
© 2006 by IBM; made available under the EPL v1.0 | October 25, 2006

Nick Boldt and Marcelo Paternostro
IBM Rational Software
Toronto, Canada
EMF Project

OOPSLA'06 Tutorial T38
Introduction to the Eclipse Modeling Framework

Copyright is held by the author/owner(s).
OOPSLA'06, October 22–26, 2006, Portland, Oregon,

USA.
2006 ACM 06/0010.

2 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

3 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Demo

 Using EMF to quickly generate a working graphical editor to
create and manipulate instances of a UML model

4 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

5 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

What is EMF?

 A modeling & data integration framework
 Exploits the facilities offered in Eclipse to...

 Generate code without losing user customizations (merge)
 Automate important tasks (such as registering the runtime

information)
 Improve extensibility
 Provide a UI layer

 What is an EMF “model”?
 Specification of your application’s data

 Object attributes
 Relationships (associations) between objects
 Operations available on each object
 Simple constraints (eg. cardinality) on objects and relationships

 Essentially it represents the class diagram of the application

6 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

What does EMF Provide?

 From a model specification, EMF can generate efficient, correct,
and easily customizable implementation code

 Out of the box, EMF provides support for
 Java™ interfaces
 UML
 XML Schema

 EMF converts your models to Ecore (EMF metamodel)
 Tooling support within the Eclipse framework (UI, headless

mode, Ant and standalone), including support for generating
Eclipse-based and RCP editors

 Reflective API and dynamic model definition
 Persistence API with out of box support for XML/XMI

(de)serialization of instances of a model
 And much more….

7 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Why EMF?

 EMF is middle ground in the modeling vs. programming worlds
 Focus is on class diagram subset of UML modeling (object model)
 Transforms models into Java code
 Provides the infrastructure to use models effectively in your

application
 Very low cost of entry

 EMF is free and open source
 Full scale graphical modeling tool not required
 Reuses your knowledge of UML, XML Schema, or Java

 It’s real, proven technology (since 2002)

8 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF History

 First version was released in June, 2002
 Originally based on MOF (Meta Object Facility)

 From OMG (Object Management Group)
 Abstract language and framework for specifying, constructing, and

managing technology neutral metamodels
 EMF evolved based on experience supporting a large set of tools

 Efficient Java implementation of a practical subset of the MOF API
 2003: EMOF defined (Essential MOF)

 Part of OMG’s MOF 2 specification; UML2 based
 EMF is approximately the same functionality

 Significant contributor to the spec; adapting to it

9 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Who is Using EMF Today?
 Eclipse projects

 UML2
 Graphical Modeling

Framework (GMF)
 EMF Technologies (EMFT):

OCL, Validation, Query,
Transaction, EODM, and
Database Persistence

 Visual Editor (VE)
 Data Tools Platform (DTP)
 Web Tools Platform (WTP)
 Test and Performance

Tools Platform (TPTP)
 Business Intelligence and

Reporting Tools (BIRT)
… to name but a few

 Commercial offerings
 IBM, Borland, Oracle, Omondo, Versata, MetaMatrix, Bosch, Ensemble, ...

 Applied sciences
 Darmstadt University of Technology, Mayo Clinic College of Medicine,

European Space Agency, …

 Large open source community
 Over 770,000 download requests from January to July 2006
 In first month of its release, over 100,000 download requests for EMF 2.2.0!

10 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF at IBM

 Pervasive usage across product lines
 IBM® Rational® Software Architect
 IBM Rational Application Developer for WebSphere Software
 IBM WebSphere® Integration Developer
 IBM WebSphere Application Server
 IBM Lotus® Workplace

 Emerging technology projects: alphaWorks
 Emfatic Language for EMF Development

(http://www.alphaworks.ibm.com/tech/emfatic)
 Model Transformation Framework

(http://www.alphaworks.ibm.com/tech/mtf)
 XML Forms Generator (http://www.alphaworks.ibm.com/tech/xfg)

11 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

What Have People Said About EMF?
 EMF represents the core subset that's left when the non-essentials are eliminated. It represents a

rock solid foundation upon which the more ambitious extensions of UML and MDA can be built.
– Vlad Varnica, OMONDO Business Development Director, 2002

 EMF provides the glue between the modeling and programming worlds, offering an
infrastructure to use models effectively in code by integrating UML, XML and Java. EMF thus fits well
into [the] Model-Driven Development approach, and is critically important for Model-Driven
Architecture, which underpins service-oriented architectures [SOA].

– Jason Bloomberg, Senior analyst for XML & Web services, ZapThink, 2003

 EMF is capable of creating sophisticated editors from abstract business models. … EMF creates
feature complete implementations including persistence, business model implementation, editing
framework and editors. … At InferData, we have been using EMF [to] create persistence
implementation for various in-house products, … standalone products for the Eclipse platform,
[and] quick prototypes to validate complex business models. Business models remain technology
independent; code generation is performed for all that can be code generated and kept separate
from the manually developed code.

– Petter Graff, SYS-CON Media, 2004

 EMF was chosen because it (a) provides a lightweight, pragmatic approach to modeling with
very low entry cost and is thus suitable for rapid prototyping, (b) unifies key technologies such as
Java and XML, and (c) integrates well into Eclipse.

– Bruch, Bockisch, Schäfer, Mezini, Darmstadt Univ. of Technology, Germany, 2005

 [As] a consultant with fiduciary responsibility to my customers, [...] given the enormous traction that
Eclipse has gathered, we have to view the EMF metadata management framework as the de facto
standard.

– David Frankel, as seen in Business Process Trends, March 2005

12 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Creating the Ecore Model

 Representing the modeled domain in Ecore is the first step in
using EMF

 Ecore can be created
 Directly using the EMF editors
 Through a graphical UI provided by external contributions
 By converting a model specification for which a Model Importer is

available
 Model Importers available in EMF

 Java Interfaces
 UML models expressed in Rational Rose® files
 XML Schema

 Choose the one matching your perspective or skills

13 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Importers Available in EMF

 Java Interfaces

public interface PurchaseOrder
{
 String getShipTo();
 void setShipTo(String value);
 String getBillTo();
 void setBillTo(String value);
 List getItems(); // List of Item
}

public interface Item
{
 String getProductName();
 void setProductName(String value);
 int getQuantity();
 void setQuantity(int value)
 float getPrice();
 void setPrice(float value);
}

14 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Importers Available in EMF

 UML Class Diagram

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

15 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Importers Available in EMF

 XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/SimplePO"
 xmlns:PO="http://www.example.com/SimplePO">
 <xsd:complexType name="PurchaseOrder">
 <xsd:sequence>
 <xsd:element name="shipTo" type="xsd:string"/>
 <xsd:element name="billTo" type="xsd:string"/>
 <xsd:element name="items" type="PO:Item"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:int"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

16 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Unifying Java, XML and UML Technologies

 The Model Importers available in EMF were carefully chosen to
integrate today’s most important technologies

 All three forms provide the same information
 Different visualization/representation
 The application’s “model” of the structure

 From a model definition, EMF can generate
 Java implementation code, including UI
 XML Schemas
 Eclipse projects and plug-in

17 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Typical EMF Usage Scenario

 Create an Ecore model that represents the domain you are working on
 Import UML (e.g. Rose .mdl file)
 Import XML Schema
 Import annotated Java interfaces
 Create Ecore model directly using EMF's Ecore editor or a graphical editor

 Generate Java code for model
 Prime the model with instance data using generated EMF model editor
 Iteratively refine model (and regenerate code) and develop Java

application
 You will use the EMF generated code to implement the use cases of your

application
 Optionally, use EMF.Edit to build customized user interface

18 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

19 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF Components

 EMF Core
 Ecore metamodel
 Model change notification & validation
 Persistence and serialization
 Reflection API
 Runtime support for generated models

 EMF Edit
 Helps integrate models with a rich user interface
 Used to build editors and viewers for your model
 Includes default reflective model editor

 EMF Codegen
 Code generator for core and edit based components
 Extensible model importer framework

20 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF Tools: Model Import and Generation

Generator Features:
 Customizable

JSP-like
templates (JET)

 JDT-integrated,
command-line, or
Ant

 Fully supports
regeneration and
merge

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Java
editor* * Eclipse IDE-integrated

or RCP-based

Java
model

21 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF Model Importers

 UML
 Rational Rose .mdl file
 Eclipse UML2 project provides importer for .uml2

 Annotated Java
 Java interfaces representing modeled classes
 Javadoc annotations using @model tags to express model

properties not captured by method declarations
 Lowest cost approach

 XML Schema
 Describes the data of the modeled domain
 Provides richer description of the data, which EMF exploits

 Ecore model (*.ecore file)
 Just creates the generator model (discussed later)
 Also handles EMOF (*.emof)

22 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Ecore Model Creation

 An Ecore model is created within an Eclipse project via a wizard
 Input: one of the model specifications from the previous slide
 Output:

 modelname.ecore
 Ecore model file in XMI format
 Canonical form of the model

 modelname.genmodel
 A “generator model” for specifying generator options
 Decorates .ecore file
 EMF code generator is an EMF .genmodel editor
 Automatically kept in synch with .ecore file

23 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Ecore Model Editor

 A generated (and customized)
EMF editor for the Ecore model

 Create, delete, etc. model
elements (EClass, EAttribute,
EReference, etc.) using pop-up
actions in the editor's tree

 Set names, etc. in the Properties
view

24 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Ecore Model Editor

 A graphical editor is a better approach
 GMF Ecore Diagram Example (http://www.eclipse.org/gmf/)
 Omondo EclipseUML (http://www.omondo.com/)

25 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF Generator

 Similar layout to Ecore model
editor

 Automatically keeps in synch
with .ecore changes

 Generate code with pop-up
menu actions

 Generate Model Code
 Generate Edit Code
 Generate Editor Code
 Generate Test Code
 Generate All

 Code generation options in
Properties view

 Generator > Reload to reload
.genmodel and .ecore files
from original model form

26 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

27 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

The Ecore (Meta) Model

 Ecore is EMF's model of a model
 Also called a “metamodel”
 Persistent representation is XMI

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

28 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

The Ecore Metamodel

 EObject is the root of every model object – equivalent to java.lang.Object

29 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

The Ecore Metamodel

30 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Partial List of Ecore Data Types

 Ecore data types are serializable and custom data types are supported

java.lang.FloatEFloatObject
java.lang.ObjectEJavaObject

java.lang.BooleanEBooleanObject
byte[]EByteArray
java.lang.StringEString
floatEFloat
charEChar
booleanEBoolean

Java Primitive Type or
Class

Ecore Data Type

31 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Ecore Model for Purchase Orders

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

is represented in Ecore as

32 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Purchase Order Ecore XMI

 Alternate serialization format is EMOF (Essential MOF) XMI
 Part of OMG Meta Object Facility (MOF) 2.0 standard

(http://www.omg.org/docs/ptc/04-10-15.pdf)

<eClassifiers xsi:type="ecore:EClass"
 name="PurchaseOrder">
 <eReferences name="items" eType="#//Item"
 upperBound="-1" containment="true"/>
 <eAttributes name="shipTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
 <eAttributes name="billTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
</eClassifiers>

33 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

UML Constructs Available in Ecore

 Classes, Abstract Classes, and Interfaces

 Attributes and Operations

ClassOrInterfaceName
attribute1 : type1
attribute2 : type2 = initval
<<0..*>> attribute3 : type3

operation1(arg1 : type1) : return1
operation2(arg1 : type1, arg2 : type2) : return2

34 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

UML Constructs Available in Ecore

 References (Associations)
 One-way

ClassBClassA

1

ClassA ClassB

0..1

roleB1

1

roleB2

0..1

ClassA ClassB

0..*0..*

roleB3

35 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

UML Constructs Available in Ecore

 References (Associations)
 Bidirectional

 Containment

ClassBClassA

0..*0..*

ClassBClassA

0..*0..*

roleA roleB2

roleB1

ClassA ClassB

0..*1 0..*

roleBroleA

1

36 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

UML Constructs Available in Ecore

 Class Inheritance

 Enumerations and Data Types

ClassB

ClassA ClassC

ClassB

ClassA

<<extend>>

EnumName
literal1
literal2
literal3 = 5

<<enumeration>>

DataTypeName
<<javaclass>> JavaClass1

<<datatype>>

37 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

38 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Code Generation

 EMF framework is lightweight
 Generated code is clean, simple, efficient

 EMF can generate
 Model implementation
 UI-independent edit support
 Editor and views for Eclipse IDE-integrated or RCP application
 JUnit test skeletons
 Manifests, plug-in classes, properties, icons, etc.

39 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Generated Model Code

 Interface and implementation for each modeled class
 Includes get/set accessors for attributes and references

 Usage example

public interface PurchaseOrder extends EObject
{
 String getShipTo();
 void setShipTo(String value);
 String getBillTo();
 void setBillTo(String value);
 EList getItems();
}

order.getItems().add(item);

40 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Generated Model Code

 Factory to create instances of model objects

 Package class provides access to metadata

 Also generated: switch utility, adapter factory base, validator,
custom resource, XML processor

POFactory factory = POFactory.eINSTANCE;
PurchaseOrder order = factory.createPurchaseOrder();

POPackage poPackage = POPackage.eINSTANCE;
EClass itemClass = poPackage.getItem();

EAttribute priceAttr = poPackage.getItem_Price();
 //or itemClass.getEStructuralFeature(POPackage.ITEM__PRICE)

41 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Generated Edit/Editor Code

 Viewing/editing code divided into two parts
 UI-independent code

 Item providers (adapters)
 Item provider adapter factory

 UI-dependent code
 Model creation wizard
 Editor
 Action bar contributor
 Advisor (RCP)

 By default each part is placed in a separate Eclipse plug-in

42 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summary of Generated Artifacts

 Model
 Interfaces and classes
 Type-safe enumerations
 Package (metadata)
 Factory
 Switch utility
 Adapter factory base
 Validator
 Custom resource
 XML Processor

 Edit (UI independent)
 Item providers
 Item provider adapter factory

 Editor
 Model Wizard
 Editor
 Action bar contributor
 Advisor (RCP)

 Tests
 Test cases
 Test suite
 Stand-alone example

 Manifests, plug-in classes,
properties, icons...

43 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Regeneration and Merge

 Hand-written code can be added to generated code and
preserved during regeneration

 This merge capability has an Eclipse dependency, so is not
available standalone

 All generated classes, interfaces, methods and fields include
@generated marker in their Javadoc

 To replace generated code:
 Remove @generated marker
 Or include additional text, e.g.

@generated NOT
 Methods without @generated marker are left alone during

regeneration

44 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Regeneration and Merge

 Extend (vs. replace) generated method through redirection
 Append “Gen” suffix to the generated method's name

/**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
public String getNameGen()
{
 return name;
}

public String getName()
{
 return format(getNameGen());
}

/**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
public String getName()
{
 return name;
}

45 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summarizing the Code Generation Process

UML

Java
Model

?

XML
Schema

Java Code

GenModel

Ecore
Model Importer JET

Simplified version

46 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summarizing the Code Generation Process

UML

Java
Model

?

XML
Schema

Java Code

Merged
Java Code

GenModel

Ecore
Model Importer JET

JMerge

Generated
Java Code

Full version

47 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Eclipse Workspace Setup

 Download Eclipse 3.2.1, EMF 2.2.1, tutorial materials
 http://www.eclipse.org/downloads/
 http://www.eclipse.org/emf/downloads/
 http://www.eclipse.org/emf/docs/presentations/OOPSLA/

 Extract all zips into the same target folder. You will be prompted
to override license files. This is normal.

 Download and install JDK or JRE (recommend 5.0)
 http://java.sun.com/javase/downloads/

 Launch Eclipse

48 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

About the Exercises

 The instructions for the exercises are
laid out as HTML files

 You can use the tutorial’s cheat sheet to
perform some of the steps in the
exercises

 If you are running out of time…
All code you have to write can be copied
from a .jpage file located in the
“EMF_Workshop” project
You can add the complete solutions
using the cheat sheet

49 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

 Were introduced in Eclipse to guide
the user through a series of steps

 The steps have to be performed in
the order they are presented

 A step can implement some of the
manual tasks the user would need to
perform

Open wizards, create files, manage
projects

 Available via the
“Help -> Cheat Sheets” menu

Eclipse Cheat Sheets

50 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Exercise 1:
Code Generation, Regeneration and Merge

Open the “Introduction to The Eclipse Modeling Framework” cheat
sheet from the “Help > Cheat Sheets…” menu

51 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

52 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

EMF Runtime

 Persistence and serialization of model data
 Proxy resolution and demand load

 Automatic notification of model changes
 Bi-directional reference handshaking
 Dynamic object access through a reflective API
 Runtime environments

 Eclipse
 Full IDE
 RCP

 Standalone Java

53 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Persistence and Serialization

 Serialized data is referred to as a resource
 Data can be spread out among a number of resources in a

resource set
 One resource is loaded at a time, even if it has references to

objects in other resources in the resource set
 Proxies exist for objects in other resources
 Lazy or demand loading of other resources as needed
 A resource can be unloaded

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1 resource 1
uri 2 resource 2

54 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Resource Set

 Context for multiple resources that may have references among
them

 Usually just an instance of ResourceSetImpl, or a customized
subclass

 Provides factory method for creating new resources in the set:

 Also provides access to the registries, URI converter, and default
load options for the set

ResourceSet rs = new ResourceSetImpl();
URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);

55 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Resource Factory Registry

 Returns a resource factory for a given type of resource
 Based on the URI scheme or filename extension
 Determines the type of resource, hence format for save/load

 For models created from XML Schema, the generated custom resource
factory implementation should be registered to ensure schema-
conformant serialization

 When running as a plug-in under Eclipse, EMF provides an extension point
for registering resource factories

 Generated plugin.xml registers generated resource factory against a
package specific extension (e.g. “po”)

 Global registry: Resource.Factory.Registry.INSTANCE
 Consulted if no registered resource factory found locally

Resource.Factory.Registry reg = rs.getResourceFactoryRegistry();
reg.getExtensionToFactoryMap().put("xml", new
XMLResourceFactoryImpl());

56 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Package Registry

 Returns the package identified by a given namespace URI
 Used during loading to access the factory for creating instances

 Global registry: EPackage.Registry.INSTANCE
 Consulted if no registered package found locally

 Running in Eclipse, EMF provides an extension point for globally
registering generated packages

 Even standalone, a package automatically registers itself when
accessed:

EPackage.Registry registry = rs.getPackageRegistry();
registry.put(POPackage.eNS_URI, POPackage.eINSTANCE);

POPackage poPackage = POPackage.eINSTANCE;

57 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Resource

 Container for objects that are to be persisted together
 Convert to and from persistent form via save() and load()
 Access contents of resource via getContents()

 EMF provides XMLResource implementation

 Other, customized XML resource implementations, provided, too
(e.g. XMI, Ecore, EMOF)

URI uri = URI.createFileURI("C:/data/po.xml");
Resource resource = rs.createResource(uri);
resource.getContents().add(p1);
resource.save(null);

<PurchaseOrder>
 <shipTo>John Doe</shipTo>
 <next>p2.xml#p2</next>
</PurchaseOrder>

58 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Proxy Resolution and Demand Load

p1

p1.xml

next
p2

p2.xml

proxyURI=“p2.xml#p2”
next

proxyURI=“p2.xml#p2”
next

PurchaseOrder p2 = p1.getNext();

PurchaseOrder

0..1

next

0..1
<PurchaseOrder>
 <shipTo>John Doe</shipTo>
 <next>p2.xml#p2</next>
</PurchaseOrder>

p1.xml

59 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Change Notification

 Every EMF object is also a Notifier
 Send notification whenever an attribute or reference is changed
 EMF objects can be “observed” in order to update views and

dependent objects

Adapter poObserver = ...
purchaseOrder.eAdapters().add(poObserver);

adapter.notifyChanged()

setBillTo()

PurchaseOrder

Adapter

60 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Change Notification

 Observers or listeners in EMF are called adapters
 An adapter can also extend class behavior without subclassing
 For this reason they are typically added using an AdapterFactory

PurchaseOrder purchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...
Object poExtensionType = ...

if (somePOAdapterFactory.isFactoryForType(poExtensiontype))
{
 Adapter poAdapter = somePOAdapterFactory.adapt(purchaseOrder,
 poExtensionType);
 ...
}

61 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Model Change Notification

 Efficient notification in “set” methods
 Checks for listeners before creating and sending notification

public String getShipTo()
{
 return shipTo;
}

public void setShipTo(String newShipTo)
{
 String oldShipTo = shipTo;
 shipTo = newShipTo;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, ...);
}

62 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Bidirectional Reference Handshaking

PurchaseOrder

0..1
0..1

next

0..1
previous 0..1

public interface PurchaseOrder
{
 PurchaseOrder getNext();
 void setNext(PurchaseOrder value);
 PurchaseOrder getPrevious();
 void setPrevious(PurchaseOrder value);
}

Invariant imposed by the bidirectional
reference:
po.getNext().getPrevious() == po

63 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

previous

next

Bidirectional Reference Handshaking

p1.setNext(p3);

p2

next

previous

p1
next

p2
previous

next

p3
previous

change
notification

64 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Reflection

 All EMF classes implement interface EObject
 Provides an efficient API for manipulating objects reflectively

 Used by the framework (e.g., serialization/deserialization, copy
utility, generic editing commands, etc.)

 Also key to integrating tools and applications built using EMF

public interface EObject
{
 EClass eClass();
 Object eGet(EStructuralFeature sf);
 void eSet(EStructuralFeature sf, Object val);
 ...
}

65 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Reflection Example

 Setting an attribute using generated API:

 Using reflective API:

PurchaseOrder po = ...
po.setBillTo("123 Elm St.");

EObject po = ...
EClass poClass = po.eClass();
po.eSet(poClass.getEStructuralFeature("billTo"),
 "123 Elm St.");

66 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Reflective Performance

 Efficient generated switch-based implementation of reflective
methods

public Object eGet(int featureID, ...)
{
 switch (featureID)
 {
 case POPackage.PURCHASE_ORDER__SHIP_TO:
 return getShipTo();
 case POPackage.PURCHASE_ORDER__BILL_TO:
 return getBillTo();
 ...
 }
}

67 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Reflection Benefits

 Reflection allows generic access to any EMF model
 Similar to Java’s introspection capability
 Every EObject (that is, every EMF object) implements the reflection

API
 An integrator need only know your model!
 A generic EMF model editor uses the reflection API

 Can be used to edit any EMF model

68 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Dynamic EMF

 Ecore models can be defined dynamically in memory
 No generated code required
 Dynamic implementation of reflective EObject API provides same

runtime behavior as generated code
 Also supports dynamic subclasses of generated classes

 All EMF model instances, whether generated or dynamic, are
treated the same by the framework

 A dynamic Ecore model can be defined by
 Instantiating model elements with the Ecore API
 Loading from a .ecore file

69 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Dynamic EMF Example

 Model definition using the Ecore API

EPackage poPackage = EcoreFactory.eINSTANCE.createEPackage();
poPackage.setName("po");
poPackage.setNsURI("http://www.example.com/PurchaseOrder");

EClass poClass = EcoreFactory.eINSTANCE.createEClass();
poClass.setName("PurchaseOrder");
poPackage.getEClassifiers().add(poClass);

EAttribute billTo = EcoreFactory.eINSTANCE.createEAttribute();
billTo.setName("billTo");
billTo.setEType(EcorePackage.eINSTANCE.getEString());
poClass.getEStructuralFeatures().add(billTo);
...

EObject po = EcoreUtil.create(poClass);
po.eSet(billTo,"123 Elm St.");

70 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Exercise 2:
EMF Runtime and Static Model APIs

71 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

72 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Recording Changes

 EMF provides facilities for recording the changes made to
instances of an Ecore model

 Change Model
 An EMF model for representing changes to objects
 Directly references affected objects
 Includes “apply changes” capability

 Change Recorder
 EMF adapter
 Monitors objects to produce a change description (an instance of

the change model)

73 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Change Model

74 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Change Recorder

 Can be attached to EObjects, Resources, and ResourceSets
 Monitors changes to the objects and their contents trees

 Produces a description of the changes needed to return to the
original state (a reverse delta)

 Result: a change description with one change, setting billTo to
“123 Elm St.”

PurchaseOrder order = ...
order.setBillTo("123 Elm St.");

ChangeRecorder recorder = new ChangeRecorder();
recorder.beginRecording(Collections.singleton(order));
order.setBillTo("456 Cherry St.");
ChangeDescription change = recorder.endRecording();

75 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Applying Changes

 Given a change description, the change can be applied:
 ChangeDescription.apply()

 consumes the changes, leaving the description empty
 ChangeDescription.applyAndReverse()

 reverses the changes, leaving a description of the changes
originally made (the forward delta)

 The model is always left in an appropriate state for applying the
resulting change description

76 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Example: Transaction Capability

 If any part of the transaction fails, undo the changes

ChangeRecorder changeRecorder =
 new ChangeRecorder(resourceSet);

try
{
 // modifications within resource set
}
catch (Exception e)
{
 changeRecorder.endRecording().apply();
}

77 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Exercise 3:
Recording Changes

78 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

79 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Validation Framework

 Model objects validated by external EValidator

 Detailed results accumulated as Diagnostics
 Essentially a non-Eclipse equivalent to IStatus
 Records severity, source plug-in ID, status code, message, other

arbitrary data, and nested children

public interface Evalidator
{
 boolean validate(EObject eObject,
 DiagnosticChain diagnostics, Map Context);
 boolean validate(EClass eClass, EOjbect eObject,
 DiagnosticChain, diagnostics, Map context);
 boolean validate(EDataType eDataType, Object value,
 DiagnosticChain diagnostics, Map context);
 ...
}

80 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Invariants and Constraints

 Invariant
 Defined directly on the class,

as an operation with <<inv>>
stereotype

 Stronger statement about
validity than a constraint

 Constraint
 Externally defined for the

class via a method on the
validator

PurchaseOrder
shipTo : String
billTo : String

<<inv>> validAddresses()

81 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Generated EValidator Implementations

 Generated for each package that defines invariants or
constraints

 Dispatches validation to type-specific methods
 For classes, a validate method is called for each invariant and

constraint
 Method body must be hand coded for invariants and named

constraints

82 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Schema-Based Constraints

 In XML Schema, named constraints are defined via annotations:

 Also, constraints can be defined as facets on simple types, and
no additional coding is required

 Constraint method implementation generated

<xsd:annotation>
 <xsd:appinfo source="http://www.eclipse.org/emf/2002/Ecore"
 ecore:key="constraints">VolumeDiscount</xsd:appinfo>
</xsd:annotation>

<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

83 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Framework EValidator Implementations

 EObjectValidator validates basic EObject constraints:
 Multiplicities are respected
 Proxies resolve
 All referenced objects are contained in a resource
 Data type values are valid

 Used as base of generated validators and directly for packages
without additional constraints defined

84 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Framework EValidator Implementations

 Diagnostician walks a containment tree of model objects,
dispatching to package-specific validators

 Diagnostician.validate() is the usual entry point
 Obtains validators from its EValidator.Registry

Diagnostician validator = Diagnostician.INSTANCE;
Diagnostic diagnostic = validator.validate(order);

if (diagnostic.getSeverity() == Diagnostic.ERROR)
{
 // handle error
}

for (Iterator i = diagnostic.getChildren().iterator(); i.hasNext();)
{
 Diagnostic child = (Diagnostic)i.next();
 // handle child diagnostic
}

85 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Exercise 4:
Validation

86 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic

EMF and XML Processor

if time permits

87 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

XML Processor

 Simplified API for loading and saving XML
 Handles resource set, registries, etc. under the covers

 Can automatically create a dynamic Ecore representation of a
schema

 Load/save instance documents without generating code
 Manipulate the objects using reflective EObject API

URI schemaURI = ...
String instanceFileName = ...

XMLProcessor processor = new XMLProcessor(schemaURI);
Resource resource = processor.load(instanceFileName);

EObject documentRoot = (EObject)resource.getContents.get(0);

88 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Exercise 5:
Reflection, Dynamic EMF and XML Processor

89 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

90 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Important Changes in EMF 2.2

 Content adapter for managing reverse of 1-way references
 Cross-resource containment
 XMI 2.1 support
 Model exporter
 Improve XML Schema generation
 Improve code generation error reporting and handling

 Performance optimizations
 For more, see:

 http://www.eclipse.org/emf/docs.php#plandocs
 http://www.eclipse.org/emf/news/

91 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Agenda
 Demo
 Introduction

 EMF in a Nutshell
 EMF Components
 The Ecore Metamodel

 Exercise 1: Code Generation, Regeneration and Merge
 Exercise 2: EMF Runtime

 What’s New in EMF 2.2
 Summary

 Exercise 3: Recording Changes
 Exercise 4: Validation
 Exercise 5: Reflection, Dynamic EMF

and XML Processor

if time permits

92 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summary

 EMF is low-cost modeling for the Java mainstream

 Boosts productivity and facilitates integration

 Mixes modeling with programming to maximize the effectiveness
of both

93 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summary

 EMF provides…
 A metamodel (Ecore) with which your domain model can be

specified
 Your model can be created from UML, XML Schema or

annotated Java interfaces
 Generated Java code

 Efficient and straightforward
 Code customization preserved

 Persistence and Serialization
 Resource-based serialization
 Proxy resolution and demand loading
 Default resource implementation is XMI (XML metadata

interchange), but can be overridden

94 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Summary

 EMF provides…
 Model change notification is built in

 Just add adapters (observers) where needed
 Reflection and dynamic EMF

 Full introspection capability
 Simple change recording and roll-back
 Extensible validation framework
 Standalone runtime support
 A UI-independent layer for viewing and editing modeled data

(EMF.Edit)

95 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Resources
 This presentation and related

workshop materials
 http://www.eclipse.org/emf/docs/

presentations/OOPSLA/

 EMF documentation in Eclipse Help
 Overviews, tutorials, API reference

(javadoc)
 EMF Project Web Site

 http://www.eclipse.org/emf/
 Overviews, tutorials, newsgroup, Bugzilla

 Eclipse Modeling Framework
by Frank Budinsky et al.

 Addison-Wesley; 1st edition
(August 13, 2003)

 ISBN: 0131425420.

96 Introduction to the Eclipse Modeling Framework | © 2006 by IBM; made available under the EPL v1.0
http://www.eclipse.org/emf/docs/presentations/OOPSLA/

Legal Notices

IBM, Rational, WebSphere, Lotus, and Rational Rose are
registered trademarks of International Business Machines Corp. in
the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

