
��

������	
��	��������	��

�����	
��
��������	���

�

�

s one of the world’s
leading financial
institutions, JPMorgan

tracks changes in the world’s
financial markets 24 hours a
day to bring their customers
competitive retail,
investment, commercial, and
mergers and acquisitions
banking services. With
offices around the world and
many highly specialized IT requirements for
critical business functions such as inventory
management and price forecasting,
JPMorgan has built up a wide assortment of
custom-built applications designed to meet
specific needs.

��	
������������� �
��

Such organic development, often at the
departmental or branch level, is common in

the financial services industry, and has
served JPMorgan well for many years.

But while decentralized software
development gives JPMorgan valuable
creative flexibility to meet the specialized

needs of its employees, it also
has real drawbacks that
become more significant as
markets globalize and their IT
environments become more
complex.

For example, since many
applications have been written to solve
narrowly defined problems, it is often
difficult to reuse their functionality to solve
similar problems in new software
development.

The speed with which an application can be
deployed in the front office to support a new
business opportunity can have a significant
impact on the value of the new offering to

the firm. Rapidly deployed, tactical systems
often result in cases where the new product
offering takes off, the scaling of these
systems from low volume niche

�� ���	
�������

��������	
�

	����
	��������

���	������

	�	���	����� �

����� �����
��

	�����	���
� �

Snapper and One Bench provide an alternative to spreadsheets for real time grid based
applications.

applications, into industrial strength strategic
platforms can be a real challenge.

A case in point is large number of pricing
applications developed as Excel
spreadsheets that perform and display price
calculations on the trader’s desktops, the
applications shortcomings were becoming
more apparent as the demands on them
increased. As Bruce Skingle, Distinguished
Engineer with the Investment Bank
Technology group at JPMorgan relates,
“Spreadsheet applications are quick to
deploy and can be understood and modified
on the trading floor. This can be a powerful
tool for a novel product,
but it opens up a host of
control issues. With more
mature products the need
for consistent pricing and
risk management across
regions becomes more
important.” It was also
difficult to back up data
associated with these
custom copies.

Other problems noted by
Skingle included general
performance and reliability
issues.

Throughout the bank, other
groups faced similar
problems. For example,
building financial applications to take
advantage of new market conditions
involved a cumbersome combination of
Excel and C++; and took too long to build.
Similarly, other groups faced the challenge
of maintaining the many applications for
entering reference data that had been
developed in isolation over the years,
duplicating functionality and code. Up to ten
years old and written in C++, they did not
share functionality and were burdensome to
maintain.

������
������������

It was against this backdrop that the
Investment Bank Technology group started
work on a replacement for their existing
systems. More than a re-write of the
existing spreadsheets, they wanted to lay a
solid foundation for enhanced security,
auditing, scalability, interoperability and,
above all, reusability. To achieve this,
Skingle understood that they needed to
produce a generalized platform in which this
and other new applications could be
extended, reused and shared. As he

explains, “We wanted to
develop an alternative to
spreadsheets as a platform
for modeling applications
and at the same time allow
for greater abstraction and
reuse across other projects.
As a tool for building a new
model, a spreadsheet is an
excellent tool, but by the
time a product is traded the
official models developed
by the Quantitive Research
group are delivered as
libraries, and the
spreadsheet is being used as
little more than a .dll
container and a grid based
GUI.” To this end Skingle
envisioned that the

spreadsheet-based GUI and code for
common tasks like single sign-on and
logging would be openly available for
developers using the new environment,
leaving application developers free to focus
on the business problem.

The result was One Bench, a platform for
developing and delivering custom banking
applications, starting with Fuse, their new
bond trading application.

Fuse is a perfect example of a rich client
banking application. Receiving a constant

�� ��
���������

�
�� ���	�����

��!������������
�	�

�!��"����	
�!��	���

��
�����
����

#	��
��

	�����	���
����
�

����	
"�	� �!
�����

��� ���
�����

��	��
����������
���

	
������
� �

$�

stream of market data on bond trading
prices, the application consolidates disparate
sources to traders in a familiar grid. This
data can then be used to help traders identify
trends and perform ‘what-if’ analysis. The
designers knew that, as a rich client
application, Fuse consumes data in streams
that could be shared across other bank
applications. They envisioned a GUI
framework, called Snapper, as another
shared component that would run in the One
Bench environment and into which
developers could snap applications to
provide a consistent user view to similar
data.

EIS is being developed on One Bench by the
IB Technology Exotics & Hybrids group to
consolidate the large number of systems that
have been set up over the years for entering
reference data. Up to ten years old and
written in C++, they did not share
functionality and were burdensome to
maintain. As Martin Game, Vice President
with the IB Technology Exotics & Hybrids
group relates “Moving our first project to
Eclipse and One Bench took several months,
as we added shared functionality to the
environment, but future work will benefit
from that investment and make us far more
efficient.” Mr. Game expects that they will
have several more EIS reference data
applications ported to One Bench by the end
of the year.

Similarly, QTrade was developed
independently by the Exotics & Hybrids
group in the bank to solve the problem of
difficult and slow to write financial
applications. Banks produce new
applications on very short notice to take
advantage of financial trends. Previously,
each new application involved a
combination of Excel and customized C++
coding, with a turn-around time of over two
weeks.

JPMorgan evaluated several options for the
development of One Bench, but the final
choice came down to Java/Swing or Eclipse
RCP. After careful evaluation, RCP
emerged as the better alternative. RCP is
designed from the ground up as a plug-in
platform that will allow One Bench
applications to be written as Eclipse plug-
ins.

#����
������%��!
���!

�
��

Support for native windowing was also a
significant advantage. Applications built for
One Bench will meet users’ expectations for
familiarity. Taking advantage of One Bench
and Eclipse, the QTrade developers were
able to develop a flexible and easy-to-use UI
based on SWT and XML. Users can
structure new exotic financial products using
simple drag-and-drop operations to add
libraries to a canvas and add business logic,
and development times are reduced from
weeks to hours.

Graphical performance was another area
where RCP excelled. Previous development
of Swing based applications had involved
significant efforts to get performance from
the very functional table control with large
data sets and rapid update rates. A Snapper
based proof of concept has demonstrated
that an SWT-based table is capable of
maintaining a 400,000 row data set with
1000 updates per second without any special
coding tricks or unusual hardware. The IB
Technology Exotics & Hybrids group’s EIS
project saw similar benefits from RCP’s
performance.

��������
������
�&�����	��

������	���
�

Since the long-term plan is that One Bench
will become the platform of choice for
developers of desktop applications within
JPMorgan, the logistics of maintenance
were critical. For instance, not all users need
or are entitled to the same applications, or

'�

specific functionality within an application.
Roll out and updates had to be automated
based on a user’s credentials. Equally
important, when deploying multiple
applications to the same Java Virtual
Machine, there is always the risk that a
problem with updates to one application
would crash one or more critical
applications. “We needed to know that we
could recover in a hurry if an update went
wrong. Having applications down for any
amount of time on the trading floor is not an

option.”

These requirements made Eclipse’s Update
Manager central to their strategy for One
Bench and the components and applications
such as Snapper, EIS and QTrade that run
on it. Accessing the Update Manager’s API
directly, they can take complete
programmatic control of the update process.
For example, they by-pass end user input,
performing all application updates silently.

JPMorgan’s Single Sign On system was
originally designed for web-based
applications and they can integrate this
system with One Bench so that the system
knows exactly what updates to apply to each
desktop. Advanced features such as the
ability to roll an application back to a
previous release state, are also critical.
Skingle explains that “banks are very
conservative about any new technology, and
sharing applications on a JVM is a real
concern. Automated roll-backs in the

Eclipse Update Manager reduce our risk and
makes the open One Bench approach
feasible.” QTrade applications, for example,
are saved as XML files, and these are easily
deployed out to desktops using the Eclipse
Update Manager. As Paul Sampat, Vice
President with the IB Technology Exotics &
Hybrids group explains, “The One Bench
plus Update Manager combination lets us
develop and deploy quickly while reducing
our risk.”

JPMorgan used SWT and XML to develop the easy-to-use QTrade application authoring
tool. Users drag components to a canvas and apply business logic to develop applications
quickly and without programming.

(�

Indeed, with the Update Manager, an
application can be updated globally over a
weekend. If a problem is discovered when
employees start work on the following
Monday in the Far East, the situation can be
corrected immediately, and the rest of the
global workforce will never know there was
an issue.

Eclipse RCP gives JPMorgan what they
need: a plug-in friendly environment that
will encourage efficiency and lower costs,
and the control to ensure that software can
be managed effectively.

All of these development groups had
independently identified Eclipse as their

environment of choice. When they learned
of the One Bench initiative, they each knew
that it would make their tasks easier and
make sense for JPMorgan. One Bench
gives them a head start for their own
requirements, and as they contribute
components, they make it a more attractive
solution for developers throughout the bank.

With One Bench in place, they expect their
developers to develop the banking world’s
next killer-applications.

Ron Stone is a technology writer and
content management consultant based in
Ottawa, Canada

)�

