~gclipse CON 2004

Eclipse APIs
Lines in the Sand

Jim des Rivieres
IBM Ottawa
jeem@ca.ibm.com

© 2004 IBM Corporation | Feb. 2004

€clipse CON 2004

Outline of Talk

= Part | — Review
= Philosophy, psychology, and sociology of APIs

» Part Il — Evolving APIs
= Change APIs and keep existing clients happy

= Part lll — Eclipse APIs from 2.1 to 3.0
= Having your cake and eating it, too

2 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

APls are Specified and Supported

API = Application Programmer Interface
» Programmatic access to system code for benefit of external clients

APIs have specs
= Javadoc comments in Java source code (/** ... */)

= Eclipse extension point schema (*.exsd file)

Spec is statement of intent
= Captures how API is supposed to work

APIs are maintained and supported
= Bugs will be fixed

3 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€tlipse CON 2004

Abstract Thought Experiment #1

A written first
B written with particular A
A + B are working together

Now change A independent of B

= A’ + B guaranteed to work?

N[®)

4 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation ’

€tlipse CON 2004

Abstract Thought Experiment #1

= A written first

= B written with particular A
= A + B are working together
= A has specified API

= A implements API spec

= B lives within A’s API spec

= Now change A independent of B
= No change to API spec
= A’ still honors API spec

= A’ + B guaranteed to work?

YES

5 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation ’

€clipse CON 2004

APl Specs Play a Critical Role

Component code provides system behavior

API spec limits inter-component coupling

Code and API spec play complementary roles
= Both critically important

Only scalable way to build systems from semi-independent
components

6 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

gclipse CON 2004

Abstract Thought Experiment #2

Imagine you have just got some code working

= No API - nothing declared public
Task: expose an API for this code

= By selectively making classes, methods, and fields public
Extract just the API signatures

» Erase non-API packages, classes, methods, and fields

= Erase bodies of APl methods
Your task: write explanation for clients unfamiliar with any of it
= Explain what every class, method, and field is all about

= Explain how they are be used to solve client problems
= Make the story compelling and seamless

7 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Abstract Thought Experiment #2.B

Now, imagine being handed such an API spec
= Compelling and seamless story

Would you believe this story is literally true?
= Do you really believe that your JVM executes bytecodes? Interesting.

How could you tell without looking at the implementation?

Would it bother you if you were deceived?

8 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

APl Iis Cover Story for Clients

» Designing API and writing spec is constructing story for clients
» Clients are predisposed to take story at face value

= |mplementations not constrained to take story literally

= Great source of flexibility
= Simple API story pleases client — e.g., bytecode interpreter

= Behind API hide clever implementations — e.g., JIT compiler

» Point is easily missed if you fixate on just the code
= Think “outside-in”, not “inside-out” *

* Jeff Johnson, GUI Bloopers

9 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

APIs Should be Visible

= APIs should be highly visible so that clients can find
= Publish API specs

= Draw clear distinction between API and non-API
= Eclipse non-API packages “internal”; e.g., org.eclipse.ui.internal

= API consists of public classes and interfaces in API packages

= All interface members
= Public and protected members of classes

10 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

APls Should be Trustworthy

Good fences make good neighbors

Compile time
= final modifier
Specification
= “This interface is not intended to be implemented by clients”

= |egal values for arguments
Run time
= Check argument validity

= Correct thread

APIs should draw attention and earn respect

11 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

gclipse CON 2004

APIls Operate on the Honor System

= Clients are expected to honor API contracts

= Make no assumptions except those warranted by API spec
» Implementation are expected to honor API contracts

= |mplements the spec

= Make no assumptions about clients except those warranted by spec

= When implementation deviates...
= Spec and implementation disagree

= Report bug

= |Implementation will be fixed

12 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Clients May Stray

When client strays...
» Whether accidentally or deliberately
Some misuses will be caught

= At compile time — e.g., private access modifier

= At runtime — e.g., argument checking
Impossible to prevent all instances of misuse
= Client implements API interface not intended for them

= Client references public class in internal package
Impossible to detect all instances of misuse at runtime
= Multi-threaded client makes unsafe use of non-thread-safe API

13 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

Clients Need to Be Vigilant

Errant client code may appear to be working
But may fail since API spec does not fully cover situation

» Fail in different operating environment

= Fail as implementation bugs get fixed

» Fail as implementation improves

Clients are responsible for living within bounds of API contracts

There are no API police

14 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€tlipse CON 2004

Abstract Thought Experiment #3

A provides API

B uses A’s API

A and B honor A’'s API spec
A + B work together

= Change A’s API independent of B
» Realign A implementation to match

= A’ + B guaranteed to work?

N[®)

15 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation ’

APIs Should be Stable

16

APIs exist to provide loose coupling
Maximally effective when APIs are perfectly stable

Healthy APIs are usually under steady pressure to evolve

Breaking API change
» [|nvalidates existing clients

= Undermines reason for having APIs in first place

Compatible API evolution
= Ensures existing clients continue to work
APIs should be evolved with compatibility in mind

Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

gclipse CON 2004

Review - Summary

Truisms About APIs

» APIs are Specified and Supported

= API Specs Play a Critical Role

= APl is Cover Story Designed for Clients
= APIs Should be Visible and Trustworthy
» APIs Operate on the Honor System

= APIs Should Be Stable

17 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Part || — APl Evolution

= APIs need to evolve from release to release
= Changes to API could invalidate existing clients

= Evolve API in compatible ways
= Preserve as much value as possible across API changes

= Keep existing clients working

= Two general considerations
= Contract compatibility — Honor existing API contracts

» Binary compatibility — Keeping the JVM happy

18 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

Contract Compatibility

Before
[** Returns the non-empty list of indices. */
public int[] getindices();
After
[** Returns the list of indices. The list may be empty. */
public int[] getindices();
Breaks some existing callers
int[] d = getindices();
System.print(d[0]); // possible array index out of bounds
However, existing implementers are fine
public int[] getindices() {
...; return result; // result is non-empty

}

19 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

gclipse CON 2004

Evolving API Contracts

= API contracts are expressed in API specs

= API contracts promise the client certain things
= Clients can play multiple roles — e.g., caller, implementer
= Different roles have different contracts

» Changes to contracts should not invalidate existing clients

20 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004
Binary Compatibility

Before

public void register(String key);
After

public void register(Object key);

Existing calls re-compile as expected
register(“foo”); // no compile error

But existing binaries no longer link
register(“foo”); // link error

21 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation

gclipse CON 2004

Binary Compatibility DON’Ts for API Elements

Rename a package, class, method, or field
Delete a package, class, method, or field
Decrease visibility (change public to non-public)
Add or delete method parameters

Change type of a method parameter

Add or delete checked exceptions to a method
Change return type of a method

Change type of a field

Change value of a compile-time constant field

O 00 = o Ol = WV

10.Change an instance method to/from a static method
11.Change an instance field to/from a static field
12.Change a class to/from an interface

13. Make a class final (if clients may subclass)
14.Make a class abstract (if clients may subclass)

22 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Binary Compatibility DOs for APl Elements

23

Add packages, classes, and interfaces

Change body of a method

Do anything you want with non-API elements

Add fields and type members to classes and interfaces

Add methods to classes (if clients cannot subclass)

Add methods to interfaces (if clients cannot implement)

Add non-abstract methods to classes (if clients may implement)
Reorder class and interface member declarations

Change value of a field (if not compile-time constant)

O 00 = o Ol & WV

10. Move a method up to a superclass

11. Make a final class non-final

12. Make an abstract class non-abstract

13. Change name of method formal parameter

Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

Binary Compatibility

Java VM has special rules for binary compatibility

API changes should be binary compatible
» EXxisting clients should continue to work without recompiling

N.B. Java compiler does not detect this kind of breakage

Ref. Evolving Java-based APIs
http://eclipse.org/eclipse/development/java-api-evolution.html

24 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Adding Methods to API Interfaces

» API interfaces used to hide implementation work well
= Y .. This interface is not intended to be implemented by clients */”

= Add new methods to API interface
» Add corresponding methods to implementing class
package org.eclipse.core.resource;

[** ... This interface is not intended to be implemented by clients */
public interface IWorkspace {

bﬁblic boolean isTreeLocked(); // new

}

package org.eclipse.core.internal.resource;
class Workspace implements IWorkspace {

bﬁblic boolean isTreeLocked() {...}

}

25 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation

€clipse CON 2004

Avoid API Interfaces that Clients May Implement

= API interfaces that clients may implement are problematic
= Adding method breaks binary compatibility

= Use API class instead of API interface...
= When client may implement

= When there is a chance new methods needed in future
= N.B. converting interface to class breaks binary compatibility

26 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

€clipse CON 2004

Adding Methods via I*2 Extension Interfaces

= |If no choice, add new methods in extending APl interface
= Avoids breaking existing clients that implement

package org.eclipse.ui;
public interface IActionDelegate { ... } // original interface

public interface IActionDelegate2 extends IActionDelegate {
void dispose(); // new

}

Usage
|ActionDelegate d = new IActionDelegate2() {...};
if (d instanceof IActionDelegate?) {

IActionDelegate2 d2 = (IActionDelegate?) d;
d2.dispose(); // call new method

}

27 | Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

How to Delete API

= API deletion always breaks any existing clients

= But replacing API with improved version is usually doable

Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

€clipse CON 2004

Replacing APl Methods

» Add replacement APl method
= Deprecate original method

= Ensure original method continues to work

package org.eclipse.jdt.core.dom;
public class Message {

[** ...

* @deprecated Use getStartPosition() instead

*/

public int getSourcePosition() { // rename getStartPosition()
teturn getStartPosition(); // forward to new method

}

}
public int getStartPosition() {

-
}

29 | Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

€clipse CON 2004

API| Evolution - Summary

= Evolve API in compatible ways
= Honor existing API contracts

= Observe technical rules for Java binary compatibility

= Usually feasible to find way to improve API
and keep existing clients working without recompiling

»= Design APIs with future evolution in mind

30 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

Part Ill — Eclipse APIs from 2.1 to 3.0

Eclipse 3.0 is major undertaking
= Need to move Eclipse forward into new areas

Large number of users of Eclipse 2.1-based products
= Will be held back if 3.0 does not run 2.1-based plug-ins

Knew at outset there would be challenges

Examples of how we’re meeting those challenges
= Xerces

= RCP Runtime
= RCP UI

31 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

gclipse CON 2004

Xerces

J2SE 1.4 now includes XML support
» |[BM 1.4 JRE includes Xerces XML library

= Sun 1.4 JRE includes other XML library (not Xerces)

Cannot include org.apache.xerces plug-in if running on IBM JRE
» Loads Xerces classes from JRE-supplied library anyway

Eclipse needs to run on all 1.4 JREs

Decision:
» Eclipse 3.0 plug-ins must use J2SE 1.4 XML APlIs

= Drop org.apache.xerces plug-in

32 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

Xerces

= Breakage
» EXxisting plug-ins that use Xerces library

= \We DON'T hide breakage from 3.0 plug-in developers
» This is story for 3.0 onwards

= We DO HIDE breakage from 2.1 plug-ins at runtime
» Products shipping on IBM 1.4 JRE

* |nclude dummy org.apache.xerces plug-in
= Allow refs to be satisfied by Xerces in IBM 1.4 JRE
= Products shipping on other 1.4 JREs

» Include old 2.1 org.apache.xerces plug-in

33 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

RCP Runtime

= Platform Runtime
= Should provide functionality useful in wide variety of applications

= Should allows dynamic addition (and removal) of functionality
= Should be adaptable to many operating environments

» OSGi provides dynamic delivery of managed services

= Decision: Re-host 3.0 Eclipse Platform on OSGi

34 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

RCP Runtime

= Breakage
= Changes to plug-in format

= OSGi APIs and mechanisms replace many Platform Runtime APIs

= Obsolete API moved to org.eclipse.core.runtime.compatibility plug-in
= We give 3.0 plug-in developers some options
= 2.1 plug-in format is still fully supported

= 3.0 also supports new OSGi-based plug-in format (bundles)
= PDE can handle both forms (and mixtures)
» Plug-ins can move to new story if compelling reason to

= \We hide breakage from 2.1 plug-ins at runtime
» Fix prerequisites on start up

35 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

RCP Ul

Workbench
= Should provide functionality useful in wide variety of applications

= Should be lean
Requires

» Shedding IDE biases

= Severing ties to workspace & resources
Good news

= 2.1 Workbench APl is 99% free of workspace & resources
Bad news

= API methods for opening arbitrary editor on IFile

» |DE-specific extension points; e.g., org.eclipse.ui.projectNaturelmages

36 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

RCP Ul

= Decision: cut workbench into 2 parts for 3.0

1. Generic workbench
= Bulk of existing workbench APIs and extension points

= New APIs for configuring workbench personality
» EXisting org.eclipse.ui plug-in
= Does not depend on workspace & resources

2. IDE workbench
= |DE-specific APIs and extension points

= New org.eclipse.ui.ide plug-in
= Depends on workspace & resources

37 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

gclipse CON 2004

RCP Ul

= Breakage
= Extension points in IDE plug-in have different IDs

= Plug-in prerequisites
= Some old APl methods moved to new classes in IDE plug-in

= \We DON'T hide breakage from 3.0 plug-in developers
= This is story for 3.0 onwards

= We DO HIDE breakage from 2.1 plug-ins at runtime
» Re-map extension points and fix prerequisites on start up

» Deleted APl methods are more challenging

38 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

Deleting APl Methods

gclipse CON 2004

» Wiegand'’s technique to preserve runtime binary compatibility

2.1 API

public interface IWorkbenchPage {
IEditorPart openEditor(IEditorDescriptor ed);
|IEditorPart openEditor(IFile file); // to delete

}

3.0 API

public interface IWorkbenchPage
extends ICompatibleWorkbenchPage {
|IEditorPart openEditor(IEditorDescriptor ed);

}

interface ICompatibleWorkbenchPage {
Il empty
}

Mask by alternate declaration (in optional
org.eclipse.ui.workbench.compatibility
fragment)

interface ICompatibleWorkbenchPage {
[** @deprecated */
public IEditorPart openEditor(IFile file);

}

39 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

Eclipse APIs from 2.1 to 3.0 - Summary

= Eclipse 3.0 is evolution of Eclipse 2.1
= Compatible except in a few areas

= 2.1 plug-ins will need to be ported to 3.0

» Ref: Eclipse 3.0 Porting Guide
http://dev.eclipse.org/viewcvs/index.cqi/~checkout~/org.eclipse.platfor
m.doc.isv/porting/eclipse 3 0 porting quide.html

= 2.1 binary plug-ins in the field will work with 3.0
= Need community help to verify this

= |IMPORTANT to report runtime binary APl compatibility problems

40 Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation I

€clipse CON 2004

APIl-related Resources

= How to Use the Eclipse API, by Jim des Rivieres
http://www.eclipse.org/articles/Article-AP1%20use/eclipse-api-usage-
rules.html

= Effective Java Programming Language Guide, by Josh Bloch
http://java.sun.com/docs/books/effective/

» Requirements for Writing Java API Specifications
http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html

= How to Write Doc Comments for the Javadoc Tool
http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html

= Evolving Java-based APIs
http://eclipse.org/eclipse/development/java-api-evolution.html

= Contributing to Eclipse, by Erich Gamma and Kent Beck
http://www.aw-
bc.com/catalog/academic/product/0,4096,0321205758,00.html

= Internal Tool (reports cross-plug-in references to internals)
http://dev.eclipse.org/viewcvs/index.cqi/%7Echeckout%7E/|dt-core-
homel/tools/internal/index.html

41 | Eclipse APIs | Lines in the Sand | © 2004 IBM Corporation l

