
© 2008 by Eike Stepper; made available under the EPL v1.0 | 03-18-2008

Connected Data Objects (CDO)
The EMF Model Repository

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Agenda

• Introduction

• Live Demonstrations

• Detailed Architecture

• Programming Examples

• Advanced Features

• Open Discussion

≤ 5 minutes

≤ 15 minutes

≤ 5 minutes

≤ 10 minutes

≤ 5 minutes

≥ 10 minutes

~ 50 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Introduction

• About the Author

• EMF Intro

� EMF Persistence Framework

� Issues with XML Files

• Distributed Shared Models

• What is CDO About?

≤ 5 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

About the Author

• Eike Stepper, Germany, Berlin

� Born in 1970

� Started programming in 1983

� Studied mathematics and computer science

� Founded first company ES-Computersysteme in 1991

� Consulting in dozens of IT projects

� First orthogonally persistent system in 2000 (C++)

• First version of CDO in 2003

� Contribution of CDO to Eclipse.org in 2004

� Complete rewrite with new design in 2007

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

EMF Intro

• With EMF you can (out of the box)

� Create Ecore models

� Configure generator models

� Generate Java code for

� Your Ecore model

� Command framework

� Eclipse UI (creation wizard and model editor)

� Use the EMF persistence framework to

� Serialize model instances to XML files

� Deserialize model instances from XML files

� Resolve model references across files

� And many, many other thingsG

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

EMF Persistence Framework

• Resource

� A named container for model instances

� URI + Contents

• Resource.Factory

� Creates specialized resource instances

� Default is XML / XMI

• ResourceSet

� Container for a set of resource instances

� Package registry for resolving model references

� URI converter for resolving resource URIs

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Issues with XML Files

• Limited resource size

� No lazy loading of instances

� No lazy loading of lists

• No unloading of instances

� Bad influence on garbage collection

� Influence on model design (containment)

• No concurrent modification of resources

� No fine grained locking

� No transactions

� No remote update notification

• Just don’t behave like multi user databases

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Distributed Shared Models

• Central persistent model repository

� Contains all models (packages and classes)

� Contains all instances (resources and regular objects)

� Represents a potentially huge object graph in form of

containment trees scattered across resources

� Manages remote client sessions

• Multiple remote clients share a common view of the

central persistent models and instances

� Represent partial views of the overall object graph

� Concurrently alter the state of the object graph

� Are immediately notified about modifications that happened in

the context of other sessions

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

What is CDO About?

• Overcomes all the issues with XML files

• Provides distributed shared models for EMF

• Integrates with the EMF persistence framework

• Uses Net4j to implement a network protocol

• Configures multiple repositories on the server

• Connects with heterogeneous back ends

• Uses OSGi at client and server side

• By the way

� “Connected” indicates that objects in a client session always

stay connected with their repository pendants

Introduction

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Live Demonstrations

• Developing a CDO Model

• Setting Up a CDO Server

• Using the CDO Client

≤ 15 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Developing a CDO Model

• Create an Ecore model

� Just as you are used to it

� No additional expenses to be met

• Derive a generator model

� Use the CDO Importer or the CDO Migrator

� Do it manually

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Setting Up a CDO Server

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Setting Up a CDO Server

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Setting Up a CDO Server

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Setting Up a CDO Server

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the CDO Client

Live Demonstrations

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Detailed Architecture

• Deployment Options

� Networked Remote Server

� Embedded Server

• Static Decomposition

� Server Components

� Client Components

• Component Interaction

� Committing a Transaction

� Demand Loading Objects

≤ 5 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Deployment Options - Networked

Detailed Architecture

CDO Client

CDO Protocol

Net4j TCP

Net4j

E
M

F

G
e

n
e

ra
te

d
 M

o
d

e
ls

OSGi / Eclipse

Client Applications

CDO Server

CDO Protocol

Net4j TCP

Net4j

OSGi / Eclipse
Backend

CDO Store

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Deployment Options - Embedded

Detailed Architecture

CDO Client

CDO Protocol

Net4j JVM

Net4j

E
M

F

G
e

n
e

ra
te

d
 M

o
d

e
ls

OSGi / Eclipse

Client Applications

CDO Server

Backend

CDO Store

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Static Decomposition - Server

Detailed Architecture

IRepository

IPackageManager

IRevisionManager

IResourceManager

ISessionManager

IStore

ISessions

CDORevisions

CDOPackages

Path Mappings

IStoreAccessors
creates

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Static Decomposition: Client

Detailed Architecture

CDOSession

CDOPackageManager

CDORevisionManager

CDOViews

CDOTransactions

CDORevisions

CDOPackages

CDOObjects

Deltas

extends

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Component Interaction – CDOStateMachine (1)

Detailed Architecture

PERSISTENT

TRANSIENT NEW DIRTY

PROXY

CLEAN

CONFLICT
invalidate

write

commit

read

reload

attach

detach

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Component Interaction – CDOStateMachine (2)

Detailed Architecture

PERSISTENT

TRANSIENT NEW
attach

detach

• No CDOID

• No CDOView

• No CDORevision

(state is in object)

• With CDOID

• With CDOView

• With CDORevision

(state is in revision)

• With Temp CDOID

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Client

Server

Client

Component Interaction - Committing

• Client adds/modifies CDOObjects

• Client transaction creates temporary IDs for new

objects and records change deltas

• Commit() sends new packages, new revisions and

revision deltas to the server

• Server passes data to the configured store

• Store remaps temporary IDs and persists the data

• Server sends back ID mappings

• Server notifies other sessions about invalidations

• Client transaction applies ID mappings

Detailed Architecture

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Client

Server

Client

Component Interaction – Demand Loading

• Client accesses an EReference

• CDORevision delivers target CDOID

• CDOView looks up target CDOObject

� Found → Finished

� CDORevisionManager looks up CDORevision

� Found → Creates new CDOObject, links it with revision, finished

� CDORevisionManager sends LoadRevisionRequest

� IRevisionManager looks up CDORevision

� If not found → Loads CDORevision from IStore and caches it

� IRevisionManager sends back CDORevision to client

� CDORevisionManager caches CDORevision

• Creates new CDOObject, links it with revision, finished

Detailed Architecture

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Programming

• Using a Managed Container

• Using the Server API

• Using the Client API

≤ 10 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using a Managed Container (1)
public interface IManagedContainer extends IContainer<Object>

{

public IRegistry<IFactoryKey, IFactory> getFactoryRegistry();

public IManagedContainer registerFactory(IFactory factory);

public List<IElementProcessor> getPostProcessors();

public void addPostProcessor(IElementProcessor postProcessor, boolean processExistingElements);

public void addPostProcessor(IElementProcessor postProcessor);

public void removePostProcessor(IElementProcessor postProcessor);

public Set<String> getProductGroups();

public Set<String> getFactoryTypes(String productGroup);

public IFactory getFactory(String productGroup, String factoryType);

public Object putElement(String productGroup, String factoryType, String description, Object element);

public Object removeElement(String productGroup, String factoryType, String description);

public Object getElement(String productGroup, String factoryType, String description);

public Object[] getElements(String productGroup, String factoryType);

public Object[] getElements(String productGroup);

public String[] getElementKey(Object element);

public void clearElements();

public void loadElements(InputStream stream) throws IOException;

public void saveElements(OutputStream stream) throws IOException;

}

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using a Managed Container (2)
<plugin>

<extension

point="org.eclipse.net4j.util.factories">

<factory

class="org.eclipse.net4j.internal.tcp.TCPAcceptorFactory"

productGroup="org.eclipse.net4j.acceptors"

type="tcp"/>

<factory

class="org.eclipse.net4j.internal.tcp.TCPConnectorFactory"

productGroup="org.eclipse.net4j.connectors"

type="tcp"/>

<factory

class="org.eclipse.net4j.internal.tcp.TCPSelectorFactory"

productGroup="org.eclipse.net4j.selectors"

type="tcp"/>

</extension>

<extension

point="org.eclipse.net4j.util.elementProcessors">

<elementProcessor

class="org.eclipse.net4j.internal.tcp.TCPSelectorInjector">

</elementProcessor>

</extension>

</plugin>

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using a Managed Container (3)
1 IManagedContainer container = IPluginContainer.INSTANCE;

2

3 IConnector connector = (IConnector)container.getElement(

4 “org.eclipse.net4j.connectors”,

5 “tcp”,

6 “localhost:2036”);

> TCPSelector [debug.lifecycle.dump] DUMP TCPClientConnector@8

> Connector.userID = null

> Connector.negotiator = null

> Connector.negotiationContext = null

> Connector.bufferProvider = BufferPool[4.096]

> Connector.receiveExecutor = java.util.concurrent.ThreadPoolExecutor@dd7404

> Connector.nextChannelID = 1

> Connector.connectorState = CONNECTED

> TCPConnector.selector = TCPSelector

> TCPConnector.controlChannel = Channel[Control]

> TCPConnector.host = localhost

> TCPConnector.port = 2036

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using a Managed Container (4)

// Turn on tracing

OMPlatform.INSTANCE.setDebugging(true);

// Prepare the standalone infra structure

// Not needed when running inside Eclipse

IManagedContainer container = ContainerUtil.createContainer();

Net4jUtil.prepareContainer(container); // Prepare the Net4j kernel

JVMUtil.prepareContainer(container); // Prepare the JVM transport

CDOServerUtil.prepareContainer(container); // Prepare the CDO server

CDOUtil.prepareContainer(container, false); // Prepare the CDO client

// Start the JVM transport

IAcceptor acceptor = JVMUtil.getAcceptor(container, "default");

// Open a JVM connection

IConnector connector = JVMUtil.getConnector(container, "default");

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the Server API

// Prepare store parameters

IMappingStrategy strategy = CDODBUtil.createMappingStrategy("horizontal");

IDBAdapter adapter = DBUtil.getDBAdapter("mysql");

IConnectionProvider provider = DBUtil.createConnectionProvider(dataSource);

// Create a DBStore

IStore store = CDODBUtil.createStore(strategy, adapter, provider);

// Create a repository

Map<String, String> props = new HashMap<String, String>();

props.put(Props.PROP_SUPPORTING_REVISION_DELTAS, "true");

props.put(Props.PROP_CURRENT_LRU_CAPACITY, "10000");

props.put(Props.PROP_REVISED_LRU_CAPACITY, "10000");

IRepository repository = CDOServerUtil.createRepository("repo", store, props);

// Start the repository

CDOServerUtil.addRepository(container, repository);

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Using the Client API
// Open an embedded connection

IConnector connector = JVMUtil.getConnector(container, "default");

// Open a session and register the model

CDOSession session = CDOUtil.openSession(connector, “repo", true);

session.getPackageRegistry().putEPackage(Model1Package.eINSTANCE);

// Start a transaction and create a resource

CDOTransaction transaction = session.openTransaction();

Resource resource = transaction.createResource("/my/big/resource");

// Work normally with the EMF resource

resource.getContents().add(getInputModel());

transaction.commit();

// Cleanup

session.close();

connector.disconnect();

Programming

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Advanced Features

• Models

• Optimizations

• Network Protocol

• Server Side

• DB Store

≤ 5 minutes

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Models

• Support for dynamic models

� just load .ecore file and commit to repository

• Support for legacy models

� for compiled models without access to .genmodel

Advanced Features

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Optimizations

• Sharing of objects between views/transactions

� Modeled state resides in the session

• Demand loading and unloading of objects

� Containment does not prevent laziness

• Transmission of only change deltas

� Currently from client to server

• Partial collection loading (chunking)

• Adaptable object pre-fetching

� Configurable per view

� Intelligent model usage analyzers

� Optionally done in background

Advanced Features

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Network Protocol

• Net4j based binary application protocol

� Buffered, non-blocking, asynchronous

• Pluggable transport layer

� NIO socket transport

� JVM embedded transport

• Pluggable fail over support

• Pluggable authentication

� Challenge/response negotiation

• Multiple acceptors per server

Advanced Features

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Server Side

• Multiple repositories per server

� Configurable storage adapter per repository

� Shipped with JDBC based O/R mapping adapter

� Known to work with an Objectivity OODB adapter

� Work on a Hibernate adapter is underway

� Configurable caching per repository

• Supported Environments

� OSGi and Eclipse

� Standalone applications

Advanced Features

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

DB Store

• Supports the auditing mode of the repository

• Pluggable mapping strategies

� Horizontal mappings

� Vertical mappings

� Different mapping modes for collections

• Pluggable SQL dialect adapters

� Derby adapter

� Mysql adapter

� Hsqldb adapter

Advanced Features

Connected Data Objects | The EMF Model Repository | © 2008 by Eike Stepper; made available under the EPL v1.0

Open Discussion

Thank you for listening!

http://wiki.eclipse.org/CDO

http://wiki.eclipse.org/Net4j

Questions?

Comments?

Suggestions?

