eclipse

Eclipse IDE Java™ 14 Support Overview

Here’s a brief overview of how to use some of the main Java 14 features in the Eclipse IDE
2020-06 release.

Activating Java 14 and Enabling Preview Features

To start using Java 14 in the Eclipse IDE 2020-06 release, choose Preferences > Java >
Installed JREs, then select the Java 14 Java Development Kit (JDK), as shown below.

Installed JREs:

MName Location Add.
= jdk-14 (default) CAEclipse’ ) DKs\openjdk-14-

To set the JDK compliance to 14 and enable the preview features, choose Preferences > Java
> Compiler, then select the options shown below.

1DK Compliance
Compiler compliance level: » |18 o

Use "--release’ option
[ ]Use default compliance settings

Enable preview features for Java 14

Preview features with severity level: Waming ~

When a preview feature is used in the code, the compiler provides a default warning that the
preview feature may not be supported in a future release. You can ignore the warning or set it to
Info by changing its severity level on the page shown above.

To quickly enable the preview features on an existing Java project, right-click on it in the
Package/Project Explorer and select Configure > Enable preview features, as shown below.

Configure » Convert to Plug-in Projects...

Properties Alt+Enter Enable preview features

Create module-infojava

www.eclipse.org/eclipseide



% eCI I pSe Eclipse IDE 2020-06

Creating and Using Records

Java 14 introduces records as a new preview feature.

To create a record in the Eclipse IDE, use the new record template in an empty .java file, as
shown below.

Il *Sqguarejava
& 1 pecord _
ackage demo;
niew_record - create new record L ¥ .

public record Square() {

}
i

If preview is not already enabled, you can enable preview features and use the record through
the quick fixes that are provided. Press Ctrl + 1 to access quick fixes.

public fecord Square() {
orecord is a preview feature and disabled by default. Use --enable-preview to enable
2 quick fiwes available:

You can also create a record using the New > Record wizard, shown below. The wizard

provides additional options, such as selecting the visibility modifier and adding the interfaces the
record implements.

© New lava Record O x

Java Record

Create a new fava Record

Source folder Diemot4/sn Browse...
Package: demo Browse...
[ Enclosing type:

I e Square

Modifiers: ) public {_} package

Interfaces Add..

You can run a Java program using the record to verify that the record instance is provided with
auto-generated constructor, component accessor, toString, equals, and
hashcode methods, as shown below.

www.eclipse.org/eclipseide



— ecllpse
== Eclipse IDE 2020-06

fl DemoRfecords ava & i) Squarejava &
: ! package demo; | package demo;
public class DemoRecords | P 5 public record Squarelint side) {
public static vodd main(5tring[] args) { a4}

Square sql = new Square(10);
Square sql = new Square(10);

I = X5 9] =8
System_out . printlnisql); O Console ! Wik
Systen_out. printin{sql.side{}}; <terminated> DemoRecords [lava Application] Ch
System_out.printin{sgl.equals{sq2)); Square[side=18]
1 1@
} true

You can also perform the rename refactoring on record components and update the accessor
method names along with component references, as shown below.

f] Demofiecorndsjava ¥ Square pava
package demo; PRCKEER demo
A public class DemoRecords { : public record Square(int ‘-iﬂt‘tk‘ﬂ:l {
public static vold main{String[] args) { ! public Square(int side) {
Square 29l = new Square(18): this . Sidelen = side ® 18;
Square sgt = new Sguare(1@); 1

1
H

Syites. out. println{egl);

System.owt, println{sql.sideben(});

System.out, printlnisql.equals(sq2));

et

In addition, several new settings have been added to the formatter profile to control record
formatting. Use the filter, shown below, to quickly view these configurable settings.

www.eclipse.org/eclipseide



\ Eclipse IDE 2020-06

Fter | record X

* Indentstion
= |Indented slements
[#] Declarations within recond declarations

= Brace positions
Record declarstion: Same ne W
Record constructor: Mext line on weap W

= Parentheses posithons

Record declarstion Same line as content ¥
= Whitespste

= Declarations

= Records

[ ] Before apening parenthesis

|| &fter opering parenthess

|| Betare comma in record components
[+] ddter comma in record companent

|| Before closing parenthesis

|| Belore opaning brace in declaatson

+| Belare opaning beace in record conatructor

= Mew Line
= Keop braced code on one ine

Record declarstion Mever w
Recard constrictar declaratinn Meves o
= Line Wrapping
= Wiapping settings
= Record declmrmtions
Record cormponents e B B
‘implements' clause v e B R

Creating and Formatting Text Blocks

Text blocks received a second round of preview in Java 14.

You can create a text block by enclosing it in triple quotes. The Eclipse IDE makes it easier to
add these delimiters with the new keyboard shortcut Ctrl + Shift + * (apostrophe). You can also
select an existing text block and use this key binding to quickly enclose it in text block delimiters,
as shown below.

publiec void fool) {

Hello
World

Ctrl+Shift+' — Add Text Block

www.eclipse.org/eclipseide



% eC| I pse Eclipse IDE 2020-06

Use the formatter profile to configure text block indentation, as shown below.

Text block indentation: - - | Default for wrapped Hres |
Do not towch
¢ Indented elements indent by one

» Align items in columns

Indent an column

Brace positions

Handling Switch Expressions

Java 14 has promoted switch expressions to a standard feature.

The Eclipse IDE provides many quick fixes, quick assists, templates, and tooling features to
help you write code with switch improvements. For example, there are quick fixes (Ctrl + 1) to
add the ‘default’ case or the missing case statements in a switch expression where the
proposals are inserted in linked mode so you can quickly replace them with the required values.

private static int foo(Day day) {
imt numliDays = switch (day) {
case SUNDAY, MONDAY, FRIT

oA Switch expression should cover all possible values
case TUESDAY -» { | —

yield 7; 2 quick fixes available:
1 & Add 'd
case THURSDAY, SATURDAY | » nd s
IH |
return nuslfDays;

g

A quick assist (Ctrl + 1) allows you to split multiple labels in a single case statement so you can
provide separate case values when needed.

int numlfDays = switch (dav) {
Ease SUNDAY, MONDAY, FRIDAY -»> &;
c s
EoPR s fint numiOfDays = switch (day) |

[case SUNDAY -= &

}lemse MONDAY -5 6

lease FRIDAY -= B
licase TUESDAY -> |

yeld T

N - T LY

In addition, the formatter profile, shown below, has new settings that allow you to control spaces
at various locations in switch expressions.

www.eclipse.org/eclipseide



% eC| I pse Eclipse IDE 2020-06

= ‘switch’
[[] Before coton in case
[] Before coton in default
[+] Before arrow in case
[] After arrow in case
Before amrow in default
After arrow in default
[] Before comma in case expressions
After comma in case expressions
Before opening parenthesis
] After opening parenthesis
[] Bafore closing parenthesis
Before opening brace

Using instanceof Pattern Matching

Java 14 introduces pattern matching for instanceof as a preview feature that provides a
pattern variable with the instanceof operator to simplify the code by reducing explicit casts.

The Eclipse IDE understands the type and scope of the pattern variable, allowing you to
perform actions, such as invoking the content assist (Ctrl + Space) and renaming the pattern
variable, as shown below.

publie dnt size(Object obj) { public int size{Object obj) {
if (obj instancesf String str) { if (ob] instanceof String =) {
return str. trei| lengthi): return B trim().length();
} s : ]
if (obj instancea 'FII‘|I'I1l.':I.5.1.I1nl;| String if (obj instanceof List<?> 1) {
return 1.size ® WOStAnGQ:Stmng raturn 1.size();
¥ & strip) : String }
raturn -1; @ stripindent() - String - 51 return -1;
! ® stripleading() : String - 51 }

www.eclipse.org/eclipseide



