

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 1/9

1. ATL Transformation Example: KM3 to Measure

The KM3 to Measure example describes measurement on KM3 meta-models, using

metrics defined as ATL libraries.

1.1. Transformation Overview

The aim of this transformation is to collect measurement data on KM3 meta-models.

KM3

by URI

MOF

Measure

cT cT

example-KM3

.ecore

example-Measure

.ecore

cT cT

example

.km3

KM32Measure

.atl

KM3

Projector

EMF

FLAME4KM3

.atl

MOOD4KM3

.atl

QMOOD4KM3

.atl

EMOOSE4KM3

.atl

M3

M2

M1

Text

Figure 1: Overview of the transformation

KM3 meta-models can be measured with ATL transformations. A meta-model is

selected from the zoo [3] in KM3 format, then injected as a KM3 model (with the predefined

injector) and used as the input model of the transformation. The transformation input and

output meta-model handlers are KM3 and Measure. The run of the transformation

KM32Measure produces a collection of measurement data.

We obtain an output model of measures (which keeps the hierarchy of the meta-model).

The metrics used in the transformation are implemented with ATL libraries and will be

explained in an upcoming section.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 2/9

2. Meta-models

2.1. KM3

The Kernel MetaMeta-model (KM3) meta-model is available in [2].

2.2. Measure

The Measure meta-model is used to stored the data collected after a model

measurement.

+elementName : String

+elementType : ElementKind

MeasureSet

+KM3

+UML2

«enumeration»

ModelKind

Measure

+value : Integer

IntegerMeasure

+name : String

+desc : String

+preferredValue : String

Metric

+name : String

+desc : String

Category

+metric

1*

+parent1

+subsets

*

+owner1

+measures*

+value : Double

PercentageMeasure

+value : Double

DoubleMeasure

+metamodel

+model

+package

+interface

+class

«enumeration»

ElementKind

+modelType : ModelKind

RootMeasureSet

+root1
+mesureSets*

+root

1 +categories1..*

+category1

+metrics1..*

Figure 2: Measure meta-model

A measure model is in the following way made up: the root is a set of measure

(RootMeasureSet) which contains information on the type of measured model (modelType

among KM3 or UML2), a set of categories of metric and sets of measure for each model

element measured. A category (Category) corresponds to a metric set with a name and a

description (desc) (an acronym and its definition). A category gathers one or more metric

(Metric) also defined with a name and a description. A default predicate is also associated

(preferredValue), it is the desired values for the metric (for example ≠ 0 or > 75). A set of

measure (MeasureSet) described measurements performed on a model element

(elementName) of a given type (elementType among meta-model, model, package, interface

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 3/9

or class). The set of measure are structured between them, for example a set of measure on a

package will contain the set of measure of the classes that this package contains. A measure

(Measure) is associated to a metric and is declined in several versions. Measures with an

integer, real or percentage value (respectively IntegerMesasure, DoubleMeasure and

PercentageMeasure).

3. Transformation from KM3 to Measure

3.1. Rules specification

These are the rules to collect measurement data from a KM3 model to a Measure model.

 For the whole model, the following elements are created:

o A RootMeasureSet element is created with:

 A type of model measured (modelType set to #KM3).

o For each category implemented, the following elements are created:

 A Category element with :

 A name and a description.

 The created Category element is linked to the RootMeasureSet.

o For each metric implemented for a category, the following elements are

created:

 A Metric element with:

 A name and a description.

 A mandatory preferred value.

 The created Metric element is linked to a Category element.

The measure level determinates the metrics and categories that are registered.

 For each Package element, the following elements are created:

o A MeasureSet element with the name and the type of the Package element

measured.

o The created MeasureSet element is linked to the MeasureSet created for his

owner Package element.

o If the Package element contains Class elements, the following elements are

created:

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 4/9

 An IntegerMeasure, DoubleMeasure or PercentageMeasure element,

for each Metric element created and defined for package level.

o If the Package element is a root package :

 It is linked to the RootMeasureSet.

 For each Class element, the following elements are created:

o A MeasureSet element with the name and the type of the Class element

measured.

o The created MeasureSet element is linked to the MeasureSet created for his

owner Package or Class (nested classifier) element.

o An IntegerMeasure, DoubleMeasure or PercentageMeasure element, for each

Metric element created and defined for class level.

3.2. ATL code

This ATL code for the KM32Measure transformation consists in 4 helpers and 9 rules.

The transformation uses the metrics libraries defined in section 4.

The attribute helper measureLevel is used to define the type of model elements

measured. For example, at package level (#package), only metrics defined for packages will

be used. At class level (#class), both packages and classes metrics will be used.

The two maps CategoryByName and MetricByName are used to register the categories

of metrics and the metrics implemented.

The entrypoint rule Metrics is used to fill the two previous maps, before processing

measures. The metrics and categories registered depend on the measure level.

The rule Package2MeasureSet is called if the package or class level is enabled. If the

package contains some classes, measures will be performed for the metrics defined for

package level.

The rule Class2MeasureSet is called if the class level is enabled. Measures are

performed for each metrics defined for class level.

The called rules Category, Metric and MetricWithPreferredValue are used in the

entrypoint rule to register the implemented categories and metrics with mandatory preferred

value.

The called rules IntegerMeasure, DoubleMeasure and PercentageMeasure store the

value for a metric given.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 5/9

4. Metrics Libraries

4.1. FLAME for KM3 Library

4.1.1. FLAME (Formal Library for Aiding Metrics Extraction)

The functions of this library are defined in OCL language in [4] and [5] for the

UML 1.3 meta-model. They have been adapted to fit with the KM3 meta-model. The

functions that deal with operation, overridden feature and visibility feature have been omitted.

Additional functions on references have been implemented.

Attributes have been mapped as KM3 attributes and KM3 containment references.

Additional helpers on KM3 references (non containment) have been implemented.

4.1.2. ATL code

This ATL code for the FLAME4KM3 library consists in 52 helpers.

4.2. MOOD for KM3 Library

4.2.1. MOOD (Metrics for Object-Oriented Design) and MOOD2

Name MOOD::AIF - Attributes Inheritance Factor

Informal definition Quotient between the number of inherited attributes in all classes of the

package and the number of available attributes (locally defined plus

inherited) for all classes of the current package.

Name MOOD::RIF - References Inheritance Factor

Informal definition Quotient between the number of inherited references in all classes of the

package and the number of available references (locally defined plus

inherited) for all classes of the current package.

Name MOOD::CCF - Class Coupling Factor

Informal definition Quotient between the actual number of coupled class-pairs within the

package and the maximum possible number of class-pair couplings in

the package. This coupling is the one not imputable to inheritance.

Name MOOD::ICF - Internal Coupling Factor

Informal definition Quotient between the number of coupling links where both the client

and supplier classes belong to the current package and the total number

of coupling links originating in the current package.

Name MOOD2::IIF - Internal Inheritance Factor

Informal definition Quotient between the number of inheritance links where both the base

and derived classes belong to the current package and the total number

of inheritance links originating in the current package.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 6/9

4.2.2. ATL code

This ATL code for the MOOD4KM3 library consists in 5 helpers.

The implemented metrics from the MOOD and MOOD2 sets only depend on the

FLAME functions and are list above. These metrics are defined for package level.

4.3. EMOOSE for KM3 Library

4.3.1. MOOSE (Metrics for Object-Oriented Software Engineering) and EMOOSE

(Extended MOOSE)

Name MOOSE::WRC - Weighted References per Class

Informal definition The sum of complexities of the references in the current class. If all

reference complexities are considered to be unique, WRC is equal to the

number of references.

The authors do not propose any algorithm for calculating the

complexities of references. As such, in the formalization, the

complexities were considered unitary.

Name MOOSE::DIT - Depth of Inheritance Tree

Informal definition The length of the longest path of inheritance from the current class to

the root of the tree.

Name MOOSE::NOC - Number Of Children

Informal definition The number of classes that inherit directly from the current class.

Name MOOSE::CBO - Coupling Between Objects

Informal definition The number of other classes that are coupled to the current one. Two

classes are coupled when references declared in one class use references

or instance variables defined by the other class.

Or used as a type or in reference by other classes.

Name EMOOSE::SIZE2

Informal definition Number of local attributes and references defined in the class.

The metric SIZE 1 is code dependant so not adapted to our problem.

4.3.2. ATL code

This ATL code for the EMOOSE4KM3 library consists in 5 helpers.

The implemented metrics from the MOOSE and EMOOSE sets only depend on the

FLAME functions and are list above. These metrics are defined for class level.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 7/9

4.4. QMOOD for KM3 Library

4.4.1. QMOOD (Quality Model for Object-Oriented Design)

Name QMOOD::DSC - Design Size in Classes

Informal definition Count of the total number of classes in the design.

Name QMOOD::NOH - Number of Hierarchies

Informal definition Count of the number of class hierarchies in the design.

Name QMOOD::NIC - Number of Independent Classes

Informal definition Count of the number of Classes that are not inherited by any Class in the

design.

Name QMOOD::NSI - Number of Single Inheritance

Informal definition Number of Classes (sub classes) that use inheritance in the design.

Name QMOOD::NMI - Number of Multiple Inheritance

Informal definition Count of the number of instances of multiple inheritance in the design.

Name QMOOD::NNC - Number of Internal Classes

Informal definition Count of the number of internal classes defined for creating

generalization-specialization structures in class hierarchies of the

design.

Name QMOOD::NAC - Number of Abstract Classes

Informal definition Count of the number of classes that have been defined purely for

organizing information in the design.

Name QMOOD::NLC - Number of Leaf Classes

Informal definition Count of the number of leaf classes in the hierarchies of the design.

Name QMOOD::ADI - Average Depth of Inheritance

Informal definition The average depth of inheritance of classes in the design. It is computed

by dividing the summation of maximum path lengths to all classes by

the number of classes. The path length for a class is the number of edges

from the root to the class in an inheritance tree representation.

Name QMOOD::AWI - Average Width of Inheritance

Informal definition The average number of children per class in the design. The metric is

computed by dividing the summation of the number of children over all

classes by the number of classes in the design

Name QMOOD::ANA - Average Number of Ancestors

Informal definition The average number of classes from which a class inherits information.

Name QMOOD::MAA - Measure of Attribute Abstraction

Informal definition The ratio of the number of attributes inherited by a class to the total

number of attributes in the class.

Name QMOOD::MRA - Measure of Reference Abstraction

Informal definition The ratio of the number of references inherited by a class to the total

number of references in the class.

Name QMOOD::MOA - Measure of Aggregation

Informal definition Count of the number of data declarations whose types are user defined

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 8/9

classes.

Name QMOOD::MRM - Modeled Relationship Measure

Informal definition Measure of the total number of attribute and parameter based

relationships in a class.

Name QMOOD::NOA - Number of Ancestors

Informal definition Counts the number of distinct classes which a class inherits.

Name QMOOD::NOR - Number of References

Informal definition Count of all the references defined in a class.

Name QMOOD::NOD - Number of Attributes

Informal definition Number of attributes in the class.

Name QMOOD::NAD - Number of Abstract Data Types

Informal definition Number of user defined objects used as attributes in the class and which

are necessary to instantiate an object instance of the (aggregate) class.

Name QMOOD::CSM - Class Size Metric

Informal definition Sum of the number of references and attributes in the class.

Name QMOOD::DCC - Direct Class Coupling

Informal definition Count of the different number of classes that a class is directly related

to. The metric includes classes that are directly related by attribute

declarations and references.

Name QMOOD::MCC - Maximum Class Coupling

Informal definition This metric not only includes classes that are directly related to a class

by attributes and references, but also classes that are indirectly related

through the directly related classes.

Name QMOOD::DAC - Direct Attribute Base Coupling

Informal definition This metric is a direct count of the number of different class types that

are declared as attribute references inside a class.

Name QMOOD::DRC - Direct Reference Base Coupling

Informal definition This metric is a direct count of the number of different class types that

are declared as references inside a class.

Name QMOOD::CCD - Class Complexity Based on Data

Informal definition Computes complexity based upon the number of components

(attributes) that are defined in the class. All component declarations are

resolved to the basic primitives (integers, doubles and characters). The

metric value is a count of the number of primitives.

4.4.2. ATL code

This ATL code for the QMOOD4KM3 library consists in 25 helpers.

The implemented metrics from the QMOOD set only depends on the FLAME functions

and are list above. These metrics are defined both for package and class levels.

ATL Transformation Example

Author

Éric Vépa

evepa@sodius.com

KM3 to Measure

August 30th , 2007

__

 Page 9/9

5. References

[1] ATLAS (ATLantic dAta Systems) Official Webpage: http://www.sciences.univ-

nantes.fr/lina/ATLAS/

[2] The Kernel MetaMetaModel (KM3) Manual:

http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf

[3] The Atlantic Zoo: http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

[4] Baroni, A.L.: Formal Definition of Object-Oriented Design Metrics. Master Thesis, Vrije

University, Brussel, Belgium, 2002.

[5] Baroni, A.L. and Abreu, F.B.: A Formal Library for Aiding Metrics Extraction. In: Workshop

on Object-Oriented Reengineering (ECOOP’03), Darmstadt, Germany, July 2003.

http://www.sciences.univ-nantes.fr/lina/ATLAS/
http://www.sciences.univ-nantes.fr/lina/ATLAS/
http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

