

 - 1 -

Chart Scripting

Functional Specifications

Draft 5: November 1, 2005

Abstract

This document describes the functional specifications of the Chart Scripting for
BIRT release 1 and 2.

Document Revisions

Draft Date Primary Author(s) Description of Changes

1 10/5/2005 David Michonneau Initial Draft

2 10/24/2005 David Michonneau Added Use Cases. Changed
start/finish names. Added Chart
Engine preparation API.

3 10/25/2005 David Michonneau Added sections about Chart Model
instances and script flow

4 10/28/2005 David Michonneau Minor corrections to preparation,
and diagram.

5 11/1/2005 David Michonneau Cleaned up script context
interface

Functional Specification (Name of Spec.)

 - 2 -

Contents

1. Introduction..3

2. Scripting functionalities..3
2.1 Scripting Language ..3
2.2 Script Context (v2) ...3
2.3 Script functions ..4

3. Chart model instances ..8

4. Scripting flow...8

5. JavaScript API..10
5.1 Global functions (deprecated in v2) ...10
5.2 External Scripting ...11
5.2.1 Example...11

6. Java API (v2) ..11

7. Chart Engine Preparation API (v2) ..12

8. BIRT Scripting integration (v2) ..12
8.1 Designer integration ...12
8.2 BIRT Context ...12
8.3 BIRT Script methods..13
8.4 OnPrepare Integration..13

9. Scripting use cases...13

Functional Specification (Name of Spec.)

 - 3 -

1. Introduction

Chart Scripting is used for customizing the output of the chart. Here is an example of
output that is done using chart scripting:

Based on the data values, the script changes the colors of the bars and shows the value.
More generally scripting allows the user to customize any aspect of the chart based on
real-time data, and that could be the series, the legends, the axes, the plot, etc…

This scripting is done at generation time. This is not to be confused with interactivity
scripting (viewing time)

2. Scripting functionalities

2.1 Scripting Language

Scripting is supported both in Java (from v2.0) and JavaScript (from v1.0). The Chart
engine will detect the type of scripting automatically at run-time, by trying to resolve the
script string in the model to a Java class, and assume JavaScript otherwise.

2.2 Script Context (v2)

An interface is available to allow the script to get access to common chart variables and
communicate with an external context. This is available in v2, both in Java and
JavaScript. It deprecates the JavaScript global functions.

Functional Specification (Name of Spec.)

 - 4 -

interface IChartScriptContext
{
 // returns a runtime instance of the chart or null if not available yet
 Chart getChartInstance();

 // returns the locale used by the engine
 Locale getLocale();

 // returns the external context
 Object getExternalContext();

 // returns a logger instance, to allow logging from script.
 Logger getLogger();

}

The Generator class will allow the external context to be passed by overloading the build
and render method, similarly to the ScriptableObject for JavaScript.

2.3 Script functions

Here are the list of functions the user can implement in JavaScript Note that the v1 ones
are deprecated in v2, and all the inactive ones in v1 will simply be removed from v2 (not
a breaking change since it was not working originally). Some new methods with new
arguments will be available in v2.

Most of the “after” methods are fully deprecated in v2, the purpose of those was usually
to restore the object changes by the “before” script, for further processing. This will be
automatically handled in v2.

Legend

 Inactive in v1, fully removed in v2

 Functional in v1 and v2. Deprecated in v2

 New in v2. Replaces some of deprecated functions

Scope Function Arguments v 1.x v 2.0 Description

Design onPrepare Chart, IChartScriptContext

- �

Called only once for
each chart design in
the report, before any
databinding
occurred. Styles are
already flattened in
the design.

startDataBinding - Inactive - -

beforeQueryExecution - Inactive - -

afterQueryExecution - Inactive - -

Data

beforeDataSetFilled Series, IDataSetProcessor,
IChartScriptContext

- �

Called before
populating the series
dataset using the
DataSetProcessor

Functional Specification (Name of Spec.)

 - 5 -

Scope Function Arguments v 1.x v 2.0 Description

beforeDataSetFilled Series, IDataSetProcessor

Inactive -

Called before
populating the series
dataset using the
DataSetProcessor

afterDataSetFilled Series, DataSet, IChartScriptContext
- �

Called after
populationg the
series dataset

afterDataSetFilled Series, DataSet
Inactive -

Called after
populationg the
series dataset

finishDataBinding - Inactive - -

beforeGeneration Chart, IScriptContext

- �

Called before
generation of chart
model to
GeneratedChartState

startGeneration Chart

� Deprecated

Called before
generation of chart
model to
GeneratedChartState
is started

beforeLayout Chart
� Deprecated

Called before block
layout is performed

afterLayout Chart
� Deprecated

Called after blocks
layout has been
performed

beforeComputations Chart, Object
� Deprecated

Called before
performing size
computations

afterComputations Chart, Object
� Deprecated

Called after
performing size
computations

Generation

finishGeneration GeneratedChartState

� Deprecated

Called when
generation to
GeneratedChartState
is completed

beforeRendering GeneratedChartState, IScriptContext
- �

Called before the
chart is rendered

startRendering GeneratedChartState

� Deprecated

Called when
rendering of the
GeneratedChartState
starts

Rendering

finishRendering GeneratedChartState
� Deprecated

Called after the
rendering is
completed

Block beforeDrawBlock Block, IScriptContext
- �

Called before
drawing the
outermost block

Functional Specification (Name of Spec.)

 - 6 -

Scope Function Arguments v 1.x v 2.0 Description

beforeDrawBlock Block
� Deprecated

Called before
drawing each block

afterDrawBlock Block
� Deprecated

Called after drawing
each block

beforeDrawPlot Inactive -

afterDrawPlot Inactive -

beforeDrawTitle Inactive -

Chart

afterDrawTitle Inactive -

beforeDrawLegend - Inactive -

afterDrawLegend - Inactive -

beforeDrawLegendEntry Label, IScriptContext
- �

Called before
drawing each entry in
the legend

beforeDrawLegendEntry Label
� Deprecated

Called before
drawing each entry in
the legend

Legend

afterDrawLegendEntry Label
� Deprecated

Called after drawing
each entry in the
legend

startComputeSeries Series
� Deprecated

Called before calling
compute() on the
Series renderers

finishComputeSeries Series
� Deprecated

Called after calling
compute() on the
Series renderers

beforeDrawSeries Series, ISeriesRenderer,
IScriptContext

- �
Called before
rendering Series

beforeDrawSeries Series, ISeriesRenderer
� Deprecated

Called before
rendering Series

afterDrawSeries Series, ISeriesRenderer
� Deprecated

Called after
rendering Series

beforeDrawSeriesTitle Series, Label, IScriptContext

- �

Called before
rendering the title of
a Series (only
available for
PieSeries)

beforeDrawSeriesTitle Series, Label

� Deprecated

Called before
rendering the title of
a Series (only
available for
PieSeries)

Series

afterDrawSeriesTitle Series, Label

� Deprecated

Called after
rendering the title of
a Series (only
available for
PieSeries)

Functional Specification (Name of Spec.)

 - 7 -

Scope Function Arguments v 1.x v 2.0 Description

beforeDrawMarkerLine Axis, MarkerLine, IScriptContext
- �

Called before
drawing each marker
line in an Axis

beforeDrawMarkerLine Axis, MarkerLine
� Deprecated

Called before
drawing each marker
line in an Axis

afterDrawMarkerLine Axis, MarkerLine
� Deprecated

Called after drawing
each marker line in
an Axis

beforeDrawMarkerRange Axis, MarkerRange
- �

Called before
drawing each marker
range in an Axis

beforeDrawMarkerRange Axis, MarkerRange
� Deprecated

Called before
drawing each marker
range in an Axis

Marker

afterDrawMarkerRange Axis, MarkerRange
� Deprecated

Called after drawing
each marker range in
an Axis

beforeDrawDataPoint DataPointHint, Fill, IScriptContext

- �

Called before
drawing each
datapoint graphical
representation or
marker

beforeDrawElement DataPointHint, Fill

� Deprecated

Called before
rendering each
datapoint graphical
representation
defined by the Series
and each marker

afterDrawElement DataPointHint, Fill

� Deprecated

Called after
rendering each
datapoint graphical
representation and
each marker

beforeDrawDataPointLabel DataPointHint, Label, IScriptContext
- �

Called before
rendering the label
for each datapoint

beforeDrawDataPoint DataPointHint, Label
� Deprecated

Called before
rendering the label
for each datapoint

DataPoint

afterDrawDataPoint DataPointHint, Label
� Deprecated

Called after
rendering the label
for each datapoint

beforeDrawAxis - Inactive -

afterDrawAxis - Inactive -

Axis

beforeDrawAxisLabel Axis, Label, IScriptContext
- �

Called before
rendering each label
on a given Axis

Functional Specification (Name of Spec.)

 - 8 -

Scope Function Arguments v 1.x v 2.0 Description

beforeDrawAxisLabel Axis, Label
� Deprecated

Called before
rendering each label
on a given Axis

afterDrawAxisLabel Axis, Label
� Deprecated

Called after
rendering each label
on a given Axis

beforeDrawAxisTitle Axis, Label, IScriptContext
- �

Called before
rendering the Title of
an Axis

beforeDrawAxisTitle Axis, Label
� Deprecated

Called before
rendering the Title of
an Axis

afterDrawAxisTitle Axis, Label
� Deprecated

Called after
rendering the Title of
an Axis

3. Chart model instances

There are different parameters to access the chart model, this section details the
characteristics for each of them.

Design Chart : This is the chart design model. It holds all design properties of the chart,
any change to it will reflect in all runtime instances of the chart. It is also bound to data
(except in onPrepare), so it holds chart-formatted data.. The data is cleared out before
being bound again (which can happen inside a repeater control such as a table).

Runtime Chart: this is a deep copy of the chart design model. There is a one-to-one
correspondence between runtime chart and chart instances in the report. So if you have
a table with a chart in the group header, you will have one design chart, and as many
runtime charts as you have groups.

GeneratedChartState: this holds a reference to the runtime chart, the computations, the
device renderer, the display server, runtime context, etc…

4. Scripting flow

This sequence diagram shows the flow of the Chart script calls. This diagram is valid
both for BIRT or Standalone Charts, the only BIRT specific class being the QueryHelper.

Functional Specification (Name of Spec.)

 - 9 -

Generator

prepare()

Script

onPrepare()

build()

API Client

beforeDatasetFilled()

generateRuntimeSeries()

QueryHelper

beforeGeneration()

render()

beforeRendering()

beforeDrawBlock()

beforeDrawLegendEntry()
[For Each Series/

Category]

[For Each

Series]

[For Each Block]

beforeDrawSeries()

beforeDrawSeriesTitle()

[For Each Series]

[For Each

Data Point] beforeDrawDataPoint()

beforeDrawDataPointLabel()

[For Each Axis]
[For Each

Marker Line]

beforeDrawMarkerLine()

[For Each Axis] beforeDrawAxisTitle()

beforeDrawAxisLabel()[For Each

Data Point]

[For Each Axis] [For Each

Marker Range]

beforeDrawMarkerRange()

Functional Specification (Name of Spec.)

 - 10 -

5. JavaScript API

The script method’s arguments refer to Java classes associated with the runtime model.

e.g. fill is defined by class org.eclipse.birt.chart.model.attribute.Fill

label is defined by class org.eclipse.birt.chart.model.component.Label

axis is defined by class org.eclipse.birt.chart.model.component.Axis

 … etc

If a callback JavaScript method is undefined, the internal script handler will not attempt
to call it.

The following code snippet illustrates how to register JavaScript in the model:

Chart cm = …;
cm.setScript(“
function beforeDrawDataPoint(dataPointHints, label)
 { val = dataPointHints.getOrthogonalValue();
 clr = label.getCaption().getColor();
 if (val < 0)
 clr.set(255, 0, 0);
 else
 clr.set(0, 0, 255); }
”);

This JavaScript method would attempt to set the text color of a rendered data point to
red if the orthogonal value being plotted is negative and to blue if the value is zero or
positive.

5.1 Global functions (deprecated in v2)

In addition, several global functions/objects are available. Note that all the globals
variables are deprecated in v2.

Chart getDesignTimeModel()

Chart getRunTimeModel()

GeneratedChartState getGeneratedChartState()

Locale getLocale()

Object clone(Object) // to clone EMF objects if needed

 logger (a globally accessible object capable of logging values using

the default logging framework) e.g.

logger.logFromScript(“running from script”)

Functional Specification (Name of Spec.)

 - 11 -

5.2 External Scripting

In addition, if an existing library of functions contained in an externally written scriptable
instance is to be plugged into the chart library for data definition access, this is possible
via the Generator’s build method as shown:

 GeneratedChartState build(IDisplayServer, Chart, Scriptable
scParent, Bounds, RunTimeContext) throws GenerationException

Note: The scParent argument represents an external scriptable instance that is to be

used in conjunction with the chart callback scripts. Hence, library functions defined in
scParent may be invoked through the chart callback scripts.

This Scriptable instance corresponds to the External context in the Java API.

For v1, the Scriptable is accessible directly as global variables. In v2, this behaviour is
deprecated, it should be accessed as the External Context in IChartScriptContext.

5.2.1 Example

Let’s take an example where the chart engine is embedded in a custom application (not
BIRT) that has a session object. In order to access this session object inside a script,
the user creates a class called JavaScriptSession, implementing Scriptable.

class JavaScriptSession implements Scriptable
{
 // Define a getUserId() javascript method
 …
}

Then the user passes an instance of the JavaScriptSession through the
Generator.build() method. In the chart script it is then possible to access the user ID::

function beforeDrawDataPoint(hint, fill, context)
{
 var user = getUserId();
 …
}

6. Java API (v2)

In Java, an interface IChartItemScriptHandler will need to be implemented. This
interface has got all the methods defined in the table for v2.0 (the deprecated JavaScript
methods are not available).

An adapter implementation ChartItemScriptHandler is also available to make it easy for
the user to only implement the needed methods.

In order to register this Java class in the model, simply put the fully qualified java class
name in the setScript() method (such as “mypackage.mycomponent.MyClass”). Here is
an example

Chart cm=…

cm.setScript(“mypackage.mycomponent.MyClass”);

It is the chart engine caller responsibility to make sure the specified class will be
available in the class path by the chart engine at run-time. The class will then be

Functional Specification (Name of Spec.)

 - 12 -

automatically instantiated by reflection, with one instance of the class for each chart
runtime instance. If the Chart is embedded in a BIRT report, this will be provided by the
BIRT Report Library framework.

7. Chart Engine Preparation API (v2)

A new method prepare will be available in the Generator from v2:

RunTimeContext Generator.prepare(Chart designModel, Object ExternalContext,
Locale locale);

This method will perform the following tasks:

1- Create and return a runtime context, necessary for the Generator.build method.

2- Enable the Scripting on the runtimeContext object (internally using ScriptHandler),
creating the IChartScriptContext and attaching the ExternalContext to it. The
External context is optional and can be null.

3- Call the onPrepare script event function.

Note that this method must be called before Generator.build(), and should only be called
once per design model. The call is optional, to ensure upward compatibility of existing
Chart API users code.

8. BIRT Scripting integration (v2)

8.1 Designer integration

Inside BIRT, it will be possible to use the Report Designer Script Editor to edit the
JavaScript or Java Chart script. The IReportItem interface will have additional methods
to allow this integration:

/*
* This returns the interface used for scripting
*/
Class getScriptInterface();
/*
* The string content is either inline javascript, or a fully
qualified java class name
*/
void setScript(String);
String getScript();

8.2 BIRT Context

The BIRT script context for the report can be passed through the Chart Script using the
external context in the Generator.

Here is an example:

ReportContext context = …
Generator.instance().build(ids, cmDesignTime, context, bo, rtc)

Then the script writer will need to cast the external context to the ReportContext.The
Application context can then be accessed through the ReportContext:

Functional Specification (Name of Spec.)

 - 13 -

For instance

public void beforeDrawDataPoint(DataPointHint hint, Fill fill,
IScriptContext context)
{
 ReportContext rct = (ReportContext)context.getExternalContext();
 Object appContext = rct.getAppContext();
…
}

8.3 BIRT Script methods

In BIRT, the report items define three main methods: onPrepare, onCreate and
onRender. There is no direct correspondence with chart script methods since the
generation flow is slightly different, and the chart has its own engine and script engine.
Therefore the chart execution flow is independent of other report items.

The chart script methods provide naturally enough granularity for scripting before data
binding is done, before the chart is generated, and before it is rendered (respectively
beforeDataSetFilled, startGeneration, startRendering). It even provides additional
granularity on the chart elements, for each data point being rendered.

8.4 OnPrepare Integration

The interface IReportItemGeneration will introduce a new prepare() method in which the
Generator.prepare() method will be called. As a result, the onPrepare() script function
will behave in a similar fashion to other report items onPrepare().

9. Scripting use cases

This section details how to use the script methods for typical scripting use cases:

Use Case description Script method to use Script description

change the bar color
based on its value

beforeDrawDataPoint(DataPointHint,
Fill, IChartScriptContext).

Check the data, and change the fill
accordingly to the data value.

Custom series values afterDataSetFilled(Series, DataSet,
IChartScriptContext)

or

beforeGeneration(Chart,
IChartScriptContext)

Change some of DataSet values
after it has been filled.

or

Access the runtime Series from the
Chart model and change its
DataSet.

Custom axis label names,
mapping value to string

beforeDrawAxisLabel(Axis, Label,
IChartScriptContext)

This is called for each label drawn
on the Axis. You can change the
label value in it.

Functional Specification (Name of Spec.)

 - 14 -

Use Case description Script method to use Script description

Send email or trigger
some external action
based on values on a
point in the series

beforeDrawDataPoint(DataPointHint,
Fill, IChartScriptContext)

Check the DataPointHint data
value to perform an external action.
In Java you need to make sure you
can resolve the external class you
are calling, in JavaScript you need
to use the external scripting as
explained in the document

Show/hide series base on
user preference

beforeDrawSeries(Series,
ISeriesRenderer, IChartScriptContext)

or

onPrepare(Chart, IChartScriptContext)

Change the visibility property of the
series from a preference value you
can get from the context.

or

Access the series to be changed in
the Chart model design, and
change its visibility (this has the
advantage of being done only one
time per design).

