KPU9c1PX
bLQX0yHSrC4WOKSVbzXraG5+23dlBDAY54p7p2mtrcA7D/hXP/BU3/o8j9n/ AP8AEadc/wDm
zo/4Vz/wVN/6PI/Z/wD/ABGnXP8A5s64/Wf+CiXxl0V9J+GEf7KGn6r8Urj4 4N8L9a8N6N8R
QdGstRfwdN4rt7+PU7mxglnsVs/sguSbOO4iLXfkQXrQQR3mfqf7VPxT+JHx y+DHw98U6H/w
hXifwx+0/feDfiboXhbxbPqOkaju+GOueILeOK6e3s5L628q80uZlntYdl3b sFRxBFPIAegf
8K5/4Km/9Hkfs/8A/iNOuf8AzZ0f8K5/4Km/9Hkfs/8A/iNOuf8AzZ15/wCH /wDgo3+0d4j+
G3gT4z6N+xt4f1Pw/wDG7w/c3fwE03Sfiwx1vXL9/Dl/4i0yx1a3utLgtNH+ 0WWnTRSzRXl8
tvcyRIBPEXuE7D44f8FMPg18K/hJ4M+PPgnRNQ8beFPFPwv134n3FzpINpdQ eCNK0QajPq0M
N4kQmla4u9Fs1s5Hgm3asJThLafYAaH/AArn/gqb/wBHkfs//wDiNOuf/NnR /wAK5/4Km/8A
R5H7P/8A4jTrn/zZ14/8N/8AgtV8LL//AITv/hYup/B/xH/whHwf8Q/Ee4/4 Zx+OcHj3ZpWi
fZft0N35tjpv2K5l+22/2RD5iT+Xdb5IPJXzew/Yy/4Kf+Ff2o/j6/7Od54i +B+s63ceD7/x
Jp918B/jwnjm1trWyurG1uE1Jjp1g9hK76lam3CpMs6xXZZoTAomAOw/4Vz/ AMFTf+jyP2f/
APxGnXP/AJs6P+Fc/wDBU3/o8j9n/wD8Rp1z/wCbOr+jeLPFXxK/4KF6to/h 7xNqEHhT4UfC
9bDXbWyvXl07WNf168hult51UiOG+0yx0e3mCP5kpt/FcT4gR1N15B+wr8fv jL4H1bxPcftH
/ELUNb+HvjX44eOdG8BeKNYcTN4b1m38eeINMi0C6nAUwWM9vDpiaaZRKPtX 2qyaeLztIspA
D1D/AIVz/wAFTf8Ao8j9n/8A8Rp1z/5s6P8AhXP/AAVN/wCjyP2f/wDxGnXP /mzrx/8AYj/a
6/an8d/ssfA34W/Bb4Y+H/iL42tf2YPh94y+IfiP4qfFK+0X7R/bNjcQ20kV xBpWqTX1zJNp
OoyXDTLDt3QMrztLIIfYPH37e+j6R+wn4I/br+Fvwb8QeLNP+IH/AAg0vhzw b9ts7DVbiHxL
qml2VvHumlNqlzGupo/lvMkLPHsaeNGMygB/wrn/AIKm/wDR5H7P/wD4jTrn /wA2dH/Cuf8A
gqb/ANHkfs//APiNOuf/ADZ1x/jn/go98Qvh58JfEk+v/s56fcfE/wAKfFCD wJqng/Q/Fd/q
mmT6jLoltr6SWc9npEur6jENLu4mdLTRpriOdZy8K2VvPqUff/sIftjz/tl/ D3xNrmvfCzUP
B3iLwV4wfw34o0S9s9UhjS6+wWWoxvANX07Tb8xNa6jakm5sbZvM80IssIiu JgCh/wAK5/4K
m/8AR5H7P/8A4jTrn/zZ1x/xq8bf8FJP2a9E8N/Erx1+0P8AA/xTol38UPBv hvWdE0n4E6xp
V1Na614l03R5Xhu5PFN0kMsaX7SqWglUtGAVwcj6vrwD/gpZ/wAm6+HP+zgP hP8A+rD8PUAe
/wBFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQB8geLf2sf2WP2X/+CpvxQ/4aX/aW+H/w 7/tz9n/4d/2J
/wAJ14ysdI/tDydc8b+d5H2qWPzfL82Ldtzt81M43DOH+0j+2r/wTq+Mvi3w z45+Hn/BYb9n
TwtqPh3T9TsXN/8AEDRdSiuoL1rRnG1dTgKMDaJzuIIdgRXrnw5/5Sm/GT/s 3/4af+nzx3Xv
9c+KwtDG0HRrK8Xa6u1s01qrPdG+GxNbCVlVpO0lfonurPR3WzPzI+FPxa/Y r0KHQrD4j/8A
Bbn9l+fTND+IP/CRf2Xo/jHSQ9yIdWN7CPtEmrYiaUJEZF8pxGWaNXlCCVve P2nf23v+CTP7
UHwim+Ems/8ABWj4P+F/+Kg0TW9P8Q+FvjL4Y+36ff6Vq1pqtnNEL1rm3bFz ZQ7llhkVl3KR
zkfX9FZYLLsJl6aoRtffVu9vVs1xePxWOadZp2vayS39EvxPhDTf2k/+CZuv eFfFvw1/aM/4
L2eD/i94N8beD7/w3r3g/wAa/Fj4f2NrJa3iCKd0m0Kx0+7SUwmWIET7Qszn bvCOmfe/G3/g
l54y8Oalofxx/wCC+vh/4gzy/YpvDd/r/wAbvA9j/wAI3f2eo2up2uoW1rpN pZ2d1cxX1hYT
o2oQXip9maIIIbm8huPv+iu04z4As/i1/wAEgdTtdU1D4t/8Fo/h/wCPfE+r +IPB2o3vjTxH
8ZvBltftbeGNcGuaTpoi0yC0sxbJfNdM7fZ/tEi30yNPhLfydDxz+0N/wSr8 S/EzxJ498D/8
FyfB/gLTfHWoQX/xB8J+Cvjl4PgtfEV0llbac9w95PFNqenyyWFlZ2pfTry0 aNbZJYTDcM9w
/wB30UAfGH7Tv7Yv/BKv9pSDwXeWf/BZT4X+ANb8AeMG8SeGvEvgr4w+D5Lq G6bS9Q0uRHj1
SO9t5ImtdTulIaHcGKMrKV54/Wvi1/wSB+IXws+IHw9+PX/BaP4f/EbV/iF8 P9V8E3fjrxR8
ZvBkOq6NoWowGK5tNOj06C1sbXe5WaSUWrS3DwWouHnjs7WOD7/ooA+APjL8 Wv8AgkD8YvEf
jd2/4LR/D/w54S+KmP8AhbXw60D4zeDDpXjHdp0GlXH2ma7gn1C08/TbS1sn +wXdrtSBZIvK
uGknfwD9vz9oD9hn4geDviF+zx8FP+ClH9u/8Ln+H72XjLxLpv7RPwx03wrq viaTR10SDWde
f7bba3D5cVjpkt3baPEtlNBbCMWVx593bTfr9RQB8QeLP2jP+CL3i/R/iZpl 7/wVL+D9vP8A
E34gaT42u9Rtfjf4cE2ia7pVnotvpt3Yh5Gj/wBHl0HTroRXKXEUkySCVJYX MFcenxB/4JJa
14gn8Y/Fb/guh4P8b63fah4XuNU1fXvjD4Et5L2Pw74gttf0a2dNOs7WJYra 8jvhmNEklj1i
7WZ5THZNZ/ofRQB8QeJf2jP+CL3ir/hNf7Q/4Kl/B9P+E7+MHhf4j6v5Pxv8 ODydV0H+wPsc
MOZDttn/AOEcsfNRtzt5txtkj3J5fqFz/wAFSf8AgmHP4qsvEMX/AAVY+B8N pa6fc28+hR/G
Dw2bW8kleBkuZGaUziWEQyIgjlSMrdTeYkjCFovo+igD4Q8c/tDf8Eq/EvxM 8SePfA//AAXJ
8H+AtN8dahBf/EHwn4K+OXg+C18RXSWVtpz3D3k8U2p6fLJYWVnal9OvLRo1 tklhMNwz3D6H
iX9oz/gi94q/4TX+0P8AgqX8H0/4Tv4weF/iPq/k/G/w4PJ1XQf7A+xww5kO 22f/AIRyx81G
3O3m3G2SPcnl/b9FAH5oftO/Gf8A4Jh+O/jB4L8Y/Cz/AIKqfC/TG1v9o9vi H458R6H+0L4b
s7rw1JB8OdQ8OWl1ZhrgCaIXFtpAe1mS6jna4nW4iltHlhHoHgb45/8ABHDw lrfhvxxr/wDw
V3+F/ifxXoXxQn8f6p4s1z41eFI7rxFrMnhq58Mo95FZiC1SKPSp4oUjtILY FrOCR97tO033
fRQB+eHgb45/8Ekv2eoPDfiTRf8Agrv4P+IPh34OafPcfBv4O3Pxq8CRWvh+ SHS7nTbW2sLh
RZXNzKmnXNzp8R1TUJoytz5tw7TIlzHn/s7/ABt/4I73vgT4y3nxz/bW/Z/0 y2/aA/tC013w
C/7QOkSzaL4bvZdQu5dIuLu21ErJcy6hrev6jNLbuRbza3JZwXFxbWNpOf0f ooA+ENN/aG/4
JV+IfCvi3wL+0r/wXJ8H/GPRPGPg+/8AC+o6N41+OXg/TbWLTL5BHfRpF4ei 01JJZkVEFxMJ
Z4FVxbSQCe487oPgp+2x/wAE5vhd4quPGPxD/wCC83g/4n3Z097LTYfGvxp8 FWlrp8cjxvMy
WuiW+nwXErmGECa6SeSFUdYGhW4uRN9n0UAfGH7Ln7e//BNv4Q6d451/4kf8 FO/2cL/xX48+
KGu+JNb1TTPjTo5jubVrj7HoqFGnRY5bfQbLRrOQRoFaS0dy0zu88poH7Uv/ AARN0n4Ia5+z
5rH/AAUf+B+s+Hdf8Ya54muvt/xz0WK6t9R1PXrrXmmtri1uYpLWW2vroyWs 8TJcW7QQSJL5
0Ylr7PooA/PDw58Qf+CSXwv8K+DPD37O3/BdDwf8Nrvwh8L9A8AXWu+G/jD4 EvbrxBo2ipOu
mJerq1neQLLAbu+fzLWK2MjXsnmb1SBYfQNY/al/4Im3n7PHgz9lrw9/wUf+ B+heDfAGoeEb
jwvYaZ8c9FkktY/DmpWGoadbGW5uZXki36bbxyFyZHjL/OrsJB9n0UAfCHjn 45/8EcPFut+J
PHGgf8Fd/hf4Y8V678UIPH+l+LND+NXhSS68O6zH4atvDLvZxXgntXik0qCW F47uC5Aa8nkT
Y6wNDofAv9qz/gl58C/EeqeLLT/guB8P/EWoeJvEEGt+NrjxD8XPA4/4SO/i 06TTVmuFtLaB
YM2iaXEVtBbr/wASOzbAebUGvft+igD5g8Ff8FMP+CanhXyf7d/4LCfB/wAS +V4f0/Tn/tv4
t+E4/OubfzvO1JvsYgxc3Xmp5yri3X7PH5EEGZfM8v8A+Cg3/BTb/gm340+A 2gaP4O/4KDfA
/VruH44fDK/mtdM+LGjzyJa2vjrQrq6uCqXJIiht4ZZpHPypHE7sQqkj7voo A8A/4exf8Esv
+kln7P8A/wCHk0P/AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqvf6KAPAP+Hs X/BLL/pJZ+z/
AP8Ah5ND/wDkqj/h7F/wSy/6SWfs/wD/AIeTQ/8A5Kr3+igDwD/h7F/wSy/6 SWfs/wD/AIeT
Q/8A5Ko/4exf8Esv+kln7P8A/wCHk0P/AOSq9/ooA8A/4exf8Esv+kln7P8A /wCHk0P/AOSq
P+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqvf6KAPAP+HsX/BLL/pJZ+z/AP8Ah5ND /wDkqj/h7F/w
Sy/6SWfs/wD/AIeTQ/8A5Kr3+igDwD/h7F/wSy/6SWfs/wD/AIeTQ/8A5Ko/ 4exf8Esv+kln
7P8A/wCHk0P/AOSq9/ooA8A/4exf8Esv+kln7P8A/wCHk0P/AOSqP+HsX/BL L/pJZ+z/AP8A
h5ND/wDkqvf6KAPAP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqj/h7F/wSy/6SWfs /wD/AIeTQ/8A
5Kr3+igDwD/h7F/wSy/6SWfs/wD/AIeTQ/8A5Ko/4exf8Esv+kln7P8A/wCH k0P/AOSq9/oo
A8A/4exf8Esv+kln7P8A/wCHk0P/AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND/wDk qvf6KAPAP+Hs
X/BLL/pJZ+z/AP8Ah5ND/wDkqj/h7F/wSy/6SWfs/wD/AIeTQ/8A5Kr3+igD wD/h7F/wSy/6
SWfs/wD/AIeTQ/8A5Ko/4exf8Esv+kln7P8A/wCHk0P/AOSq9/ooA8A/4exf 8Esv+kln7P8A
/wCHk0P/AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqvf6KAPAP+HsX/BLL/pJ Z+z/AP8Ah5ND
/wDkqj/h7F/wSy/6SWfs/wD/AIeTQ/8A5Kr3+igDwD/h7F/wSy/6SWfs/wD/ AIeTQ/8A5Ko/
4exf8Esv+kln7P8A/wCHk0P/AOSq9/ooA8A/4exf8Esv+kln7P8A/wCHk0P/ AOSqP+HsX/BL
L/pJZ+z/AP8Ah5ND/wDkqvf6KAPAP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqj/h 7F/wSy/6SWfs
/wD/AIeTQ/8A5Kr3+igDwD/h7F/wSy/6SWfs/wD/AIeTQ/8A5Ko/4exf8Esv +kln7P8A/wCH
k0P/AOSq9/ooA8A/4exf8Esv+kln7P8A/wCHk0P/AOSqP+HsX/BLL/pJZ+z/ AP8Ah5ND/wDk
qvf6KAPAP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqj/h7F/wSy/6SWfs/wD/AIeT Q/8A5Kr3+igD
wD/h7F/wSy/6SWfs/wD/AIeTQ/8A5Ko/4exf8Esv+kln7P8A/wCHk0P/AOSq 9/ooA8A/4exf
8Esv+kln7P8A/wCHk0P/AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqvf6KAPA P+HsX/BLL/pJ
Z+z/AP8Ah5ND/wDkqj/h7F/wSy/6SWfs/wD/AIeTQ/8A5Kr3+igDwD/h7F/w Sy/6SWfs/wD/
AIeTQ/8A5Ko/4exf8Esv+kln7P8A/wCHk0P/AOSq9/ooA8A/4exf8Esv+kln 7P8A/wCHk0P/
AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqvf6KAPAP+HsX/BLL/pJZ+z/AP8A h5ND/wDkqj/h
7F/wSy/6SWfs/wD/AIeTQ/8A5Kr3+igDwD/h7F/wSy/6SWfs/wD/AIeTQ/8A 5Ko/4exf8Esv
+kln7P8A/wCHk0P/AOSq9/ooA8A/4exf8Esv+kln7P8A/wCHk0P/AOSqP+Hs X/BLL/pJZ+z/
AP8Ah5ND/wDkqvf6KAPAP+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqj/h7F/wSy/6 SWfs/wD/AIeT
Q/8A5Kr3+igDwD/h7F/wSy/6SWfs/wD/AIeTQ/8A5Ko/4exf8Esv+kln7P8A /wCHk0P/AOSq
9/ooA8A/4exf8Esv+kln7P8A/wCHk0P/AOSqP+HsX/BLL/pJZ+z/AP8Ah5ND /wDkqvf6KAPA
P+HsX/BLL/pJZ+z/AP8Ah5ND/wDkqivf6KAPAPhz/wApTfjJ/wBm/wDw0/8A T547r3+vAPhz
/wApTfjJ/wBm/wDw0/8AT547r3+gAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooo
oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKAPAPhz/wAp
TfjJ/wBm/wDw0/8AT547r3+vAPhz/wApTfjJ/wBm/wDw0/8AT547r3+gAooo oAKKKKACiiig
AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKK
KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiig
AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPib4F/wDBQ/8Ab/8A 2gvgl4O+PXgz
9hn4O22j+N/Cun6/pVtqf7RmqpcxW15bR3ESSqnhJ1WQJIoYKzKGBwxHJ6r/ AIay/wCCkf8A
0ZP8D/8AxJHWP/mQrz//AIJlf8o3P2fP+yH+E/8A0z2te319PTyrCSpptPVd z5OpnGNjUaTW
j7HIf8NZf8FI/wDoyf4H/wDiSOsf/MhR/wANZf8ABSP/AKMn+B//AIkjrH/z IV19FV/ZOD7P
7yP7Zxvdfcch/wANZf8ABSP/AKMn+B//AIkjrH/zIUf8NZf8FI/+jJ/gf/4k jrH/AMyFdfRR
/ZOD7P7w/tnG919xyH/DWX/BSP8A6Mn+B/8A4kjrH/zIUf8ADWX/AAUj/wCj J/gf/wCJI6x/
8yFdfRR/ZOD7P7w/tnG919xyH/DWX/BSP/oyf4H/APiSOsf/ADIUf8NZf8FI /wDoyf4H/wDi
SOsf/MhXX0Uf2Tg+z+8P7Zxvdfcch/w1l/wUj/6Mn+B//iSOsf8AzIUf8NZf 8FI/+jJ/gf8A
+JI6x/8AMhXX0Uf2Tg+z+8P7Zxvdfcch/wANZf8ABSP/AKMn+B//AIkjrH/z IUf8NZf8FI/+
jJ/gf/4kjrH/AMyFdfWH8TvGQ+HXw28Q/EE2Juv7C0O71H7MGIM3kQvJsyAc Z246Hr0qZ5Xg
oQcney8wedYxK7a+4zP+Gsv+Ckf/AEZP8D//ABJHWP8A5kKP+Gsv+Ckf/Rk/ wP8A/EkdY/8A
mQr5h17XP2U9E+Fvwz+MH7Vuh+M/iB4l+LAuru31DSlbOmxpMsQgtYArBSrS ALENvXkliS3p
P7BfxuvfiPH4y+HM2pa/f2nhDVIl0m98U2zRaitpOZtltcbvmaSIwuNzEttZ QxJXc3zuX43L
sdjVh3Tcb7e9fpfVWVtNdG+xl/b+LU4wco3aTstXquZX+WujZ6r/AMNZf8FI /wDoyf4H/wDi
SOsf/MhRX88v/BfT9uj9tv4Of8Fafix8OPhF+2L8VPCvh3Tv7C/s/QfDfxC1 KxsrXzNB06WT
y4IZ1RN0ju7bQMs7MeSTRXbVeX0qkoOD0dt+x79JZlVpRmpx1Se3c/pK+HP/ AClN+Mn/AGb/
APDT/wBPnjuvf68A+HP/AClN+Mn/AGb/APDT/wBPnjuvf6809UKKKKACiiig AooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooo
oAKKKKACiuH1H4+/DXwfc+JJfih8TvA3h+x0PXJNPjurnxlCGTytGj1adbxZ liFncR2v2m5M
G6XFlCl0XVZGSI8b/tO/s1/DL4a6P8ZviR+0L4G8PeD/ABD9n/sDxXrniyzt NN1Lz4Wng+z3
UsixTeZCjSpsY7kUsMgE16EcpzOcoRhRlJzty2i3zXV0la93botd+zI54a67 HcUV5x8Av2jv
DXxu0eWS6Sx0XWD4q8YaVYaBJq6TXN5baB4huNFnvo0Ko7Rl47aR8KVha8ij Z2JVnv6x+07+
zX4e/wCEM/t/9oXwNY/8LH8r/hXn2zxZZxf8JR5vk+X/AGdukH23f9ot9vk7 93nxYzvXNVcn
zSli54V0ZOpFyTSXNrHm5vhunbklqrq0ZO9kwVSDipX0O4orxzwj+33+yN4u 8XfEfwYvx38K
6ddfC3xU/h/xTJqviiwhjS5j0n+1ZnQ+eSI4oIr9ZDIEZJNI1EFdtrIw9Hh+ J3w1uPBelfEi
3+IehyeHdc+wf2Jr6atCbLUPt0kUVl5E4by5ftEk8CQ7SfNaaNU3F1BMXk+b YCcYYihODly2
vFq/PFSjbTXmi00t7BGpTkrpm5RRRXmlnjn7Ynxu+N/wH0fwb4l+FngXwrqm j6t8R/DHh/xb
qPiDXbmG50621TxDpml77O0htmS8kKXs3MlxbrCyRvtuBuiPsdecftTfCDxL 8b/hnpngzwpf
WNvdWXxH8HeIJZNRldIzbaT4l03VblAURj5jQWcqxjAUyMgZkUlh6PXsYmeA lkeHUIxVZTqq
bV7yjak4OV21u5pcqSstr3bzSl7R320/UKKK8v8A23fjX4q/Zr/Yv+L37Rng XT9Pu9b8AfC/
X/EmjWurRPJazXVjp091EkyxujtEXiUMFdGKkgMp5Hjmh6hRXyB/wl3/AAVN /wCjoP2f/wDx
HfXP/mvo/wCEu/4Km/8AR0H7P/8A4jvrn/zX13/2Zjv5PxX+Z539rZf/AD/g /wDI+v6K+QP+
Eu/4Km/9HQfs/wD/AIjvrn/zX0f8Jd/wVN/6Og/Z/wD/ABHfXP8A5r6P7Mx3 8n4r/MP7Wy/+
f8H/AJH1/RXyB/wl3/BU3/o6D9n/AP8AEd9c/wDmvqj4h+KX/BSvwjpMuveK /wBr/wDZy0yx
hx517qPwB1mCKPJwNzv4wAGSQOT3pSy3GRV3Gy9V/mH9rZf/AD/g/wDI+zaK +K/CPxn/AOCi
/j/Tm1jwH+2h+zXrdokmxrrSPgPq9zGGwDtLR+MSM4IOPetX/hLv+Cpv/R0H 7P8A/wCI765/
819KOXYycbxjdeq/zBZtl7V1P8H/AJH1/RXyB/wl3/BU3/o6D9n/AP8AEd9c /wDmvo/4S7/g
qb/0dB+z/wD+I765/wDNfVf2Zjv5PxX+Yf2tl/8AP+D/AMj6/or5A/4S7/gq b/0dB+z/AP8A
iO+uf/NfR/wl3/BU3/o6D9n/AP8AEd9c/wDmvo/szHfyfiv8w/tbL/5/wf8A kfX9FfIH/CXf
8FTf+joP2f8A/wAR31z/AOa+j/hLv+Cpv/R0H7P/AP4jvrn/AM19H9mY7+T8 V/mH9rZf/P8A
g/8AI+v6K+QP+Eu/4Km/9HQfs/8A/iO+uf8AzX0f8Jd/wVN/6Og/Z/8A/Ed9 c/8Amvo/szHf
yfiv8w/tbL/5/wAH/kfX9FfIH/CXf8FTf+joP2f/APxHfXP/AJr6P+Eu/wCC pv8A0dB+z/8A
+I765/8ANfR/ZmO/k/Ff5h/a2X/z/g/8j6/or5Q/Z9/aC/bQtv20PD/7Of7R nxA+F/ibRPE3
wv8AEviS1uvBXw21HQbqyutL1HQLVUdrrW9QSaKRNYlJASNlaFDuIJFfV9cl WlOjUcJqzR20
qtOvTU4O6YUUUVmaBRRRQAUUUUAfCH/BMr/lG5+z5/2Q/wAJ/wDpnta9vr5K /Yn/AGlPDfwv
/YA/Z1+HHh7wH4q8deNLv4BeEb228G+CdLSe5S2bSoFWe6uriSCx02N/JuTE 99c263LWk8du
ZpYzFXsPjf8Aac/4Vz/ZHgLUvhbrniv4l3+h29/e/D/4ax/2l9k37g7SajeC zs7O3LQ3Ygn1
CSy+1/Y5kgR5kMA+1pTgqUdei/r18j4KrTm6r06v+vTz2PVKK+PLT9uP4pfD j4z/ABV8a/tH
+BvHEHhL4ea54Y8Hf2Z8PbPTNa0Iapq9t4Zkwg2Jr2oahHd67KoaG3jtpLKJ Nls158j+qS/t
z+FLDxpF4W134LeONOsbPXNE8PeMPElwNKey8K+IdWjsXstFvFiv3uJrhm1T TIzNZQ3VmrXy
E3IWOd4aVam/6/rsxOhUXn/S/wA1957fRXzN8JP+Conww+Kth4V1u6+BPxG8 M6b4qsfDuox6
j4gh0do9P07xDOLTw9e3C2eo3Enl6jeCW1iSJJZoJIHe7jtITHM979rv/gqL +yx+xR8SbH4Y
fGnxD5F9JocWt6xJ/bmk2f8AZWlyTTRJd+Tf3tvcallrW7/0fTIr25H2fBhD TWyzHt6XLzX0
F7CtzcttT6LorxDUf25/CllbeJPEtt8FvHF54V0PXJPD2meMbcaULLxD4hXW Y9DGi2cUl+t2
lw2qu1mJrq3t7PdC8rXKwFJno+Gf+Cg/gXxH8WNB+ALfA/4jWfjzV77UbTVP CsulWVxJ4dks
Ros87ahdWt5LZxRix16wvlljnkjaNmtwxvWispH7WmuovY1H0/r/AIHXse+0 V8zfs1/8FTP2
fP2zPEmvfDr9mO7sdX8TW3hW617wja6n4s0w22vWkTxRLPKdMuL670eMyXNm Gj1G1t7tVuTt
tZHguI4vRfBH7Tn/AAsb+1/AWm/C3XPCnxLsNDuL+y+H/wASo/7N+17NoRo9 RsxeWd5bhprQ
Tz6fJe/ZPtkKTokziAkatOSumEqNWDtJHqlFec/CL9pTw38UPEk/w48Q+A/F XgXxpaWLXtz4
N8baWkFy9srorT2t1byT2OpRp51sZXsbm4W2a7gjuDDLIIq9Gq1JSV0RKLi7 MKh1LTrDWNOu
NI1WzjuLW6heG5t5kDJLGwKsrA9QQSCPepqKGk1ZiPmzRf2bv2u/gnaQ/D/9 n74weF73wfpt
+154Yt/G2mpcXnh92JJFu720/wAy5JEgZCSeRnLt6l+zx8Brf4GeHdRXUvFF x4g8ReINTfUv
E3iC7j2Pe3T9Sq5bYg5wuTyzsSWdifQaK8zC5NgMHX9rTi79LttK/ZPbt6Gc aajbVtLZNtpe
i6f0tj4E/bW/4Nz/ANiT9u/9pvxN+1b8Xfij8VNO8ReKvsX9oWXhvW9Nhso/ s1lBZx+Wk2ny
uMx26FtztlixGAQAV990V1SwWFnJycFdnfHH4yEVGM3ZC/Dn/lKb8ZP+zf8A 4af+nzx3Xv8A
XgHw5/5Sm/GT/s3/AOGn/p88d17/AF8afchRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQB8j+If2R/
iJ4u/aoj8c+K/hXY6p4Zi/a4tfHsUuozWc8aadbfC6PSLbURE7lhJFrUUSRj b5ySRpOqhFEo
o/D34N/tD/s9eOPDHxx/4Z+1zxj/AGTrnxisLvwt4U1nSF1L7P4k8cwa1puo A6hfWtqbc2lh
mRftHno93AvknExh+xqK+1fHeazo0qNSnTlCnTjTUXz2cY06tLW007yjWlzO Ljqo2tZp831W
ndtN3bv+KfbyPh39m/8AZt/ad/Zi034b+NtB/ZX0MX3h/wD4WvoK/Dzwp4rs oNN0JfEXjK11
bSrgXMiQhdHhtdPCyPBbvexpcQbNOdhLDFh2H7J/7U3w/wD2a/hT4C8GfBXX B4wm/Zy8LeBP
GkFvq/hnUfDWoXenWc0Y0rxXZ6qjynR4Zr25DzaHJLdXMN3foygwWLSff1Fd z8Sc2niJ1p4e
jJznKcrqo1JupVqqMk6rUownWlKN7u6hJtyimT9TppJJva3Tsl27I+R/GH7I /wARPEf7X1n4
o8SfCux17wmf2m9P+Jg1S5ms5ra0tofhxcaDCWhmcS/bLbVrC0mGyJlVbyzl ikZ47gWx8IPh
B4l1D9o2f9lk31jefCP4J+Km8VaRbWsryKtzfQpc6L4cuF2fZRHpMs2pXkdg qRtZW0fg2aJm
KyE/XFYfw3+GPw1+Dfguy+G/wg+Hmh+FPDum+Z/Z2geG9JhsbK18yRpZPLgg VY03SO7ttAyz
sx5JNcj42x1XA+yqpXhRhRppJ8seVSXtXeT/AHqhKUFypL33K8XBKVfVoqV1 1bb/AMvT/LzN
yiiivhzpCiiigArwD/grF/yiy/aW/wCzf/GX/pjvK9xuPE/hq08S2ngy68Q2 MWsX9jcXthpM
l2i3NzbW7wRzzxxE73jje5tldwCqNcRBiC658O/4Kxf8osv2lv8As3/xl/6Y 7yqlCcUm1a+q
81e2nzTXqgEorx3xP+0z8atB8SahoWlf8E8PjFrdrZX0sFtrOma34MS2v40c qtxEtx4himWN
wA6iWOOQKw3IjZUUv+Gr/jz/ANIyvjh/4P8AwL/80tfb+0j5/c/8j8/9lLy+ 9f5nt9FeIf8A
DV/x5/6RlfHD/wAH/gX/AOaWj/hq/wCPP/SMr44f+D/wL/8ANLS9pHz+5/5B 7KXl96/zPb6+
b9W1nRviJ+1n8UbT4h/Dm68Xr8Jvh0NY8GeERIfI1Cd4I5JZBGDmSXdL5eeD tVVXq27of+Gr
/jz/ANIyvjh/4P8AwL/80teVfHS9+NfxW8W6b8VvBP7BP7QngvxvpEH2ey8T aN4h8DbpIMsf
KmRfFCGRRvcrh1KlzyQSp8bPcPWx2C5KKbaadrNXWumqtvZ66aESpVE4yVnZ 3teOv36abq/V
GFoHxz1y5+Mfwl+KvhD9kjUfhsfF+p/2Re3VteYsfEFo1ysMrG2LFlEO8OrE nDLkHDMG9y/a
v/5Lz+zJ/wBlwv8A/wBQXxZXj/wvl/aK0D4jQfGP42/sXftFfEPxRp8Tw6Lf axr3gdIdORlK
s0UTeKZCJCrOpYvgKxwqksT6J4s+NHxF8ca94Y8T+Kf+CWPxwur7wbrkmseG 5/8AhJ/BKfY7
17C709pdqeJwJM2t9dR7XDL+93Y3KjLzZDgsTgcJKFa6bkmlba1uytrbp83c MNSrQlKU2tf8
K+zbppq/+HbueV/Dn/gpB+0l4Z/Zt0X9oz9oTwB4H1P/AISv9ljW/jBpHhzw Y95Z/YP7Hs9J
mlspru5abz/tv9rRyqVgj+weU8BbUMi5NH9pr4nftbfszfG28+M3xS174c+K 9Y8D/slfFfxJ
4S1TQPDV/pNtcXNrc+FZ/sl3p819dN5avBC3nx3oaZbh4/KgMCyz9xpEOmaL 4b8M+DIP+CO/
xiudH8IfDm78BaFpWp+JfBV5bR+HLpLFLjTpYp/FDrdRyJptkrGcSOViI3Yk k34fhD4b+DvC
HiS88Zyf8Ehvj74j1jUvCuoeGNT1Xx98S/DPiW5vtEvXt3udLnl1bxfctNZs 9sjLbuWijaS4
Maobm48312qrja76dH5X6a6/cd6dJSvZdeq+XXTT7+p6p8af2lPjb4T+J/xQ +G3wv8B2OsSe
EPhz4O17S2j0u5vLm3bVtY1uy1C8ktYJBLqMdnaaYl4lhbCO5umilt45PMni Mflc/wAeP2mP
il42/Z2m0T46eFYY2+Puo6H42gsvh7r2iXOrWy+ENW1JLa+0bUL2K50eQRJI Utbk3ays2l6o
jCPFo54a+G/g7wpYeKbXTf8AgkN8fZ7rxtY6bbeK9d1b4l+Gb/VtSbTp57jT rqTUbnxfJd/b
LSS4Y294JRcwCG1WOVFtLYRbnhgP4R8N6f4a0r/gk/8AH2VtM8VReJbbW9T+ IfhW91h9WjQQ
reS6nceLXvbiQ2yiyYyzOHss2bBrUmA23Uk1f/27vfsSlTitLffHtbv3/rsf siftw/G3xD4F
8A/Fj9t2b4c+FPDPxV+Dtn4x8Lat4fa5tbHSLmCyF5qdnqF7fzCMyS2cseo2 8UaBooLPVkke
ZNPF5ce+/s4eN/iT8TPgxo3xH+K3hH/hH9U8QfaNStdBm0+a0u9N02e5ll06 2voJmZodQjsX
tUu4wSi3SzqhKBTXyV8R9K+NXjfw34A/ZW0r/gkP8RtN+C3gSx0praa48Y+D L/WGjsEa1XRI
re415o47O4s8Wt1dy3M8lzZXN/YtbgXZuo/fv+Gr/jz/ANIyvjh/4P8AwL/8 0tVSnJaSvp5P
59CKsIy1jZX81t06/ee30V4h/wANX/Hn/pGV8cP/AAf+Bf8A5paP+Gr/AI8/ 9Iyvjh/4P/Av
/wA0tbe0j5/c/wDIw9lLy+9f5nt9FeIf8NX/AB5/6RlfHD/wf+Bf/mlo/wCG r/jz/wBIyvjh
/wCD/wAC/wDzS0e0j5/c/wDIPZS8vvX+Z2HhH/lKb8L/APs3/wCIn/p88EV9 f18Lfs6fELxb
8Sf+ClPw213xn8C/FXw+uovgb8RoI9G8X3mkzXM0Y1nwKwuFbS768hEZLMgD SLJujbKBSrN9
018rmTvjZv0/JH2GVK2AgvX82FFFFcJ6AUUUUAFFFFAH5Cfs7Wdl8Rf2D/2d 9B8T/wDBOX4q
eOZvDXwP8K/8Iv8AEnwN4o8OaPe2P2jQ9Pa5/s3UH8QWGqWG8KLefyxB5yxv G3mQt8/o3j66
8Q/F/wAN+HdN+MX/AAS++PviLXvC9j5Gj+P18WeBtJ8R2kjpElzcW2o6V4lt ZrCS5ESicWZt
45ULRFPKJjqj+wj+3R+xJ8HP2D/gR8OPi7+2L8K/CviLTvgf4P8A7Q0HxJ8Q tNsb218zQ7KW
PzIJp1dN0bo67gMq6sOCDXqn/DzX/gm5/wBJBvgf/wCHY0f/AOSa+vpqk6av Lou3+R8TN1lU
dodXb4v8+p47D4e8fzeG9e0LxH+wX+0zrF14n+I3hfxvrus33iT4bx3N1q2h JoS27bYNbjhS
OY+H7R5kSNQWmuPL8lWjWI8WeHvH/i34sXnxFuP2C/2mbXR9Z8VaV4o8T+Ar TxJ8N/7J1vXt
MFkLDUppH1tr6KSH+zNLIit7qG3c6fH5kLiW4E/sX/DzX/gm5/0kG+B//h2N H/8Akmj/AIea
/wDBNz/pIN8D/wDw7Gj/APyTVctF/b/Ff5eZKlXX2Pwfl5+SPAfC3wWu/CXh LQ/Bmm/8E8v2
mXtdA8K/DnQLOSfxZ8PDI9t4L1aXVNLdyNeAMks8rLcEAK8YAjWFvmPVfFaX 4x/Ev4kyfE/R
P2LP2p/Bd9quh2uieMI/Bni/4dW//CR6XbTXUtvaTTTa7LcWXltfX+2406Wz uR9sc+duit2h
9U/4ea/8E3P+kg3wP/8ADsaP/wDJNH/DzX/gm5/0kG+B/wD4djR//kmhRopW U/y/yDnrt3cP
z/z8keH6j4I+J17beJPDVt+xl+1PZ+Fdc1yTxDpng638QfDA2Xh7xC2sx64N as5ZNXa7e4XV
Ua8EN1cXFnumeJrZoAkKXvhH4e8f/Cj4sQfHi4/YL/aZ8TeNHsdZg1zxF4g8 SfDdZNbk1EaH
G9xcQ2et28EckVv4d0u2iFvHDH5cTtIkssjSn2L/AIea/wDBNz/pIN8D/wDw 7Gj/APyTR/w8
1/4Juf8ASQb4H/8Ah2NH/wDkmjlo3vz/AIr/ACDnr2t7P8H/AJnjvwi0745f BLw3P4M8E/sp
/taro9h4Vbw58P8ASrjxX8M2tvBGnbESFLKJdYVb2SFIbZYp9VF/Mi2+N5Fx dfaNzwDdeIfh
B4b8Rab8Hf8Agl98ffDuveKLHyNY8ft4s8Dat4ju5ESVLa4udR1XxLdTX8ls JWEAvDcRxIFi
CeUBHXo3/DzX/gm5/wBJBvgf/wCHY0f/AOSaP+Hmv/BNz/pIN8D/APw7Gj// ACTTUaK2n+X+
QOVZ70/wf+Zw/wAGvEGpfAL+0rv4Zf8ABJf44W+qa35P/CQ+JdV8YeDdT1rW vJ3iD7dqd74q
lvL7yVkeOLz5ZPJjIjj2oqqO4/4av+PP/SMr44f+D/wL/wDNLR/w81/4Juf9 JBvgf/4djR//
AJJo/wCHmv8AwTc/6SDfA/8A8Oxo/wD8k1SdOKsp/l/kS1Vk7un/AOlf5h/w 1f8AHn/pGV8c
P/B/4F/+aWj/AIav+PP/AEjK+OH/AIP/AAL/APNLR/w81/4Juf8ASQb4H/8A h2NH/wDkmj/h
5r/wTc/6SDfA/wD8Oxo//wAk0+aH/Pz8v8ieSf8Az7/9K/zD/hq/48/9Iyvj h/4P/Av/AM0t
H/DV/wAef+kZXxw/8H/gX/5paP8Ah5r/AME3P+kg3wP/APDsaP8A/JNH/DzX /gm5/wBJBvgf
/wCHY0f/AOSaOaH/AD8/L/IOSf8Az7/9K/zD/hq/48/9Iyvjh/4P/Av/AM0t FH/DzX/gm5/0
kG+B/wD4djR//kmijmh/z8/L/IOSf/Pv/wBK/wAz3D4c/wDKU34yf9m//DT/ ANPnjuvf68A+
HP8AylN+Mn/Zv/w0/wDT547r3+vij7wKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CvnLwF+0r+29
8ZLbXPFPwg/ZW+FU/h3TfHPiPw7p134k+OGpWN7df2RrN5pUk8lvB4auY4fM ksnkVFmkwrqC
2c19G14d/wAE9f8Akguv/wDZcfid/wCp3r1fSZWsDh8lxGMrYeNaUalKCU3U SSnGs5fw5wd2
4R3b66amM+Z1VFO2j7eXdPuH/Cff8FJ/+jTfgd/4kLrH/wAyVH/Cff8ABSf/ AKNN+B3/AIkL
rH/zJV7jRWf9s5d/0LaP/gWI/wDl4/Zz/nf4f5Hh3/Cff8FJ/wDo034Hf+JC 6x/8yVH/AAn3
/BSf/o034Hf+JC6x/wDMlXuNFH9s5d/0LaP/AIFiP/l4ezn/ADv8P8jw7/hP v+Ck/wD0ab8D
v/EhdY/+ZKj/AIT7/gpP/wBGm/A7/wASF1j/AOZKvcaKP7Zy7/oW0f8AwLEf /Lw9nP8Anf4f
5Hh3/Cff8FJ/+jTfgd/4kLrH/wAyVH/Cff8ABSf/AKNN+B3/AIkLrH/zJV7j RR/bOXf9C2j/
AOBYj/5eHs5/zv8AD/I+Vv2hrX9qn4i/DW6uP2kf2NP2cpPDvhvfrn9t65+0 bq9r/wAI5Lbw
yH+1re9/4RRJNNuLeNpXS9hkilg5dJEI3D44+Pvxv/4Kb+Kf2IP2k/C+lfCn wr4s+AI/Zx8Y
tbfEDxJ8S9Rurm1k/s2RFg0rUbnQbG48QWa2BE9vcy2txHes7SNr0rExr+o3 j/4H/Cb4reJf
Dniv4m+BLHxBdeEb77f4ai1hDcW2n34eJ47+O2cmEXkRiAhutnnwLJMsTos8 wfyr/grF/wAo
sv2lv+zf/GX/AKY7yvoKfGGU0Milgll9Ocpp6SdZwpNv4qadeT52rPnThbWL jNamTw9R1ebn
enpd+um33/I4n4z/ABKh+HLeGI774h+GvCdnrviJtPvfEfi2PdZWSCwvLkFs 3FuNzvbJGMyA
Zk6E4FYdt8bPDx8feFPCvhf9q/4VePn1/WZrO70nwfAovLeJNPu7r7RlNTuM IHt0Q5jx+9HI
OM4Hxs8aftBaN+0HomheBBry6NJ/YH9nWeneG1utO1XztUmi1z+0LswP9j+y 6csFxb/vrXzJ
XZR9qI8lbP7RXx08X6P8M9C8a/B2z8Uow8feHYdctY/hXq97ez6RNNbXF8sd uIPMgxZSOXna
KQI0ctsAl0V8rxMTkWZYnM6eIp4txheL5EnbS109UrS2ej69j5ajmGEpYOVK dBSlZ+9112e3
T1PZ68d+EX7fv7IHxz8Nz+Nvhz8bLGXQYPCreJV8QatY3WmadcaTGiNdXkF1 exRQ3EdoZI47
wxO5sZnWG6EEpCV7FXyV4Y/YG+NunfBL4T/C21+L9j4X1jwR+yVr3wsvvFvh y4uXudN1u+tv
DkMGp2GBAzxwPpFxKGMkEu4wYALM0fpVJVE1yq/9I46caUk+d2/pnqen/t4/ s13PhvxR4r1v
W/FXhu18H+Fb3xLrUXjb4aa9oFy2k2aB7y8tbfUrKCa+jgDRiU2ySmJp4FcK 08Qel/w8e/Yx
/wCiyf8ATx/yLuo/8gr/AKGD/j3/AORf/wCo9/yCv+nuvnPxZ/wTI+JPifSv G03ww/Y//Z0+
C194o+B/jL4eSW/w41+ZotR/tu1gaG+u5IvD9kf9FutOtolh2SbotSuphJG1 ssF37h+03+yJ
8SfjR/w0T/wi2t6Hb/8AC3P2dLHwD4b/ALQuZk+zalD/AMJPuludkTbLc/21 a4ZPMf8AdzfI
Nqb8lUxDWy+5/wDA9DZ08KmtX968u1/Nnb/Ej9tH9nr4T+NL3wP408R64s2k +X/wkWr6Z4I1
fUNH8P741m/4mmqWtrJZaXsgkjuZPtc0PlW8sU8myGRJG7j4m/EjwX8HPht4 h+LvxH1n+zvD
vhXQ7vWNe1D7PJN9lsraF5p5fLiVnfbGjNtRWY4wASQK+Sv2iv8AgnN8Rvih 8YfihqOlaNY6
94Z+MF9BPrc+p/Hvxj4dttIjOi2OjTW8vh/Rilprkfl2AuGMt1ZyXK3BtGeJ IUnb61+Jug+N
PFPw28Q+GPhx49/4RXxFqOh3droPij+y477+x72SF0gvPs0pCXHlSFZPKchX 2bScE1pCVVuV
16Gc40Uo2e+/4f8AB6Hln7c/7YX/AAxz4U8F6/8AYfA//FY+OB4d/tT4j/EP /hF9F0v/AIlW
o6h59xf/AGO72bv7P8hE8r55LiMbh34fxN/wUA+JOi6r4E8DW/hD4H23iLxz odpqWi3XiL4/
zafoHiT7ddTQ2Vt4d1EaJI+u3Hlxwy3Ea20PkDUbAIZxcqw9T/af+BfxJ+Md z8PvFPwi+J+h
+FfEXw88cSeItPu/EnhKbWrK68zRtT0qSCS3hvrJx+71N5FdZhholBVgTXLf GP8AZz/a2+Pv
wnvfgX8SP2kfhynhnxb4VvdA+Ih0P4Q39vfXtteG4huH06aXXpY9Pk+xyxxo ZorxVnjaZldH
Fukz9vzPl+WxUPq/LHm+e5R8I/8ABTb9nqfQdU1P4sDXPB1xY/FTXPAmnxXn hPV57fWtSsb/
AFi3t4dOuVsli1K4uYdGndbe0MzrPLHZ/PcSRJLesv8AgpB+zXY65qHhTxp4 mvrbUNJvtTGs
3eh+ENe1LSdFsbXXNV0hbzUtSXTUttMj83SL0yvcvHBCbadhNLBGtzIeF/2L fEnhj4h+G9Sj
+LtjN4T8HfGLW/iD4c0VvC7jURc6xZ+Ik1G1ub37X5U0f2vxBJNAyW0TRQ2q wyfaHc3C8rB/
wTQ8jwH8ffBH/C6s/wDC8fA+ueHftX/CN/8AIF/tHXfF2reft+0/6T5f/CU+ TszFu+w79y+d
siSeK7L+vmVbCN7v+n6dEep2n7aP7PV/8Z9P+A1j4j1ybXNW1y80XS76LwRq 7aLealaW1zcX
VlFrAtf7OkuIUsrwSRLcF45LSeJgJYnRfVK+PPD37N/7TejftneEfCWgaR5f wa8A/FTxH8Q4
ta1vQrKO4vb3W9O1s3Ntb3tvrMs0+y/8Q3GyKbSLNVgtyDdSvEjXn2HWlKU5 J8ytqY1Y04tc
jvp/X/DBRRRWpkFFFFAHiHj3Wvj7oP8AwUk+E95+zn8NPB/irW2+B/xCS60/ xr44utAtY7X+
2PBZaVLi10zUHeUOIlERhVSru3mAoFf3D/hY3/BU3/ozf9n/AP8AEltc/wDm Mrz/AMI/8pTf
hf8A9m//ABE/9Pngivr+vksz/wB+n8vyR9nlP/Ivh8/zZ4B/wsb/AIKm/wDR m/7P/wD4ktrn
/wAxlH/Cxv8Agqb/ANGb/s//APiS2uf/ADGV7/RXAeieAf8ACxv+Cpv/AEZv +z//AOJLa5/8
xldf8FP2qfCvxc8VXHwu8S/Drxh8PPHdnp73914G8faQlvdPaq8atcWl3ayz 6fqsSCe1Mz6f
dXS2rXtvFcmCaQRV6hXH/Gv4A/Br9ovwrb+DvjV8PdP1+0sNQTUdGmuUKXWj 6iiSJFqNhdRl
Z9PvohLIYry2eO4hZt0ciNzQAfGv4/fBr9nPwrb+Nvjf8QtP8N6VdagllBea g5CtIUkldsKC
RFDbw3F1PMQI7a1tbm5maOC3mlTsK+QP2Zf2e9H/AGhPHfi3xJ8WfHniD4mf CnwD4g8TeBfh
j4e+JZs9XhvUMUGla1cXJlt0muvss1tqmhW8l8s180LazNNfahBrEQg9P+Cn izxV8B/iZcfs
r/GjxNqF7puo6g7fA7xVrl693PrWmR2Uc02jXl9Id9xq9m8d66CYefdabFBc Ga+uLbVp4QDw
D/gmV/yjc/Z8/wCyH+E//TPa1z8P/BVD9k+/8ZaP4c0PVtav9N1iztZl8SQa WI4Laa7g1C4s
rOS0ldNQa5uotOle3ijtXM4ntTHuFzDvP2IPCOt/ED/gkV8IPAXhnxpd+G9S 1v8AZw8P2Gn+
IrAMZ9Lnm0CCOO6j2uh3xMwdcMpyoww6j81tbX46prA+Ad98GfGE2u+L9A13 U7Dwtr9tdW99
rltK+tSy3dxYy38tyXkMLyXCsZrsy20AsZTHL/pf6blGCpYvDtyeqS8rK2r1 7ep+XZni54bE
W6Nvpe7vovmftH4F8beF/iX4I0b4j+CNUF9oviDSrfUtIvRE8YuLWeJZYpNr hWXcjKcMARnB
APFateZfsbeFPGPg79mXwjpfj7xn4l17VrmwfUbm98Y2k1vqkQu5pLpLS5in ubmSOS3SZLYq
80hHkY3Gvifw9+z/APE+5/atku/FfhqxsviEPj7daxF4s0/9lvWLrxK3hxfF El5bwHx8+oxa
Ytm+hCK1khyXisHfTVt5bhBbP5uKkqFVxhqrtduv69jvwsHXpKU3Z2T7/l0X c+w/E/7YEOne
JNQtPAH7O3xG8eeHNCvpbLxL448F2em3Gnabc27lb2BIZb6K+1KS22ssqada 3becktqgku4Z
raPqvgv+0J8Nvj/c+Kv+FYan/aNj4V1y002TWbeaGay1P7To2m6xDc2c0Uji a3a11S2xJ8uW
D4BUK7ePfCL4pTfsiaP4g+BHj/4QfEbW/Ed58RvFmv8AhoeC/h9qWqadrltr XiDUNVskTU4o
fsNjIPtq2so1GezWGaCWR2W0aG7l8d+N3we+JPjzRvifYfHP4Ta5Y+GPEn7R ej6n4/PhPwvN
4q8jTU+HOjQC40/T7jTpo/EFuutwW1nmbTLpE2y3P2e2ns1ubPmdWUUnv3Xb 5/5nRGjCTa27
Pvqun+R990V+bXgv4F2Gifsz+MvhWvh74jap8PdM+MVn4h8E6b41/ZxnvdHn 0G40GOzeLUvB
+n2elNc2a61DqkosLK2iuIb3+ztWnha3lN3P1XxZ+Ett4g/Zk+Ek3xE+A/2H S9H/ALetbPwn
4g/Z/wBZ+IXhVIpb1DY3jeFYLsano9xLaw+dYRPvi0W0ur3S5TG726lrESav y/j52/pg8NFN
Lm69vK/3+R9o/E34u+G/hbf+FNE1exvr3UvGviqHQPDunafEhkuLloJ7uZy0 jpHHHBZ2l5dS
FnDNHaukSyzPFDIfBf4u+G/jl8PLb4h+F7G+s43vr7TtQ03U4kW507UbG8ms b6yl8t3iaSC7
t54GeKSSF2iLRSSxskjeIBPEnw8+LH7Nvxt+Kfgq+8L2svw51PwBr+k6l4of Wp/Det6wNCvL
SK91SZiLuPz9El077Y8jS3N9fWCKsjXRZOq/Yp/4q25+LH7Qek8+Hfih8VJN a8ISv96702z0
bStCS9UrlJLe6k0eW8tZY3dJrO6tJgQZSiXGpJzt/Wyd/wBDN04qnf8Ardq3 3anovxo+NHw8
/Z9+Hlz8UvilqN9baPbX1jZM2maHealcy3N5eQ2VrBFa2UUs88ktxcQxKkcb MWkHGMkcr/w2
X8D4vht/wtPUYfHGn2Mmuf2PYaVq3wp8Q2etane+T55istJnsEv77EIkmLW8 EirHb3DkhbeZ
k8s+O/wD8aeKf+CZXgf4J+Av2cdc0i+0P/hXU0/ws8MePIxqWj2Wla1o93ea baaxJd2we4tr
W0njjuxcxM7wq6yKzK1Hhbwd8UvCWq+B/wBojwR+y38VF/4V/ofiXwncfDjx 14+0zVfE+p2W
sXWkXx1O21K51u8gufJuNNSH7PeX0LeTJMyMv2a3trqZVKvNotLLo+/6feXG nScNXrd9VtbT
7++x7D8IP2n/AIefG7x1qngLwdoXiqzutJ8K6Xr9w3ijwpeaNIba/vdWsoUN rfxw3cUgk0e6
YiWFFMckDo0iyZHo1fEH7RvwW/aO/aI8V+NPH15+yvrlp4S8b+B/BOj+KPBu rQ+D9U8QyxaX
qvi25lisrfUbm80RrhLm70O5LXjvF9jmuPKIvI0SPh/gX+xj+0doviL4Oaj4 u/Z61zWtU8Ka
5cxWzfGjTfB+saB4N8Ox+LdUvbZ7JNOvFudF8QLpJsIon0qGXTVEOn2zwIlt HLYyq1RO3K35
7dSnQpNXU0vLfp/nofovRXyx/wAE0P2ePHnwG/4TX/hJPgp/wjOl6l/ZqWGv +NNF0KPx94mu
4/tUl3d+Ib/Qbq4s9W+a4j8i7byrpme7+0RyP/pd19T1vTk5wTasc9SKhNpO 4UUUVZAvw5/5
Sm/GT/s3/wCGn/p88d17/XgHw5/5Sm/GT/s3/wCGn/p88d17/XwZ+iBRRRQA UUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUU
AFFFFABRRRQAV4d/wT1/5ILr/wD2XH4nf+p3r1e414d/wT1/5ILr/wD2XH4n f+p3r1fQYb/k
lsV/1+of+kYkxl/Hj6P84nuNFFFfPmwUUUUAFFFFABRRRQAV4B/wVi/5RZft Lf8AZv8A4y/9
Md5Xv9eX/tu/BTxV+0p+xf8AF79nPwLqGn2mt+P/AIX6/wCG9GutWleO1hur 7Tp7WJ5mjR3W
IPKpYqjsFBIVjwQD5t8T/sM/BXxd4k1DxXqvjb4xRXWp30t3cxaZ+0P4zsrZ JJHLssVvb6sk
NvGCxCxRIkaLhVVVAApf8O+fgN/0P3xw/wDEm/HX/wAua7D/AIRH/gqb/wBG v/s//wDiRGuf
/MhR/wAIj/wVN/6Nf/Z//wDEiNc/+ZCvqvr2W919z/yPkP7PzVdH/wCBL/M4 /wD4d8/Ab/of
vjh/4k346/8AlzR/w75+A3/Q/fHD/wASb8df/Lmuw/4RH/gqb/0a/wDs/wD/ AIkRrn/zIUf8
Ij/wVN/6Nf8A2f8A/wASI1z/AOZCl9eyzuvuf+Qf2fmvZ/8AgS/zOP8A+HfP wG/6H744f+JN
+Ov/AJc0f8O+fgN/0P3xw/8AEm/HX/y5qt8Zvjf+11+zj/Zv/DQ2ifsj+A/7 Z87+x/8AhM/2
tb/S/t3k7PN8n7T4UTzdnmx7tudvmJnG4Z8A/Z2/4LFfFj9sH9o3w1+zL+yZ 8CPhV8QtY16x
1G91PVtF+KXiq207w3bWkKyefqMt94MgeKOZ2WCN40lUzOiOYzJHu+iy/h/N s1y6rmGDwVSe
HpxlOdVUp+zjGKk25VOXkXwySu9WuVXehlPD46nNQk7N9OZX+659Ef8ADvn4 Df8AQ/fHD/xJ
vx1/8uaP+HfPwG/6H744f+JN+Ov/AJc12H/CI/8ABU3/AKNf/Z//APEiNc/+ ZCj/AIRH/gqb
/wBGv/s//wDiRGuf/MhXzv17LO6+5/5Gv9n5r2f/AIEv8zj/APh3z8Bv+h++ OH/iTfjr/wCX
NH/Dvn4Df9D98cP/ABJvx1/8ua7D/hEf+Cpv/Rr/AOz/AP8AiRGuf/MhR/wi P/BU3/o1/wDZ
/wD/ABIjXP8A5kKPr2Wd19z/AMg/s/Nez/8AAl/mcf8A8O+fgN/0P3xw/wDE m/HX/wAuaP8A
h3z8Bv8Aofvjh/4k346/+XNdh/wiP/BU3/o1/wDZ/wD/ABIjXP8A5kKP+ER/ 4Km/9Gv/ALP/
AP4kRrn/AMyFH17LO6+5/wCQf2fmvZ/+BL/M4/8A4d8/Ab/ofvjh/wCJN+Ov /lzR/wAO+fgN
/wBD98cP/Em/HX/y5rsP+ER/4Km/9Gv/ALP/AP4kRrn/AMyFH/CI/wDBU3/o 1/8AZ/8A/EiN
c/8AmQo+vZZ3X3P/ACD+z817P/wJf5nH/wDDvn4Df9D98cP/ABJvx1/8uaP+ HfPwG/6H744f
+JN+Ov8A5c12H/CI/wDBU3/o1/8AZ/8A/EiNc/8AmQo/4RH/AIKm/wDRr/7P /wD4kRrn/wAy
FH17LO6+5/5B/Z+a9n/4Ev8AM4//AId8/Ab/AKH744f+JN+Ov/lzR/w75+A3 /Q/fHD/xJvx1
/wDLmuw/4RH/AIKm/wDRr/7P/wD4kRrn/wAyFH/CI/8ABU3/AKNf/Z//APEi Nc/+ZCj69lnd
fc/8g/s/Nez/APAl/mcr+zp8HfCXwR/4KU/Dbwp4M1fxVe2tx8DfiNdyS+L/ AB1q3iC5Ejaz
4FQqtxqlzcTJHiNSIlcRhizBQzsT9018ofs+/s+/toXP7aHh/wDaM/aM+H/w v8M6J4Z+F/iX
w3a2vgr4k6jr11e3WqajoF0rut1omnpDFGmjygkPIzNMg2gAmvq+vBxtSnVx UpU9tPyR9HgK
dWjhIwqfEr/mwooorkOwKKKKAPAP+HXH7Cej/wDJJ/gZ/wAKr8z/AJCH/Ci/ E2qeAP7Ux9z7
d/wjdzY/b/Ly/lfaPM8nzpvL2edJu5/x/wD8Es/AniL+xJPhv+1v+0B4In0P xBba3bXsPxQl
8UXK39vuEE0M3iyLV5LDEUt1byrZNbrd297cW92LmFxGv0/RQB8If8Eyv+Ub n7Pn/ZD/AAn/
AOme1r1DUPit8LtI+IVh8JNV+JOgWvivVLRrrTPDFxrECahdwKJC0sVsWEki ARSksqkDy35+
U48P/Yg1D4haR/wSK+EGq/CTQrTVPFdr+zh4fl8MaZfyBILvUF0CA20MjF0C o8oRWO9MAn5l
6j8wV+KPgLw94QvPCdnrdjZy20c6W9tpc6Tx2ckCa1FZ2dtbLqM9tcQPHeSK lqxuYtYj1G7u
Lm4LsDdfpOV4B4zD3T2SWmu/V+X9aH5jmGMWGxFn1u7vyey8z9zaK8n/AGGJ vGMv7JHgWLxt
4W0XRp7fRRbaZp/h3UFu7JdKikePTpIplu7sSh7FLaQt9omyXPzmvmrw9+01 +2j4n+I0nxT0
3S/iNF4fi+Pt14MaLULrwHaeADpNv4xk8OvIGnuE8QteG1jZ40Dky6mUWOJ7 Z0t24cQ44eq4
b2b28up14eMsRTU9tFvpv09T7f8AD3ifw34usJNV8KeIbHU7WK+urKW50+7S aNLm2nkt7iAs
hIEkU8UsUifeSSN0YBlIHD/F39sH9kn9n3xJB4M+PX7Unw58Eaxc2K3ttpXi /wAb2Gm3Mtsz
uizrFcTIzRl45FDgbS0bDOVOPljwV4n+P9p8K9P8GfBDxD4qijv/AIxfGG91 bSvhbd+Fl8XX
LW/j3UEhnhi8UH7C+lx/aZVu3QG5S4uNMCERvPnc+Gfxf/aD8e/tbar8U/2Z vC3w5+JFr4q/
Zm+Geq32v6/4p1PwhbXMc9/4smgubS0GmanMkcwkkfyZ3WSBdilpWLFef27a SS1flfpfTqdK
w6Tbb0XnbrbXoj7D8MeJ/Dfjbw3p/jPwZ4hsdX0fV7GK90rVdMu0uLa9tpUD xTxSoSskboys
rqSrKwIJBq9XyV4Q8F/tF/DT9rbwJ8KLX4x2PhnT/iLY+M/iN8RfCvhvR4bv Tra5tb/wrHHp
mlS3Uatbxu93cPd3RiDXs2oapdCCznu4HscP4N/E39pTxZ8Of2dPjJr/AO1N 4qnk/aXsYoNZ
0H+w9BWx8HyX/g/VNfW40Yrpon8y2uLGKGEahNfRmB5BMk8hWVaVezs07/8A Df5oh0Lq6at8
/Py8mfaNFfCXgH9uz9ov4i+G/EX7TXibxLY+H/CfwO8VeX4x8K6RpUItviJ4 KZJY5/H1vLci
a5h0tovN1PT4bJpvPXRL61FzqD3Ub2fVftN/Ejxp8avgf8YvEl7rO34QS+OP D3w+v7J7eNYp
tAtvEMWneONWnudqT2Vv9nudV0+Zn2i1i0CS/hmVLhZUFiION1/X9bD+rTUk m/60/wA7+h9T
+Avib8NvippT698MPiFofiSxj8jzL3QdWhvIl8+1gvIcvEzAeZa3NtcJz80V xFIMrIpO5XiF
/wD8S3/gpHpP/CHfN/bXwP1D/hYv2f8Ae+X9i1iy/wCEd8/Ofsu77f4p8nGz 7T5d1nzfsa+T
2/wn8Vf8JD48+Jukf8LW/wCEi/sLxxb2P9kf2F9k/wCEX3aFpNz/AGd5uB9t 3/aPt3n87f7R
8jP7jA0jO+j72M5Qtqu1/wBDuKK/F34MaB+xJB/wSs8P/ZPix+x5c+ML7Q/h L/wkv9h/D3TY
NS0XTT4o8Of2n/wleNWkl1S3WZrb7Xv+wozxSeZsMq+V778FfjDofwqhb4d2 X7X3hX4Q/BbU
fFWv3Wm/Gf4a2mh6P4N1C+ttN8Li10zw+mrx6jpthZzyXuutPaxy3E8+o6Nq Vwk8Q+1Wqc0c
Xe11ul1XU6p4O17PZtbNbW/qx+ktUfDHifw3428N6f4z8GeIbHV9H1exivdK 1XTLtLi2vbaV
A8U8UqErJG6MrK6kqysCCQa+Evh5+2t+034p17wrqfxZ+Jf/AAhnxRvdc+H9 lZ/s4f2NZWn/
AAkGj6tYaBNr+sfYbyF9Zf7BLqOvjzre5S3t/wCwMTo/2W983yz9hb9qH9rC wsvgJ8JtI+L/
AIH8PaHp/gf4aaV4f+Het+JEj1LxZoVz4c0SbUNVt9Gj0K51HUPLe61OJL+3 1K0srd9LLXMQ
isb156eLgpJWepCwdTlbutD9TqK/L7xP+3F8avFXiTUPFGlf8FLPhz8PLXUr 6W6tvAHjr9pX
wZomt+GY5HLrpmoadceAbyawvLcEQzWst1cyQyxvG08zKZGKX1yl2Y1ga3df 18j9Qvhz/wAp
TfjJ/wBm/wDw0/8AT547r3+vAPhz/wApTfjJ/wBm/wDw0/8AT547r3+vjj7g KKKKACiiigAo
oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKK
ACiiigAooooAKKKKACvDv+Cev/JBdf8A+y4/E7/1O9er3GvDv+Cev/JBdf8A +y4/E7/1O9er
6DDf8ktiv+v1D/0jEmMv48fR/nE9xooor582CiiigAooooAKKKKACiiigAoo ooAKo+J/E/hr
wT4a1Hxn4z8Q2OkaPpFjNe6tq2qXaW9tZW0SGSWeaWQhI40RWZnYhVVSSQBV 6vnL9pfwR/w8
X8F+Lv2RvDHi/XPD/wANbnz9G+JHxD8Mah9mvb64ik2z6HpMhVo32yIYdQuZ ElgRRNpyxzXE
l22m+tk2X0cfjYrEz9nQi17Sdr8kG9Wl9qVr8sd5PTu1nUm4x91XfRH8rP7b /wC1f40/bj/a
y8d/tW+PbT7LfeMtce6g07zI3/s+yRFgs7PzI4ohN5FrFBB5pRWk8re43MxP 7bf8Gj/7FN/8
Nf2cvGP7cHjPSLH7V8S75NI8GSyWED3MOk6fNMl1NHcrI0kcdxe7o3t2WM7t KikPmK8RX7U+
DP8AwRB/4JN/Af8AtL/hCP2FPA19/avk/av+EztZfEmzyt+3yf7Wkufs+fMb d5WzfhN+7Ym3
6pr+q/GD6SmRcXcCLg/hXA1MNhf3cHKo4pqjSUXGnGEHO3vRj73tH7kLWfO+ Xw8vyerh8V9Y
ryTlrt3fW+n5fkFFFFfx8fQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFAH
wh/wTK/5Rufs+f8AZD/Cf/pnta1Z/wBhH9kKfxvpPj9PgJodvd6Hod1o2m2F lG8GmJY3IvBP
A2nRstpKsgv73dviYn7S+TzXFfsQfEbRPg//AMEivhB8W/E1rdz6b4W/Zw8P 6vqEFhErzyQW
2gQTSLGrMoZyqEKCwBOMkda+Jk/be/aN1C5svi1L+0brF/rOlaRMulL/AGnZ WllqFlBFrSXE
tzBa3baYLqZmSVLn7LdW+mNZ6fBdPcPMGuv0jLcPiauH5qcuVWS3tdtbf53/ ABPzLH1aEcTy
zim7t620Se+v4WP1e0PQ9F8MaLZ+GvDWj2un6dp9rHbWFhY26xQW0EahEijR AFRFUBQoAAAA
Arkf+GZP2bf+Fz/8NH/8M+eB/wDhYf8A0Pv/AAidn/bX/Ht9l/4/fL8//j3/ AHP3/wDV/J93
isr9jb4z237QH7MvhH4ow65f6pLdWD2d/q2p6fbWk2oXlnNJZ3N0YbSaaCNZ Z7eSRVikdArr
tJFeE/8AD3T4bf8AC9P+Fc/2h8K/7L/4Wp/wgP8AYn/C5If+E7/tL+2/7C83 /hHPse37P9u/
f7vtu/8As/8A0rZv/wBFrixPLQquFXdP8UdWGU69NSpbNfgz6L8e/syfs2/F TwWnw4+J/wCz
54H8SeHY9cn1qPQde8J2d5ZLqU8k8s16IJY2QXEklzcu8uN7NcSsSTIxPVW/ hjw3aeJLvxna
+HrGLWL+xt7K+1WO0Rbm5trd5nggklA3PHG9zcMiElUa4lIALtn89vB/xI+D n/CMfET4geOd
Z/bD1n4h6N8VPiCumyfDW3+IuqWW6y8T6tFp1vYQosnh2fy4ILaFbedWs90f lXKFRMteqeP/
APgp7/wqb/hC/hx4p8f/ALOh8Yah8K9C8WeJNe8X/HT/AIRTw3qv9o/aYlk8 PzvY30uo2/nW
N05ZxF5cM1k26UzOIueNela7sjplh6zfKrv8D61uPDHhu78SWnjO68PWMusW FjcWVjqslojX
NtbXDwvPBHKRuSOR7a3Z0BCu1vESCUXHD6f+x9+yTpPiTxR4z0r9lv4c22se N7G9svGmq2/g
iwS51+2vHD3kF7KId11HO4DSpKWWRhlgTXj3iD/gprpV1/wrDU/hx8PdDFj8 TfA+i+KdBtPi
N8QrXwxqWvxapkwaToMUsc1vq+sRqqia0e5tYonvtOBuNt0ZItz40/ttfEn4 cXPxU8Z+DfgZ
oeteAfgdv/4Wbq+p+OZrDWB5GjWmt3X9l2CadPDe7bC+t/L8+8tPMuBLE3lR qtw9OrQav+n9
dCFSrp2X5+f+Z6n8Zfhn408cf2bq3wt8ZaH4T8RW3nWE/i+88Hx6pqVno9zs a8t9OeSVEtbi
SSC0lWWZLq332kZltLgKoW94Y+CPwn8I/BLT/wBm/SvAtjL4G0zwrF4atvDO pob22fSY7YWq
2couC5uIzAojYSly653FsnPnXiz9sr/hGP8AhPv+Lcef/wAIP8cPCPw8/wCQ xt+2/wBuf8I3
/p3+pPl+R/wkP+p+bzPsf+sTzf3fK6P+3f8AFjxbYeX4U/ZmsYdQ134xa98O fh6PEHjwW9pr
d9o8+vG9vbiW2s7iWxs/smhymI+TLO927wNDHAkd9O3Oipa7/P0/ruCp1nDy +Xr+X3fee3/D
v4L/AA8+Ft/faz4U06+k1LU7HT7LUNY1rXLzVL64trKDyLWB7q9llmaNAZZN m/a09zdXDAzX
U8knVV8sfHT/AIKHeNP2b/8AhF/Anxz8AfCvwH418Sf2tcW83xB+OUekeE7q y0/+z/Mez1dt
Oe4muGbVLZFtprC3Ym1v23eXDBLdGoftZf8ADV/wD+EqfCzXv7Eh+MnxUvPB uq+IvCviL7VF
b2+kLrFzqx02+gETz297H4fvLO2v4jbTxxajDeoIpolhoVakm4rft/XqDo1W lKWz67/1sfU9
FeO/BTxP4k8O/tQ/Fb9nnV/EN9q+m2Fjonjbw7c6hdvLJpltrUup282lBpC8 kkcd5o15dxuz
7Y49TS0ijihs4g1L9qb4y/Gf4f8A7A3xq+Ntp4b/AOEK8YeEfA/jS+8Nf6Zb al5f9nx3/wDZ
mo8oYj58MFteeQ6t5fn+TIGKNm/aLlb9fwI9m3NR72/E9vor4S+KHxH/AGnf hL4O+Ht18Qfj
9+0z4Tj8a/GIaBqya14E8EeIPEdvp0PhnXNQD6daeF9J1CKSOa7t7USGSKaZ EtHYLBGXkfci
/wCCj3xP+HnwJ+FdxbfDK++JPib4k2PiHW/CmqjSdYEeqeEbDUIYtO1i6j8P aNqdxBeXlhqO
j3Tx/YLe3WS4uVf7G6xWj5LE09b3Xr8v8zT6tUduWzv2+f8AkfaNFfHnxC/4 K/8A/Cv9et9B
/wCHXX7Yet/aND0zUvtvh74J/abeP7bYQXn2Z3+1jFxB5/2eePH7ueGWPLbM kpvE0U7X/MFh
a7V0vyPsT4c/8pTfjJ/2b/8ADT/0+eO69/rwD4c/8pTfjJ/2b/8ADT/0+eO6 9/r4o+8Ciiig
AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKK
KKACiiigAooooAKKKKACiiigArw7/gnr/wAkF1//ALLj8Tv/AFO9er3GvDv+ Cev/ACQXX/8A
suPxO/8AU716voMN/wAktiv+v1D/ANIxJjL+PH0f5xPcaKKK+fNgooooAKKK KACiiigAoooo
AKKw/iR8Tvhr8G/Bd78SPi/8Q9D8KeHdN8v+0df8SatDY2Vr5kixR+ZPOyxp ukdEXcRlnVRy
QK8q/wCFY/8ADaP/ABUn7RXw8/4tf97wx8LPFWk/8h3+5quu2c6/R7TS5l/0 b5bm7T7b5EGl
epgst9vSeJxEnToJ2c7Xu9HywV4qUrNNrmSSd5NK14lOzstWH/J8X/ZDv/Vl /wD4P/8Ap3/7
Bn/IX9j8MeGPDXgnw1p3gzwZ4esdI0fSLGGy0nSdLtEt7aytokEcUEMUYCRx oiqqooCqqgAA
Cr1FTjsxnioKhSXJRj8ML3V+spPTmqS+1Oy6RiowjGESMOXV6vv/AF0/rcKK KK80sKKKKACi
iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPhD/gmV/yjc/Z8 /wCyH+E//TPa
14hrH/BEP4W6t8QbLV7n4/eMrzw5JpV5F4m0/WbqS51TWb+f7eft73glSFW3 3kTvE1o8dw1o
rTiVpZi/sn/BObXNF8Mf8EwfgR4l8S6xa6fp2n/AXwvc3+oX1wsUFtBHots7 yyO5CoiqCxYk
AAEk18/t/wAFgPiNc6naeOV+G3hK08KWemzHXtIi15NQuJ5YU1IXd7aahDMp lsLKeHTYbiWK
wuGYz3TWv2qOKJ5v0nK3j40W8O7aJP7tl5+m3kfmOYxwlSvy1lfVteWu78vX 0PuXwL4VHgXw
Ro3gkeItV1gaPpVvYjVtdvPtN9e+VEsfn3EpA82Z9u53wNzMTgZrzLw9+x/D 4R8dSaz4U/aJ
+I2meEZfFV14jl+Gen3mmw6S+o3N7JqNw5uksRqpjl1CWW6kg+3eS5ke3ZDa MbU9z8EfifYf
Gf4R+HfijYHTFOtaVFcXdvo2v2+qW1pdY23Fsl3bExXHkzCSIyIdpaM4x0rl P+G0f2ev+Fk/
8Kw/4SPXPtH9uf2L/wAJB/whGr/8I9/aXnfZ/sX9ufZf7M+0fav9D8r7Tv8A tn+iY+0fuq4a
yUZtVNHc66LlKF6eqt/T/wCCdV8HfhF4b+CPhK88GeFL6+uLW98Va7r8smoS o8gudW1a71S4
QFEUeWs95KsYwWEaoGZ2BY+WaP8AsB6H8PrDRrP4CftH/Eb4dyaN4Vs/C6XX h1NDvJLrQbCe
7l0nTZRqumXi+XYJe3MMMqKlxLHJm6mupFWQGifE79rb48Tax8Tf2d9e+HOk eE9C8VazoFp4
W8aeGr+51HxBc6PqVzp1476lbXyRaRHNd2lxDERZ6g0cKRXTrI8rWMO34h/b m+BPga/j0P4k
R+KtC1C2sbWfxWn/AAheoalY+EJJoI7hrfWdV0yG50zTJIYZY5pjNdrHFBJH cM/kSRzNjek0
r6Lo9vuZslWTdtW91v8Aeg+Lv7Gnhv4veG4Ph9e/Gr4jaZ4TufCq+GfF3hW3 8SJf23irRwjx
ta3supw3VzHJJFNcRy3tpNbXsyzZluHeG3eGl8WP2GPCnxW17xg5+NPjjQfD HxJx/wALP8B6
IdKOm+K91hBps/2iW6sJr6287T7a2tH+xXVttSESR+XOzzPt3f7a37Mlj8Z9 Q/Z+uPiXjxVo
+uWej67Zro161vpF7eW1tcWMV5diE29n9rW7gjtWmkRbucvbwGWeKSJOI+En /BTD4H/Eb4Wn
4ka54W8caVcTeOPEvh/T/DFl8NfEOo6xdxaRqctnJfrp8OnfbPs+37KZ5fIM VpcXa2c0ouFK
Ebw97Nr7+3/D7DisSldJ/d31/TfyNz4m/sHfDb4n/Em48f33xK8caVZ33jjQ PGeqeFdE1mGD
TdQ8Q6RNp7WuoXAMDTy5t9Ls7V7VpjZlIhMtul2qXa3dR/Yu8Cv8PLDwX4W+ IXirw/qWifEb
XfG/hnxdpktlJqOj6tq95qlxeNEl1azWksZj1jULVUnt5QsMwI/fIk6mu/tn /AnRbCy+JV58
YbG18Jp8OfFHivVbWfwrqDX0dpok9jFqEzkANZyWL3DwXGnzQG7M8oQLE9rP G97Qf21v2ZPE
3gvXviBovxL87S/Dv2VrmQ6NepLfxXchi0+40+FoRLqtvfTBobK4slniv5Va K1edwVBahzPa
/r8/+CK+I5Vvb0+X/A/AxL/9im5u/wCyfFVr+1h8VLbx9pX9oQn4l/adGuNS uLK++xfabH7J
c6bJpdtbsdM01tttZQsHs/M3eZc3j3G343/Zj/4ST4MaR8PtM+KWuN4n8M65 b+IPDfj/AMQy
fb7+LWorlrhriYIYcW9x5lxa3FpataxtYXlzZQfZYHRY6L/t7/sq6d8PNa+K XjP4iX3hHR/D
d9pdt4gbx94T1Tw7c6auo3iWVldT2up20E8VnNcM0S3jRi23QXGZQLecxmrf Hbx18Svixpnw
g/Z+Njp0jfDlvFviPW/GXhe98zR474S22hW0mmyy2U4kuLiG+nlUuJIY9Gmt pY4JL2CeI/c9
Nb+f9dt/IP3/AF0t5f1328/M6r4V/Br/AIQDxp41+JniHxJ/bfiLxtri3Fzf tZ+UthptvGIN
P0u3DPI6W8MYkmZDIUe8vtQuUSAXRhQvP2cPgxf/AAY8U/s93fg3f4P8af29 /wAJLpH9o3I+
2f21c3Vzqf70SebH5017ct8jr5fmYj2BVC4fw9/at8F61+yfcftV/FK1/wCE SsfDuh6ndfET
T/Mkv/8AhG73SXnh1mz8yGIG8+yXVpdwebChWfyN8QdXQnE/bn/bC/4Y58Ke C9f+w+B/+Kx8
cDw7/anxH+If/CL6Lpf/ABKtR1Dz7i/+x3ezd/Z/kInlfPJcRjcO9OVKMOZ7 f5/5iUa0p2W/
+X+Rt+Bv2NPgf4A17SvE9jN441i+0LXF1jRZ/GfxW8Q+IPsF6LC+0/zYV1O/ uBHutdSvI2VQ
FfzEZgWiiZDxd+xd+z14x82Wbw5rmjXEuuX2rJqHg/xvq+g3dvcXvlNfJBca bdQS29vdTQRX
NxaxMsFxdJ9qlje4JlPLaP8AtV/G3x7YaN4Q+Dvwl+HPijxzc+FbPxTr0dn8 WLkeF7HRL6e7
i0u4t9YTR3mv5LwWk8kaRWIiVba4Mk0f+i/a+V8K/wDBUT4W3vx01zwh4307 XND8K6f4H0rU
ZdRk8D6nd/8ACPaoNb8R6VrUGtX9ilxYadb2c2iqhupZUtv3V1MlzNAokSOb DpJWVn5F8mJb
bu7rz1PRfEP7CnwA16/jurO9+I3h61t7G1srDQvBHxp8U+H9JsLa3gjt4YLX TtM1KC0tY1ji
QbIYkUkFiCzEkr5Y/a2/4L+fBX9lv9ovxV+z9qt58Oba68L3yWlzF4013xnp Oo+Z5KOzPb2/
g+8hEZLFopYrmWOaExTK22QAFYyxGAjJptXNo4XMZRTipWP0K+HP/KU34yf9 m/8Aw0/9Pnju
vf68A+HP/KU34yf9m/8Aw0/9Pnjuvf6+RPtQooooAKKKKACiiigAooooAKKK KACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqXi PxHo3hPRptf1
+88i1g2hmEbO7uzBEjREBaSR3ZUSNAXd2VVBZgDFSpClBzm0kldt6JJbtvsV CE6s1CCu3okt
W29kkXaK5fw58UP+Et1mGy0H4eeKTp8m5Z9b1HSP7Pht5ApbY0N40V02flAe OF4yXA3fK+y7
4x0nx5q/2a28G+M7HRoG3rqMs2im6uSh2gNbuZljhkUbyGkimTJUlCFKtyxx 1Oth3Ww6dRJ2
XLZc22sXJxi1runbRpNtWOqWCqUcQqWIapt6+9d23+JRUpJ6bNX1Tas7m3Xh 3/BPX/kguv8A
/Zcfid/6nevV6t4O8H3/AIX+0z6v481vxBdXOxTdazJAvlxpu2okVtFDCvLu S4TzGyAzMqRh
PMP2B9V1PWPgbrt3q+oz3UqfGr4kwJLczM7LFF431yONAWJIVI0RFHRVUAYA Ar6TAVMRU4Vx
EpU+VOtRum1zJ8mIsrK6d1dt82jslzXuuSvTo08VywnzWTs0nZ7X3s99rrXf TY9qoooryBBR
RRQAUUUUAFFFFABXK/F/44fCb4CeGoPFfxe8d2OiWt7fLYaTFcOXudVv3R3i sLK2jDTX15KI
3EVrbpJPMy7Y0duKo/Gb9oDwX8FP7N0nU9J1zXvEWvecvhvwh4U0eS/1LVGj 2KzBExHbW6yT
W8Ul9dPBZW73UAnuIRKhND4QfCDxLY+JZ/jj8cb6x1P4ganYtZomnSvJp3hf TndJDpOmmREd
oy8cT3F26JNfTQxySJDDBZ2dn7GFy+lSoLGY5SVJ/ClpKpZ2fK2mlFNNSnZp NWSb0Wcptvlj
v+RR+G/w38afETxpZftB/tB6N9h1Sx8xvAngR7mOeLwhFLG0T3E7xM0VzrE0 MjxzXEbPFaxS
yWdo7o95eaj6rRRXHjcbVx1VSklFRVoxWkYRV2oxTbdrttttylJuUnKUpSdR iooKKKK4ygoo
ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPz7/ AGBPBPhf4l/8
Epfgr8OPG+li+0XxB+z14b03V7IyvGLi1n0K3ilj3IVZdyMwypBGcgg818ba p/wS5/4KC/8A
Cb2PgmPWdCTT9V0a8ub/AMU6XrtzLYaLebdX+z2gku7r7fM6C5jit7xreV7O LULhP9I2ytP9
vf8ABMr/AJRufs+f9kP8J/8Apnta5+H/AIKofsn3/jLR/Dmh6trV/pusWdrM viSDSxHBbTXc
GoXFlZyWkrpqDXN1Fp0r28Udq5nE9qY9wuYd/wCk5XiMXRoNUo8ysr3V0tNH 69vQ/McxoYat
XvUk07u1nZvXVenc9W/Zq+Edv8C/gV4a+GCaNp1hdWFh5usW2kX15c2n9pXD tcXrwy3sklw8
b3Us7qZXZ8MMmvmfw9/wTm+I2i/GWSLUtGsdX8Jv8Yrrx4viPUPj34xWOOSX xFJ4hSEeD4DH
pXmQzutvHKboxmSJL+SCVy9m/wBeeBfG3hf4l+CNG+I/gjVBfaL4g0q31LSL 0RPGLi1niWWK
Ta4Vl3IynDAEZwQDxWrXDXh7ao5VN7u/67/8OddCfsaaVPay/wCBt/wx4Fon wx/a2+A82sfD
L9nfQfhzq/hPXfFWs6/aeKfGniW/ttR8P3Osalc6jeI+m21i8Wrxw3d3cTRA XmntJC8Vq7Rv
E19Nw/xT/Y+/ahv/AAd8Z/gD4M1bwr4m8M/HuxMHif4h+L/E0threiST+GdP 8O3NwumWWlNa
alII9OW+AWewjkluWtwlukazN6n4n/bAh07xJqFp4A/Z2+I3jzw5oV9LZeJf HHguz02407Tb
m3crewJDLfRX2pSW21llTTrW7bzkltUEl3DNbR+qeGPE/hvxt4b0/wAZ+DPE Njq+j6vYxXul
arpl2lxbXttKgeKeKVCVkjdGVldSVZWBBINY8lOfups39pUpvmsv61PAvG37 InxJ8Sf8LN+w
63oaf8Jp+0X4F8faX5tzMPK03Rf+ER+1RS4iO24f+wLzy1XcjeZBudNz+Xw/ jn9gb4k3FtZ6
bqfwt+Ffxe8O6R448c6rafD74n6pNa6PqH/CRazHrcWrTKdM1BIdQ06STUNN iQQS+bb3ss4u
LYyyWZ+w6w/h78SPBfxU0G48T+AtZ+32Nrrmp6PPP9nki23unX8+n3kW2RVJ 8u6tp49wG1tm
5SylWLlRpt67/wDBv+Yo16qXkv8AK35Hxcf+CZHxtHwJ134OeH7H4c+GrW5+ Dvxe8LeH9L0X
U7kWOn3PjLUNM1W1t0RbCMRWdjPHfWW9E3PBbWs6wxtcPa23qn7VX7Efjr9o Dxj8SPEel+I7
G2tfE3hX4dQ6JbR65e6dcy33hnxNqmuSQSXdoom0+O4F1bW6XtuZJ7dmlmWJ mhjSX6LuNWv4
fElpoUfhi+ltbmxuJ5tZjkgFtayRvCqW8itKJjJKJXdCkbxhbaXzHjYxLKeI dWv9FsI7zTfD
F9q8j31rA1rp8kCyRxyzxxPcEzyxr5cKO00gDGQxxOI0lkKRulQppNf1tb8h /WKraf8AW9/z
R8leEf2B/irJ4Y1vVNZ8P6H4f8Rax44+Hd7NHe/GjxT44lk03w34ni1mQNqm tqrpuje7SGzh
tY0SUs8lxILnFr7D418G/EP4bftQ3H7RfgD4f33izTfE/wAORoHi3R9MvLOO +hudJlvb/R3t
Rdz28IjmOoatazF5Wbz5tLIWGFLydfYqKpUYxWn9b/5kOtOT1/rb/JHjvwd+ AnxY+HX7IF58
JrL4lWPh34j69Y67qupeK9J08ajY6N4o1m6u9Su7mzt7lU+0WcGoX0zW8M/z NBFEkrM29ze/
af8AgX8SfjHc/D7xT8IvifofhXxF8PPHEniLT7vxJ4Sm1qyuvM0bU9Kkgkt4 b6ycfu9TeRXW
YYaJQVYE1y3wL/bh8bftBeG/B3xB8GfsE/GK28J+N7HT9R0rxVqep+EEtotO vEjkivZYk197
lYxFIsjIsLTBQQIy/wAh99oiqc4WW2ndeg5OpCd3a+vZ77niF9+z3+0lb6rb /GLwh8e/A+nf
FG+0OHQvGetT/DK8uNA1vTba6vLmwVNMOsrcWlxbNe3CrKl+ySC6ufNikza/ ZPOfFf8AwTI8
SSTeMvCHw4/aAsdO8F/FL4cr4R+KVrr/AILfUNb1VZtS1+/1LUrS+hvra2sb y7l8R38mDYzW
0Muwx24iUW9fWtYfwy+JHgv4x/Dbw98XfhxrP9o+HfFWh2msaDqH2eSH7VZX MKTQS+XKqum6
N1ba6qwzggEEUOlSbs/zf9ev4hGtVirr8l8v+B+B+Nf/AAVE/wCDeX9ur/go T+3l8Q/2uPhn
4r+HPhfQfE99aQaZpHjTX7uPURHY2Nvp32h1sbS6hWOc2huIh5pkEM0XmpDL 5kMZX7YUVxzy
vC1JuUr3eu52wzbGU4KEbWWmwvw5/wCUpvxk/wCzf/hp/wCnzx3Xv9eAfDn/ AJSm/GT/ALN/
+Gn/AKfPHde/18ofYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAU
UUUAFFFFABRRRQAUUViaJ8S/hx4l8R3fg7w58QNE1DV9P8z7fpVlqsMtzbbH CP5kSsWTa5Cn
IGCQDzWVSvQpSjGcknJ2SbSu+y7v0NadCtVjKUItqOraTdl3fb5m3RXO+LfE /jnTdSTRPBnw
yn1WWaASJql5qtvaadE2WzHK4MlyrbV42W8ikugJUbmS94Sk8az6a9z47tNL tryScmOy0i4k
njt4wFAUzSJGZmJDPu8uMAOE2ts8x8oYynPEOjGMrrduMlH/AMCaUX/262/K ybWssJUhh1Wl
KNnsuaLl/wCApuS+aS+bSepRXL+I/g18PvGGszax4t06+1RLjb9o0nUdbu59 Ml2qFXdYPKbV
sbVYZi4cB/vjdW34c8M+HPB+jQ+HPCXh+x0vT7fd9nsNOtEghi3MWbaiAKuW ZmOByST3opTx
zryVSEVDWzUm29dLxcElpv7zs9NdwqwwSoxdOcnPS6cUktNbNTbeu3uq6102 Od1P4heObnUr
jR/BPwb1S7Mc7xQaxrN9b6fp0jISHJO6S7VcqyqwtWWQ7WU+U4lrqNTtJ7/T bixtdTnspZoH
jjvLZYzJAxBAkQSKyFlPI3Ky5HII4qeiijh6sOf2lWU+bp7qUd/h5UpW9ZSa stb3bKtelPl9
nSUeXrq29vi5m19yitXpayXIaZ8III9St9c8T/Efxfrl9aTpJbz3PiCSzjCq QyxvbaeLe2lX
dknzInZg21iyhVHX0UU8Ng8Ng4tUo2vu9233lJ3cn5ttk4jF4jFyTqyvbZbJ eSSskvJJIKKK
K6TnCvDv+Cev/JBdf/7Lj8Tv/U716vca8O/4J6/8kF1//suPxO/9TvXq+gw3 /JLYr/r9Q/8A
SMSYy/jx9H+cT3GiiivnzYKKKKACiiigArzj4v8A7RFh4C8SwfCXwB4TvvF/ xD1OxW40nwvp
9vOttbRyO6RXWq38cMsOkWbGK4YTT/vJ1s7lLSG8uIvszUfiT8dfGmpeNL34 H/s3+Cv7e8UW
vlweIPFN8Iz4f8FyzRrNEdR/fxT3dwbdvPTT7QNKwe1+0yafBewXhw/jL/xg v+xF8WvjF8Mv
+J54o8NeBte8YX+ueLf9IuPEetW2mvKLrUGg8nzN32aGLy4fJjhgiit7dIII YYo/pssyeH1i
hHEx5qlZxVOlzct3NrllUa96FN3Tt7s5xd4yjFqZjOpo7bLd/wCXn+X4Hc/B n4M/8K1/tLxf
4v8AEn/CS+OfEvkv4t8WyWf2f7V5W/yLO1g3v9j0+382UW9oHfZ5ssssk9zc XV1P3FfK3x3v
/jj+yr4Xg0y2/bu1zxZqnjXXPD2h2Nj440Hw6NY0yK/8UaJo1zq2l/2dY2cR +zQ6uxcXdteR
faJdPLbEWWC75T40/F39qz4Can44+Afgz9pe+8Q6xp198I7zw9448f8AhbS7 m5tm8TeNbnRL
60nt9Mt9PguLMW1gpVVWK5DXVxi6U+QYPYhwlmOfTjio4ylP2k4wTtVirc9G leKdGKVOm61O
NklaKahFqNjP28KS5eV6enm++7s/1PtSiviuX4u/tWfDfxL4uutT/aXvvEej /Cv4/wDgr4e2
dhq/hbS47nxPbeIH8Mm8utXntbeJGktk8ROtkunxWCxtZo119vDsoo+CP2hP 2h9Q8H6x+0fN
+1z/AG7/AMI7+1VcfDW5+GunaDpCabaabcfEFdBjh1J1ge+OoQ6fexXEMkVx aoUWwaW3n/fy
3gvD7MZ0I1oYmlKMpU4Ra9rrOrGM4R1pK14yg7y5YpySck7pH1uF7OL69umj 6n3FRXwf4h+P
n7e1t8R4/wBpfwp4/sb34Un4/wBr4Dl8PajrNjaxrbN4xj8KXJGlpoMt20iS mWSOb+3wssiJ
dNBFG50pL3h/4q/to+Lv7Ju7T9q77DcfE/44/E74Y+GYP+EF06W08KWmm/8A CXyaZquwqJb7
ULebQ7aP55ktZbU+XJbNcbr17qeHWY0cM69TFUFFXT96cuWUYSqThJRpycZw hBuUWl0Su3YX
1yDlZRf4d7X38z7ior5y+Df7V/jT9qL4lfD7wx4EtP8AhF5tB0O817456L5k d7/ZV6k2oaFH
4a86SKMT/wDE4s9Xk+32hK/8UztK+TqMLn6Nr5LNsoxuSYhYfFpRqWbcb3cf elG0ul2o88bN
pwlGSbUkdFOpGqrx2/r+vUKK+R/2I/j38ePHHiX4L678S/i1feJLX48fAC9+ I2paLqGlafBb
eFr+F/DrLZaU1pbQzfYyNeuEIvZLyfba22Jgwmabuf27vGn7e3hSw8L2/wCw t8GrHxddTXzX
niZdR1ix02OK2sp7W9NoLq6kkKyahBBd6ZGqWcqrJqCXL3Vmtpi49itwhjKG fU8rqV6MZT5r
VJT5KS5JThLmnUUbWlTlHVe80uXmur5rERdJzSenS1307ep7/RWH8Mb7xpqn w18Pan8SNO+x
+IrnQ7SXX7T7FHbeRetChnTyYrq7jixIWGxLm5VcYE8wAkbcr5etT9lVlC6d m1dap26p9U+h
sndXCiiisxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+eH7EHhHW/iB /wAEivhB4C8M
+NLvw3qWt/s4eH7DT/EVgGM+lzzaBBHHdR7XQ74mYOuGU5UYYdR+a2tr8dU1 gfAO++DPjCbX
fF+ga7qdh4W1+2ure+1y2lfWpZbu4sZb+W5LyGF5LhWM12ZbaAWMpjl/0v8A Un/gmV/yjc/Z
8/7If4T/APTPa16hqHxW+F2kfEKw+Emq/EnQLXxXqlo11pnhi41iBNQu4FEh aWK2LCSRAIpS
WVSB5b8/KcfpWV46WFocvJzXSfazS306dz8xzHC+3r8ynyu7Xqm9tTkf2NvC njHwd+zL4R0v
x94z8S69q1zYPqNze+MbSa31SIXc0l0lpcxT3NzJHJbpMlsVeaQjyMbjXxP4 e/Z/+J9z+1bJ
d+K/DVjZfEIfH261iLxZp/7LesXXiVvDi+KJLy3gPj59Ri0xbN9CEVrJDkvF YO+mrby3CC2f
9JaK8/Ex+s1HOXVt/f6W/wAvI7cNP6tT5I9kvu9b/wBdT5m+EXxSm/ZE0fxB 8CPH/wAIPiNr
fiO8+I3izX/DQ8F/D7UtU07XLbWvEGoarZImpxQ/YbGQfbVtZRqM9msM0Esj sto0N3L4f+03
8LpvFT/HT/hcf7K99q3x98VWKP8As8+KtD+HupeI4/DNy/hXTLezj07xMmni LRI4PEUepTJJ
cSWDQyO188cC3Alb7R8b/tN/s2/DP4k6R8GviR+0H4H8P+MPEH2f+wfCmt+L LO01LUvPmaCD
7PayyLLN5kyNGmxTudSoyQRXcVi6SnHlvov6+82jWdOXPbV/53+4+IPiD+zV qrfGf4u/tD6R
8JNcm8ar+1P8OW8HeIksbqS4tNANt4ItdYuNN6i3t5bUanbX1xbhRPBbSQ3L vHbBI/K/EH7F
vw28I+A9M+CfxI/Z41zwj8PNL+KnxL1PW2+HvwPh8T/8TK812C58OFNIbSdU srm3k0GdkGop
YyPZfYk08XdmzXNnP+mdFKWGhJt/1vcccVOKS7forf15n5fav8Fvjbe/sq63 8N9L+HnxG1yT
RP2Zvj94c0F9Y8D3NpczW2papol54Zso7eO0giikm0lrZIbG3hiW3a2mslgg kspraD2L4tfs
1ar8M/ib4u+H/wADPhJrlv4PuNc+BmuLHp1jdXMWpaxD8QrqXW9Vnmbe17qH 2G2sJr69laS4
aKGCW4kYKjV9o3Hifw3aeJLTwZdeIbGLWL+xuL2x0qS7Rbm5trd4UnnjiJ3P HG9zbq7gFUa4
iBILrm9QsNFdfL8LDeKn28/xufEHwH/Zq1X4cfEn4c/GLRfhJrmn+Ktc/an+ Jq+OPEEtjdG7
HhWebxrcWdvLJJk2+jy3Q0m7jtxstJLqaC5VGnn81/OfgB4C+Hngf4qfsg6V P+zd4q8N/FvT
/FT2Xxz8aXng+80e21zxGvgLxELt728nWGLxNeSXaXssepQfbkRftb/aohfr 9r/SWvOfD37K
vwe8O/FiT41hfFWqa99uur2yHib4ha1q9jplzcCRJJ7GwvruW00+Ty5ZoVe2 iiaOCeWFCsUr
oyeHtbl6Nfp/kCxN+bm6p/r+Gv4Hj3/BND9jTwx8I/2WPgh418QzfFTTfGGm /CvQl1jw74k+
K3ieSysb19JiiuLeTRru/azh8tnkVbc26rAyLsSMxrt8B/4J4/s//E/wv8Yf hLf+NPDVjo3j
/wAN2Mj/ABk1XQf2W9Y8O6prdz/Yt1bXketeMb3UfsniONtTmguHktEuWvby C2vEjEMclxD+
ktec/F39sH9kn9n3xJB4M+PX7Unw58Eaxc2K3ttpXi/xvYabcy2zO6LOsVxM jNGXjkUOBtLR
sM5U4boUoqN9Lf8AA/yFGvVm5JauXz7/AOZ8Cfs6/sveG9C+MPwv8V678OPi MfFmq30+nftM
+E9T+AaQ6JLbalot9Y31lLrg0JLrxPZjXLrTlZ7nVNUWeJDqNzJcJbSX8VK0 +DfxJ/Z6/YG8
cfBnRP2TfHEuueMP2INH+HumeG/BngSaXzPFmlx+K018TNEiwRYuNUS6W4kd RqnnO+ntfyyK
j/pl8OPib8NvjH4LsviP8IviFofirw7qPmf2fr3hvVob6yuvLkaKTy54WZH2 yI6NtJwyMp5B
FblRHCxto/6at/XmW8ZPm1Xb8Hf+vL7z+bb/AIL6fsL/ALbfxj/4K0/Fj4j/ AAi/Y6+Knirw
7qP9hf2fr3hv4e6lfWV15eg6dFJ5c8MDI+2RHRtpOGRlPIIor+kmiuSrlFOr UlNyerb+87aW
dVaVKMFBaJL7hfhz/wApTfjJ/wBm/wDw0/8AT547r3+vAPhz/wApTfjJ/wBm /wDw0/8AT547
r3+vmj6oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5 3xb8UvCHgvUk
0bVjqlzePAJmtdF8P3upSQxksqvKtpDIYlYq4UvtDmOQLnY2MMRicNhKftK8 1CPeTSX3s2oY
fEYqp7OjByl2Sbf3I6KiqXhzVb/W9Gh1TU/DN9o88u7fp2oyQNNDhiBuNvLL GcgBhtc8MM4O
QOd1PwT8Ute1K4lvfjXPpNms7nToPC+gWsMgjJOFuHvRdiZlAUBo1gGd5KnK hMquKqQpRqUq
Up83RcsWvVTlC3puuqNaWGhOrKFSrGFur5mn6OEZ39dn0Z19chqfx7+EWnal caHa+NINW1Kz
neK90jw3BLqt7bMhKuZbazWWWNVYbWZlCqxVSQWAPUaZp8Gk6bb6VayTvFbQ JFG1zcyTyFVA
ALySMzyNgcsxLE8kknNGmaZpui6bb6No2nwWlnaQJDa2ttEI44Y1AVURVACq AAABwAMUYiOP
nGPsJRi+vNFy+StKHnq/u7FCWBhKXtoykulmo/N3jPy0/HvD4juPEdro00/h LSrG+1Bdv2e1
1HUHtYX+Ybt0qRSsuF3EYRskAcZyMTw5pPxgm1mHVPGvjPRI7Fd0p0XQ9FkV w7KQIZLuaZ/P
jTcTuSG3d3RG+Rd8TdRRVVcIq1eNSU5Wja0VJxV073fLZy7NSbjb7O91SxTo 0ZU4wjd3u2k3
ZrZXul3TilK/Xa2X4t8D+CvH+mpo3jvwfpet2cU4mjtdX0+O5jSQBlDhZFID AMwz1wxHerum
aZpui6bb6No2nwWlnaQJDa2ttEI44Y1AVURVACqAAABwAMVPRWqoUI1nVUVz tWbsrtLo3vYy
detKkqTk+VapXdk31S2CiiitTIKKKKACiiigAooooAKKKKACvDv+Cev/ACQX X/8AsuPxO/8A
U716vca8O/4J6/8AJBdf/wCy4/E7/wBTvXq+gw3/ACS2K/6/UP8A0jEmMv48 fR/nE9xooor5
82CiisPwn8SPBfjnX/E/hjwtrP2q+8G65Ho/iSD7NIn2O9ewtNQWLc6gSZtb 61k3IWX97tJ3
K6rpCjVqRlKEW1FXbS2V0rvsrtK76tLdoTaRuV454n+L/wARPjV4l1H4R/s1 WN9YafaX02ne
JfjI8VnLp2kTQOY72y0yGV3fUNUifEIdoG0+2m88TSTz2M2ly0f+E98aftg/ 8U98Jodc8N/C
25/eX/xQtr+O2uPF9keBB4feCY3NvbysJA+rSLAxgCSaaZvtkOp2fsfhjwx4 a8E+GtO8GeDP
D1jpGj6RYw2Wk6TpdolvbWVtEgjighijASONEVVVFAVVUAAAV7nsaWRa4iEZ 4jpB6qn51Fez
mn/y6ldRaaqxesDO7q7PTv39PLz+4o/Df4b+C/hH4Lsvh98PtG+w6XY+Y0cb 3Mk8s0ssjTT3
E88zNLc3E00kk01xKzyzSyySyO7uzHcoorw61WriKsqtWTlKTbbbu23q229W 29W2aJJKyPOP
AH7Hf7I3wn8NeI/Bnws/ZZ+HHhrR/GFj9i8W6T4f8D2Fnba3bbJY/IvIoYVS 5j2TzLskDLtm
kGMM2b/gL9mL9mv4VeC3+G/wv/Z68DeG/DsmuW+tSaBoHhOzs7JtSgkglgvT BDGsZuI5La2d
Jsb1a3iYEGNSO4oruq5zm9dydXEVJczUnecneUVaLd3q4pJJvVJaEqnTWyRh 3fwx+Gt//aH2
74eaHP8A2trlnrWq+dpMLfbNStPs32W9lyv7y4h+xWflzNl4/skG0jyk2+cf BD9iP4IfCXXI
/iJrvw/8K+IvHVl4q8U6rovj678JWyatpltrOuapqrWMF02+aOOIarPAdsir IGkbYnmsg9jo
oo5xmlDCTw1OtJQnbmSe9ouCV97csnFq9mrJp2Vh04OSk1qjzjxP+x3+yN42 +Imo/F7xn+yz
8ONX8WavYzWWreKNU8D2FxqN7bS2ZsZYJrmSEyyRvaM1syMxVoWMZBQ7a3dc +FPhqLw0bX4e
+E/Cuk6xp19qOseFb++8MJc22la5eJdiXUvIieF2kke9ummMcsUsy3VwplUz O1dVRUzzbM6k
YRqVpSUElFSk5JJJpRSd1y2bVrWs2rWYezgr2W5w/wACvgz/AMKh0nW9R1zx J/bnirxjrn9u
+OPECWf2WLUdSNrbWYaC2DuLW3itbO0toYt8jiK2jM0txO01xL3FFFc+KxVf G13WrO8n6JJJ
WSSVkopJKMUkopJJJJIqMVFWR85fAn9iP4lfA/8A4R/7L8dND1H/AIVh8Kr3 wB8GPM8DTRf2
bps/9nbZtaxqJ/te4X+xtNy1t/ZqNi6+RfOj+z+/6Tb+JYb/AFSTXdWsbm1l vlfRYbTTngkt
bbyIVaOd2mcXEhnWeQSKsSiOSOPyy0bSy3qK7szzvMs5re1xclKWuvJCO8uZ 25Yq15Xk2tW5
Se8pXiFKFNWiFFFFeSaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAfnh+xBqHxC
0j/gkV8INV+EmhWmqeK7X9nDw/L4Y0y/kCQXeoLoEBtoZGLoFR5Qisd6YBPz L1H5gr8UfAXh
7wheeE7PW7Gzlto50t7bS50njs5IE1qKzs7a2XUZ7a4geO8kVLVjcxaxHqN3 cXNwXYG6/V7/
AIJlf8o3P2fP+yH+E/8A0z2tas/7CP7IU/jfSfH6fATQ7e70PQ7rRtNsLKN4 NMSxuReCeBtO
jZbSVZBf3u7fExP2l8nmv0zKcbQwuHcakW7pPS3RbO/T5H5fmWGr1sRzU2tG 1r5vdeY79hib
xjL+yR4Fi8beFtF0ae30UW2maf4d1BbuyXSopHj06SKZbu7EoexS2kLfaJsl z85r5q8PftNf
to+J/iNJ8U9N0v4jReH4vj7deDGi1C68B2ngA6Tb+MZPDryBp7hPELXhtY2e NA5MuplFjie2
dLdvuPQ9D0Xwxotn4a8NaPa6fp2n2sdtYWFjbrFBbQRqESKNEAVEVQFCgAAA ACuR/wCGZP2b
f+Fz/wDDR/8Awz54H/4WH/0Pv/CJ2f8AbX/Ht9l/4/fL8/8A49/3P3/9X8n3 eK87Fc1eq5xd
rtvTzfz27fid2FcKFJQkr2SWuu33b9/wPLP2XP8AhW3/AAz18X/+Ggf7D+z/ APC1PiD/AMLT
/wCEy8nZ/Zv9r332T+1ftPH2f/hHv7L8v7R8n9m/Y9v+j+VXlfj34x/Gey+C nx7/AGgfhF+0
B448O6N+zroY/wCEL8D6po9tLF4ht7PwXpPiGP8At9tbsptZa4mlv3t7jbdW s/lRID5VyJZ3
+p/G/wCzJ+zb8TPiTpHxl+JH7PngfxB4w8P/AGf+wfFet+E7O71LTfImaeD7 PdSxtLD5cztI
mxhtdiwwSTR43/Zk/Zt+JnxJ0j4y/Ej9nzwP4g8YeH/s/wDYPivW/Cdnd6lp vkTNPB9nupY2
lh8uZ2kTYw2uxYYJJrB0qnKkuhvGrTU3Jq9/6/4B86eNvjj+034e+M/xN8fW /wAb/wDilfA3
7RfgXwLoXgJfDVkLe5stdtvCMF815dFDcS+U2tz3NqIXt2jnD+e93A0dtD5X 8Fh+1zo/w60f
9mz9nP8AaI1y98T+Ifip8YvEN3qmvXOiaTK1lpXjZ9PlUXw8P6jAnmXGoLdP b/2YzSy3MrR3
llBax2Vx993fwy+G1/8A2h9u+Huhzf2trlnrWqebpMLfbNStPs32W9lyv7y4 h+xWflytl4/s
kG0jyk24fxI/Zk/Zt+MelXug/F39nzwP4qsdR1yPWtQsvEnhOzvorrUo7VbO O9kSaNg9wtqi
W6ysC4iRYwdoApSoTcrqX4vvf8tCo16aSTj26Lorfndnxd4l/be/a/0L9mvU /EGu+NbHTvFn
hz4BfHe8v59PtrW9jl17whr1hpOmagZZLOFZpFTz3k229vbzyTu32SJBHDF3 Hxo+NX7X/wAG
tT8b/BjSv2hbHVfE1tffCTUdL8Wax4KtTbafP4n8a3OjahYx2MDRF9LSCxHk xSzyXyLczBtQ
kfypYvpmx/Zk/Zt0vSrjQdM/Z88D29jeaHNot3ZQeE7NIp9NmtbOzlsnQR4a 3e107T7doiNj
RWNtGQVhjC7ms/DL4beI9Vn17xD8PdDv766/s37Te3ukwyyzf2ddPeafudlJ b7NdSSXEOT+5
ldpE2sSaFRq21l+L7W/PUPb0r6R69l3v+Wh8lS/Fv9qr4ceJPF11qf7St94j 0f4WfH3wX8Pr
Sx1fwtpcdz4ntvED+GTeXWrz21vErSW6eIXFmunxWCxtaI119uDsow/D37TX 7aPif4jSfFPT
dL+I0Xh+L4+3XgxotQuvAdp4AOk2/jGTw68gae4TxC14bWNnjQOTLqZRY4nt nS3b7Ru/hl8N
r/8AtD7d8PdDm/tbXLPWtU83SYW+2alafZvst7Llf3lxD9is/LlbLx/ZINpH lJtw/wDhmT9m
3/hc/wDw0f8A8M+eB/8AhYf/AEPv/CJ2f9tf8e32X/j98vz/APj3/c/f/wBX 8n3eKHRqX0k/
v/4fp0Eq9O2sVf0/4br1Pmb4c/Fv9qrxH4l8M6r4o/aVvm0/4k/H34j/AA10 /StM8LaXAvh3
S9NfxbLY6jFJJbytcapC+hwRLJLmza2YJLZSzh7uTyv/AIJoeCv2oWsPA1n8 Dfj94V06Rf2L
vhDPqt18Q/h1Lrck0c0/iqW2t4Bp+o6WsEdujNCC6zSSRrEXcyLJJL+hNp8M vhtYf2f9h+Hu
hw/2Trl5rWl+VpMK/Y9Su/tP2q9iwv7u4m+23nmSrh5Ptc+4nzX3Hhb4ZfDb wPqt/r3gr4e6
Ho99quf7TvdL0mG3lvM3V1eHzXjUGTN1fXtwdxP728uJPvSuWSw8uZNvbzfZ fqDxCUZJLfyX
d/ofLHx9+K37YV/+0k/7Pfg64+Kl7/wi3wr8Oa7rWr/APSvBdn9s1LUbzWLa 4a6i8YXE/lW/
/EpRraK1d3j8y5FxLL+4K4eo/Fn/AIKBftP/APCDeHvgZ8RtD8PeIoPgf4U8 Y+P7bwx4s0qw
0173W/tyg2moXGieJU1G3EmmXIjWFbZYk2yfadQFyos/qf4y/syfs2/tGf2b /wANCfs+eB/H
f9jed/ZH/CZ+E7PVPsPm7PN8n7TG/lb/ACo923G7y0znaMHxl/Zk/Zt/aM/s 3/hoT9nzwP47
/sbzv7I/4TPwnZ6p9h83Z5vk/aY38rf5Ue7bjd5aZztGG6NRt2k/v/q343CN akkrxX3f8HX8
LHj3wF8M/H/9rr9nz4dftRXn7bXxG8CXXxB+HPh/X7/wl4I0Pws2k6dc3WmW 00yWv9p6NeXY
jMjO+JriVgXIDBQFBX0X4e8MeG/CNhJpXhTw9Y6Zay311ey22n2iQxvc3M8l xcTlUABklnll
lkf7zySO7EsxJK0VJWV27+r/AMzJ1XfRK3ov8i/8Of8AlKb8ZP8As3/4af8A p88d17/XgHw5
/wCUpvxk/wCzf/hp/wCnzx3Xv9fEH35+Xnx4t18a/tqftCah8Tv2kvipoWm6 D8VNB0Dw7ZaJ
8ePEnh3TbNLnwp4ZkitYbaw1G3t1ea+v5MAJvlmucZZmAqT/AIZ30v8A6OA/ aA/8Se8c/wDy
4rzP/gohBr9z8V/2lbbwpqdnZapJ+1n8K10281Gxe6t4Lg2fw8EcksKSxNMi tgtGskZYAgOh
O4eZ+P7H4wfET43+BPhPqv7TXjC2n8AftH3nh7TvFdlpehDUr6Kf4cXOsC5u VfTWtTPE13c2
qeVbxxm3lO+OSdUuF/z78RMz43rccZp9Tz2vh6dKrX9xVq6jCFKlSmnGMNEn Kai0tVfmUWkz
9vyLD5RDJ8N7XBwqSlGGvJBtuUpLVvW6Svrp0utD6Y/4Z30v/o4D9oD/AMSe 8c//AC4o/wCG
d9L/AOjgP2gP/EnvHP8A8uK+T/2D734weMvCfwy/Zq0/9snWPC+naf8AsseB PFWn2OmaNoT6
3cy3UmpwzeU91Zyx/YYIksrdwbZ5MrZMbhHac3fsF58evix4m/4J/aF+0ppX iv8Asvxr8TPh
v4WsvDlpaWMB0vRPE2uGG1tb1VlSSXyBe6nbGZZXuAsFopSJn8wTfn+aZp4o 5dmjwceIa837
SFNP6xiVrUb9m3fS0km3yuXLZpu9k/bw2H4cr4f2rwMF7rl8FN/D8S07Npa2 ve+x3GifDn4W
+Jf7I/4Rz9rj40ah/wAJDo7atoH2L9rDxpL/AGlp6+Ruu7fbrR86AfabbMqZ QfaIufnXOx/w
zvpf/RwH7QH/AIk945/+XFfP+tf8Wc+LDfEP4Xf8S74ffs6/8Iz8N20G5+b7 LpN7Bay6zO9z
J5jR2NvZ3vhjUHupmaRf+Ecu4yYIp5riXm4f2q/24vHHg1dP0Twb4k0DxZ4Q s7z4keItEfwu
lxea5o32TT9TsvBxge0VrR7htUvNHi1BFad5vCt46xPK08Vv0RzDxPxvLUwW f4j2bSbdTFVo
8vMueKa5ntTlS5uW6U6iim0pNZuhw7RvGtgqfNrZRpxd7aPp/MpWvbSN3bS/ 1J/wzvpf/RwH
7QH/AIk945/+XFH/AAzvpf8A0cB+0B/4k945/wDlxXznd/tL/tSfHbX9U+DH wj8SXng24+I3
iQ3vwz+JEWgW+q2+h+HbV9UgmvYLeSFYtTtZzodjP9paQLGPG9gociO1a6p2 /wC3L+0v8UN/
/CMfDXWPCf8AwsLR9N8MeEPMslvP+EX8TH+yf7Suh5lqv2+e0/tzUfOspNoj /wCEE1Hf5e+6
+yRHEeMTlyPPaymrOUXi63up21b5uV6qqmoylJexqXSTpOpTp8KpX+pwt0fs oa/hf+XdJe/H
X4uX6Y/4Z30v/o4D9oD/AMSe8c//AC4o/wCGd9L/AOjgP2gP/EnvHP8A8uK8 7/bB+KHxt0n4
veBPgt8ILPx40ev+G9f1vU7j4ZR+HDq6HT7jSYIlLeIm+xi1b+0pDIFU3BkS 32FUEwbm/h78
TP2jPjNd/Dv4NeJPinrHgbUdU0fxzqGs654fHh++1l/7C16w0uzt7pxFfaYk 8lvfGS9S3jGy
7h2Rm3RJID52Hz7xSxGWUcd/rDWjGpzOzxdfnjGKqtylCLclH9zOzSevLpqb 1MFw5DETo/UY
txtr7KFm3y6JtJX99duvY9Q1b4c/C3QdSm0bXP2uPjRZXlv9g+0Wl3+1h40j li+3XLWtluVt
aBX7RcI8MOR+9kRkTcwIrY/4Z30v/o4D9oD/AMSe8c//AC4r5z1v4i+Ofh58 c/GGr+HfjLZ+
JtUhs/hD4bvvFFnYWoN3bzfETX9KvIJ4490K3QgkmtrholiAuFmaOK2IWKK5 4Q+N/wAcr7wt
qnx5l/ac/tn+wv2j5/AM/gGx0XS10+20+bxuuixxX7LC14b6Kxu454njntkK LZGSCb99Jdej
WzLxP9mp0c/xFuanTTliMSuadSnTmkkl7qbnZSm49FJRe+EMPw7zWlgqe0pa U6eijKSbv12v
ZX8rn0B/wzvpf/RwH7QH/iT3jn/5cUf8M76X/wBHAftAf+JPeOf/AJcV5f8A D74sfGCP9peC
z+IfxE1g6F4h8Ya3oWgJY2ehX3hPUGtVvpYrGymtZBq9pqkMFhI1298HtBPZ 6lBGgMlmyfR9
fMZtxr4mZRWhTqZ5iZc0VK8cTXa3aau5LVNNStdJpq900vQw2UcPYqDlHB01 Z21pw8nfZ6NP
T7zzT9hz9qL44fsufGf4yWHiLx348+I/wq0L4mWmm33h7xHr+o+Jdc8N27+G dCvG1HTLi8kn
vb1BNdztcaa0kjPGRJYqs8TWmpfpOfi58P7jwJpPxP8AD2tSeIPD+vW0Fzou reEtPn1iG+tp
4vNhuIjYpLvhePDLKMoQy4b5lz+XEvwH/ac8I/FPx543+C3x88B6XpfjrxJb a3caV4o+F97q
lxaXEek6fprKtxBrVorIy6ekgBiBBkYZYAV6p/wTC8QftQ/Bb9ta7/Zo+I/x Y8H6/wCCvH3w
/wDEPjW30Pw14Gu9Ii0TWrDVNHhuZ7YT6ne7Vvv7aea4iXZGbi3+0KqzXN5J cf1n4I+MeLz3
G0uG8fjI1qtSnD2M3GrKopwoqVWFVuMVPWM5KftLtpq8k42/NeLOFaGChLMK dFxhGT54pxSa
cmouPxcu6VuW3kr
Re: eContainer() [message #43703 is a reply to message #43634] Tue, 20 November 2007 12:44 Go to previous message
Eclipse User
Originally posted by: cdamus.ca.ibm.com

Hi, Philipp,

Cool! I'm glad it's working for you.

I look forward to your contribution, if you should get the opportunity. It
sure would be nice not to have to introduce artificial dependencies on
Ecore into the metamodel.

This is one of those cases where UML2's package merge capability is so
useful, to merge in implementation specifics such as generalization
relationships to EObject into a more abstract metamodel. :-)

cW


Philipp W. Kutter wrote:

> Hi, Christian.
> I tried what you tell me below, in your example from the
> tutorial and it works perfect.y.
>
>
> The only thing I changed is, I added a class Industry,
> which has a containment reference "company" to Company. Both Industry
> and Company inherit explicitly from EObject as you said.
>
> Then I add a derived reference "industry", and I add a "derive" OCL
> as in your example, with the following definition:
>
> eContainer().oclAsType(Industry)
>
> (see as well the screenshot)
>
>
> One of my developers looked into the API and we will communicate, if we
> have a more elegant solution.
>
> Best, and thanks, Philipp
>

-----8<-----
Previous Topic:Defining EOpposites on subclasses
Next Topic:Re: UMLEnvironmentFactory.EvaluationMode unresolved in OCL Console example
Goto Forum:
  


Current Time: Mon Sep 22 18:17:58 GMT 2014

Powered by FUDForum. Page generated in 0.02126 seconds
.:: Contact :: Home ::.

Powered by: FUDforum 3.0.2.
Copyright ©2001-2010 FUDforum Bulletin Board Software