EMF FeatureMaps 6/24/2004

EMF FeatureMaps

June 24, 2004 (draft)

This document describes the Feat ur eMap classin EMF and shows how it can be used to automatically implement
derived featuresin amodel and how it is also used to manage repeating model groupsin XML Schema based
models.

Multiple features and cross-feature order

Sometimes when we design a model, we' re faced with a conflict between maintaining datain a single feature versus
dividing it among multiple features. Consider the following simple example of a model that manages purchase orders
for some store or supplier:

preferredOrders
0..*

PurchaseOrder

Supplier

standardOrders
0..*

In this model we use two references, preferredOrders and standar dOrder s, to maintain the purchase orders
according to their customer’ s status: standard or preferred. If, however, it was important to maintain the purchase
ordersin, for example, the order in which they arrived, we would instead want to model this using a single reference
likethis:

orders

Supplier 0 PurchaseOrder <<enumeration>>
h kind : OrderKind OrderKind
Preferred
Standard

In this case, we maintain all the purchase ordersin asingle orderslist, but we need to add the kind attribute to class
PurchaseOrder to keep track of the preferred or standard status of each purchase order. Alternatively, we could
define all three references and store each purchase order in two lists (orders and either preferredOrdersor
standardOrder s, depending on its kind):

preferredOrders
0 . .*
standardOrders
0..*

PurchaseOrder

Supplier

orders
0.*

To avoid the redundant storage and having to keep multiple listsin sync, this kind of arrangement is most commonly
implemented by making some of the references derive (that is, be computed) from others. For example, we could use

Page 1

EMF FeatureMaps 6/24/2004

the kind attribute, from the previous diagram, to make the preferredOrder s and standar dOrder s references derive
from the or der s reference, based on the kind value:

- preferredOrders -
Supplier 0 PurchaseOrder <<enumeration>>
- kind : OrderKind OrderKind
standardOrders Preferred
0.* Standard
orders
0..*

In this model, the preferredOrder s and standar dOr der s references would be volatile, transient, and non
changeable, and then implemented by iterating over and filtering the or der s reference. For example, the
get PreferredOr der s() method would look like this:

public EList getPreferredOders() {
ArrayList preferredOrders = new ArraylList();
for (lterator iter = getOrders().iterator(); iter.hasNext();) {
PurchaseOrder order = (PurchaseOrder)iter.next();
if (order.getKind() == OderKind. PREFERRED LI TERAL)
preferredOrders. add(order);
}

return new Ecor eELi st. Unnodi fi abl eELi st (t hi s,
POPackage. el NSTANCE. get Suppl i er _PreferredOrders(),
preferredOrders.size(), preferredOders.toArray());

}

With this design, a purchase order in the orderslist will also appear in one of the preferredOrdersor

standar dOrder s references, depending on the value of its kind attribute. A purchase order can only be added to or
removed from the standardOrder s or preferredOrder s reference by adding it to or removing it from the orders
reference, or by changing its kind attribute. The two derived lists are themselves not directly modifiable.

An instance of this model might look something like this:

orders
PO1
PSS, 4 kind=Standard
kind=Preferred
kind=Standard
kind=Preferred

A better, but significantly more complicated, solution to this problem would not declare the preferredOrdersand
standar dOr der s references as non changeable, but instead would implement them using specialized lists that
provide the entire ELi st API (including add and remove) by delegating to the orderslist. For example, an add()
operation on the preferredOrderslist would delegate through to add() onthe orderslist, and would also set the

Page 2

EMF FeatureMaps 6/24/2004

kind of the purchase order to Pr ef er r ed. Because of the complexity, however, the read only approach is generally
preferred.

The ExtendedPO2 model in Chapter 12 of [Ref Eclipse Modeling Framework] used this pattern to solve asimilar
problem. There, two references, pendingOr der s and shippedOrder s, were derived form the or der s reference,
based on a status attribute in class PurchaseOr der. This approach worked well in that example, but is less desirable
here. The difference in this example is that, unlike the status attribute in the ExtendedPO2 model, the kind attribute
is unchanging over time; a purchase order’ s kind is intended to be set only once (for example, immediately after the
object is created). Changing the kind of a purchase order that is in the order s list would have the undesirable side
effect of removing it from one of the derived lists and adding it to the other list.

Ideally, we would like to implement this without the kind attribute or any extra state information in a purchase order
at al. To do that, however, we would need to somehow “tag” the entriesin the or der s list themselves with the

equivalent type information:
orders
—]
,'
”V
preferredOrders /,/"/
Fortun

ately, EMF provides a special kind of list for doing this, Feat ur eMap, where each entry istagged with the feature
of aderived ligt, like preferredOrders or standardOrders, to which it belongs. Better yet, the EMF code generator
understands this pattern, so the implementation can be completely generated.

rn

standardOrders >

FeatureMap-derived features

A Feat ur eMap issimply an ELi st subclass whose elements are feature-value pairs, defined by the interface
Feat ur eMap. Entry:

public interface FeatureMap extends ELi st
public interface Entry

EStruct ural Feature get EStructural Feature();
hj ect get Val ue();

y o

In the case of a derived multiplicity-1 feature, only one entry for that feature, at most, should ever appear in the list.
For a multiplicity-many feature, the backing Feat ur eMap will contain one entry for each individua value of the
derived feature, as opposed to asingle entry whose value is the feature’ s value-list itself. The Feat ur eMap

Page 3

EMF FeatureMaps 6/24/2004

interface provides a number of convenience methods, one of which can be used to retrieve the list-view for such a
feature:

ELi st list(EStructural Feature feature);

Other convenience methods provide direct access to the feature or value at a specific index in the list:

EStruct ural Feature get EStructural Feature(int index);
oj ect getVal ue(int index);
Ooj ect setVal ue(int index, Object value);

Methods are also provided to get or set the value of a specific single-valued featurein thelist, or to add avalueto a
multi-valued one;

oj ect get(EStructural Feature feature, bool ean resolve);
voi d set (EStructural Feature feature, Object object);
bool ean add(EStructural Feature feature, Cbject val ue);

These methods, and othersin the Feat ur eMap interface, provide a Map-like API for accessing entry values, keyed
by afeature — that'swhy it isnamed Feat ur eMap instead of just Ent r yLi st , or something like that.

Given this powerful convenience class, you may be wondering how to use it to implement derived features, such as
the preferredOrder s and standar dOr der s references described above. Looking at the interface, you probably have
some idea how you might go about programming our purchase order example, but the answer is actually simpler than
you might expect. By defining a multiplicity-many EAt t ri but e of type Feat ur eMap. Ent ry and adding a
couple of EAnnot at i onsto your model, you can make the EMF code generator generate the complete
implementation for you. Here's how you do itin UML.:

Supplier PurchaseOrder
<<0..*>> orders : EFeatureMapEntry

preferredOrders
0..*

standardOrders
0”*

(Note: | think that we should change the importer to alternatively allow the orders feature to be defined in UML asa
third reference to PurchaseOrder asin the previous diagram. | think that providing the kind=group annotation
would be sufficient information to indicate that it maps to a FeatureMap implementation)

The order s attribute must be a data type with instance class Feat ur eMap. Ent r y. The built-in Ecore data type,
EFeatureMapEntry, is such a data type:

<<datatype>>
EFeatureMapEntry

<<javaclass>> org.eclipse.emf.ecore.util. FeatureMap$Entry

When defining these features, we need to indicate that the preferredOrder s and standar dOr der s implementations
are to be derived from the or der s feature. To do this, we mark the two references as transient and volatile, in the
usual way, but rather than hand coding the implementation methods, we annotate the Ecore model so that the derived
implementations will be generated for us. EAnnot at i onswith source URI set to
http:///orgl/eclipsel/enf/ecore/util/ExtendedMet aDat a, are used for this purpose.

To indicate that the or der s attribute will be used to combine (a*“group” of) other features, we add to it an
ExtendedM etaData-type EAnnot at i on with asingle details entry with key="ki nd” and val ue="gr oup”.

Page 4

EMF FeatureMaps 6/24/2004

For the two derived references, preferredOrders and standar dOrders, we also add such an EAnnot at i on, but
thistime with adetails entry with key="gr oup” and val ue="#or der s”, to indicate that they are derived from
the order s (group) attribute.

In Rational Rose, we can use the Ecor e page of the Association Specification dialog to set these annotations. For
example, we would set the annotation property of the preferredOrder sreference like this:

Assuciatiun Specification for Untitled ed 4
Rale & General | Raole B General I Rale & Detail | Rale B Detail]
General | [retail I
IbL& | Ecoes | IDLEB Ecore B

Set: | defaul x| EdiSet. I

Model Properties

i I I ame I W alue I Source |
referenceM ame Default
isTranzient True Oweride
isolatile True Owveride
izChangeabls True [refault
izldnzettable Falze Default
isRezclveProxies Falze Owemnide
sl arne Drefault
sl amespace Drefault
smiF eaturek.ind Unzpecified Default

stendedietal ata group="Horders'

Qverndel Drefault | Eewert |
] I Eancel | Ay | Eruwgevl Help |

The syntax of the annotation property in Roseis a sour ce URI followed by one or more details key=value pairs, so
for our example we would set it to the value: http:///org/eclipse/emf/ecore/util/ExtendedM etaData group="#orders.

If, instead of using UML, we wanted to define this same model using XML Schema, it would be even easier:

<xsd: conpl exType nane="Supplier">
<xsd: sequence>
<xsd: choi ce maxCccur s="unbounded" ecore: nanme="orders">
<xsd: el ement name="preferredOders" type="PurchaseO der"/>
<xsd: el ement nanme="st andardOrders" type="PurchaseOrder"/>
</ xsd: choi ce>

</kéd:sequence>
</ xsd: conpl exType>

In XML Schema, arepeating choice (that is, with maxQOccur s > 1) maps to exactly this pattern (that is, the importer
would automatically add the EAnnot at i onsto the model). The choice represents a heterogeneous list of the
elements defined within it; it represents the orderslist in our example. The choice, itself, is not named in an XML
Schema, so EMF supports the extended attribute ecor e: nane to nameit. Asyou can see, we set the name to the
value “orders’, highlighted in bold in the schema. If we had not, the Feat ur eMap feature (or ders) would have
instead been given a default name of group (possibly followed by a number in the case of conflict, for example
groupl).

Page 5

EMF FeatureMaps 6/24/2004

Using either of the model definitions (UML or XML Schema), we can import the model and generate the
implementation classes. As expected, the generated Suppl i er interface looks like this:

public interface Supplier extends EObject

Feat ureMap get Orders();
ELi st getPreferredOders();
ELi st get StandardOrders();

}

The generated get Or der s() methodin class Suppl i er | npl simply creates a default generic Feat ur eMap
implementation class, Basi cFeat ur eMap, like this:

public FeatureMap getOrders() {
if (orders == null) {
orders = new Basi cFeat ureMap(this, POPackage. SUPPLI ER _ORDERS);
}

return orders;

}

The preferredOrders and standar dOr der s references implementations delegate to thel i st () method of the
ordersFeat ur eMap. For example, theget Pr ef er r edOr der s() method isimplemented as follows:

public EList getPreferredOders() {
return
(Feat ureMap) get Orders()).list(POPackage. el NSTANCE. get Suppl i er _PreferredOders());
}

Using these implementations, we can now add, remove or move purchase ordersin any of the threelists, and the
others will automatically be synchronized.

Page 6

