Dali Java Persistence Tools
User Guide

Release 1.0.0 for Eclipse

May 2007

Dali Java Persistence Tools User Guide

Copyright © 2006, 2007 Oracle. All rights reserved.

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless otherwise indicated
below, the Content is provided to you under the terms and conditions of the Eclipse Public License Version
1.0 ("EPL"). A copy of the EPL is available at http:/ /www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program” will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being redistributed
by another party ("Redistributor") and different terms and conditions may apply to your use of any object
code in the Content. Check the Redistributor's license that was provided with the Content. If no such license
exists, contact the Redistributor. Unless otherwise indicated below, the terms and conditions of the EPL still
apply to any source code in the Content.

Contents

Getting started

1.1 Requirements and installation ..o 1-1
1.2 Dali QUICK STATt ..ot 1-1
1.2.1 Creating a NewW PIOJECEcciiiiiiiiiiiiiiciic s 1-2
1.2.2 Creating a Java persistent entity ..., 1-3
1.2.3 Mapping an eNtity ..o 1-6
1.3 Dali basic tUtorial........ccoviiiiiiiiiiiii s 1-7
1.3.1 Generate the tutorial database schema............cccccccooeiiiiiin, 1-8
1.3.1.1 Create a database CONNECHION........c.ccvueueueuiriririecirccce e 1-8
1.3.2 Create a JPA ProJect. ... 1-9
1.3.3 Create persistent Java entities...........ccoceeeiiiiiiiii 1-10
1.3.3.1 Add fields to the entities.........ccoveuiiririeieiiniricccece e 1-11
1.3.3.2 Associate the entity with a database table ..o 1-11
1.3.4 Create OR MapPINgGScccoeueieiiieieiiiieieicicie e 1-12
1.3.4.1 Create ID MapPiNgSccovvveiimiiiiiiiiiiiiet e 1-12
1.3.4.2 Create basic MaAPPINGSccceeimiuiiiimiriieiiieieieeeereeee et neneees 1-14
1.3.4.3 Create one-t0-0one MapPings.......ccccceveieieieieieieinieicieeee s 1-16
1.3.4.4 Create one-to-many MapPINgsccoceeeveiriiiiriiininiee e 1-17
1.3.4.5 Create many-to-one MapPingsccccccveeiviniiiiiiiniii s 1-18
1.3.4.6 Create version MappPings......c.cceieveeeieieinineinieiee e 1-19
Concepts
2.1 Understanding Java persiStence ..ot 2-1
22 Understanding OR mMappingscccccevuriririniniiiiiiiiiinirneecsrsessssssesessssss s 2-1
2.3 Understanding EJB 3.0 Java Persistence APL............cccooiiiiiiiiiiiicens 2-2
2.3.1 The persistence.Xml file...........cooouiiiiiiiiiii 2-2
2.3.2 The ormXMI fIle ...cviviiiiiiicc e 2-2
Tasks
3.1 Creating a New JPA PIOJECt......ccociiiiiiiiiiiiiiicicccc s 3-1
3.2 Managing the persistence.xml file..........c...ocoooiiiiii 3-3
3.2.1 Working with persistence.xml fileccccccoeviiiiiinnii, 3-4
3.2.2 SyNchronizing ClaSses..........ccccuiuiiiiiiiiiiiiiiiiiic s 3-4
3.3 Managing the orm.xml fileccoouoiiiiiii 3-5
3.3.1 Working with orm.xml file..........cccoiiii 3-5

3.4 Adding persistence t0 @ Class ..o 3-6

3.4.1 ENEEY oo 3-6
3.4.2 Embeddable........c.cooiii e 3-7
3.4.3 Mapped SUPEICIASScovvviiiiiiiicicii s 3-8
3.5 Specifying additional tables ..o 3-8
3.6 Specifying entity iNheritance...........cccocciiiiiiiiiiiccece e 3-9
3.7 Mapping an etycocoeiiiiiiiiii s 3-11
3.7.1 Basic MapPINgcooeveiiiiicici s 3-11
3.7.2 Embedded Mapping......ccccceeeerrriiiiciccreeeeeee s 3-12
3.7.3 Embedded ID MapPingcccoeveeiiiiiiiiiiiiiciciccceec s 3-13
3.74 ID MaPPING ..c.ctiiitiiiieieicieie s 3-13
3.7.5 Many-to-many MapPing........ccoveeiriiiiiiiii s 3-15
3.7.6 Many-t0-0ne MAPPINEGccvvverrririeiiiiiieiseeie s 3-16
3.7.7 One-to-many MapPiNg.......cccceereiiieiiiniiieieie e 3-17
3.7.8 One-t0-0Ne MAPPING ...covviriiiiriiiiiii s 3-18
3.7.9 Transient MaPPINGccoveveriiriniecec s 3-19
3.7.10 Version MapPPINGcoceiviviuiiiiiiiiiiiiitiieietic it 3-19
3.8 Generating entities from tables ... 3-20
3.9 Validating mappings and reporting problems...........ccccooviiiiniiiiiciiene 3-21
3.9.1 EITOT M@SSAZESvvviiiiittt e 3-21
3.9.2 Warning MESSAESccvvviviuiiiiiiiiiiic s 3-23
3.10 Modifying persistent project properties ... 3-23
Reference

41 WIZATAS. .. 4-1
4.1.1 Create New JPA Project Wizard..........ccccoeiiiiiiiiiiiiiiies 4-1
4111 New JPA Project Page ... 4-1
41.1.2 JPA FACet PAZE ...cvovviiiiii s 4-2
4.2 Property Pages......cccoocueieieiiiiiciieic s 4-2
4.21 JPA Details View (fOr €NtIIES)cceeiririirierieieieieieteieriee sttt esseseseseeesassessessesenns 4-3
4211 General INformationcccevviiiiiiiiiii 4-3
4212 Secondary table information...........cccccciiiiiiiiiiiii 4-3
4213 Inheritance INfOrMAationcccceuiueuiiriiiiiiiiecce e 4-3
422 JPA Details view (fOr attriDULES)ccuevuerierierieieiiiieiereseeseee ettt 4-4
4221 General INformationcoeueiirriiciiiccece e 4-4
4222 Join Table INfOrmMationcceciviririrerieieteeeeete ettt se e sre s b sessenees 4-6
4223 Join Columns INfOrmMation..........coeeerererieiereeeee ettt 4-7
4224 Primary Key Generation information.............ccccccccoeciiiiniiiniiiiiccceeenas 4-7
4.2.3 JPA Details view (fOr O XMI)....cc.ccveieieieiiieieiireres ettt esaees 4-8
4.2.31 General iNformation ... 4-8
4232 Persistence Unit informationc.cccccoevreeieininecinniieeieeeecereereeeesaeseeeeen 4-8
424 JPA SEIUCEUTE VIEW ..eeenvieiieiieieeeeee sttt sttt ettt e e see e s e s e e ssesseensassaensesseensenseenes 4-9
4.3 PreferenCescoviviiiiiiiiiiiiicccc s 4-9
4.3.1 Project Properties page — JPA OPtionsccccovviiiiiiiiniiiiiiicccecnnes 4-9
4.4 DHALOGS ... 4-10
4.441 Generate Entities from Tables dialog..........cccoovueviiiiiieiiiiiice e, 4-10

442 Edit Join Columns Dialog.......c.cccoeuiiiiiiiiiiiiiiiiiciiccccs 4-10

4.5 JPA Development PEISPECtiVEccccccviviiiiiiiiiiiiiiiiiiiciecece e 4-11

4.6 ICONS ANA DULLONScvviiieiecieeteete ettt ettt sve e s teeae s be e b e s be e b e sreensenseeas 4-11
4.6.1 a0 4TSRS 4-11
4.6.2 BULEOMNS .ttt ettt sttt et e e ba e s be e bae et e e baesaaeenrs 4-12
4.7 Dali Developer Documentationc.ccueuiiieiiiiciccc e 4-13

5 Tips and tricks

6 What’s new

6.1 Generate Persistent Entities from Tables wizardccccocoeiiiiniiiiiiiniiiiiiis 6-1

6.2 Create and Manage the persistence.Xxml fileccccccciiiiiiiiiniiiceeeeae 6-1

6.3 Create and Manage the orm.xml file............cooiiiiiii 6-2
7 Legal

7.1 About this CONtENt........ooiiiiiiii s 7-1
Index

vi

1

Getting started

This section provides information on getting started with the Java Persistence Tools.
= Requirements and installation

= Dali quick start

= Dali basic tutorial

For additional information, please visit the Dali home page at:
http://www.eclipse.org/webtools/dali/main.php/.

1.1 Requirements and installation

Before installing Dali, ensure that your environment meets the following minimum
requirements:

s Eclipse 3.3 (http://www.eclipse.org/downloads)
s Java Runtime Environment (JRE) 1.5 (http://java.com)
» Eclipse Web Tools Platform (WTP) 2.0 (http://www.eclipse.org/webtools)

= Java Persistence API (JPA) for Java EE 5. The reference implementation can be
obtained from:

https://glassfish.dev.java.net/downloads/persistence/JavaPersistence.html

Refer to http://www.eclipse.org/webtools/dali/gettingstarted
main.html for additional installation information.

Review the Dali quick start and Dali basic tutorial to build your first Dali project.

1.2 Dali quick start

This section includes information to help you quickly start using Dali to create
relational mappings between Java persistent entities and database tables.

s Creating a new project
s Creating a Java persistent entity
= Mapping an entity

The Dali basic tutorial contains detailed procedures for building you first Dali project.

Getting started 1-1

Dali quick start

1.2.1 Creating a new project
This quick start shows how to create a new JPA project.
1. Select File > New > Project. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click Next. The Create a
Java Project dialog appears.

Figure 1-1 New JPA Project

& New JPA Project |:|@®

IPA Project J F’ﬂ?
Configure JPA project settings, . \/
—
Project name: |
Project contents:
Use default
Targek Funtimne
|Oracle OC4] Standalone 10.1.3 » | [New...]
Configurations
| <cuskom = b’ |
Hink: Get starked quickly by selecting one of the pre-defined project configurations.
EAR Membership
[l add project ko an EAR

3. On the Create a JPA Project dialog, enter a Project name (such as QuickStart).

4. Select your Target Runtime (such as Apache Tomcat) and click Next. The Project
Facets dialog appears.

5. Verify that the Java Persistence 1.0 facet is selected and click Next. The JPA Facet
dialog appears.

Note: You must configure your project to use Java version 5.0 (or
higher). See "Requirements and installation" on page 1-1 for more
information.

6. On the JPA Facet dialog, select your vendor-specific JPA platform, database
connection (or create a new connection), JPA implementation library (such as
TopLink Essentials), define how Dali should manage persistent classes, and click
Finish.

1-2 Dali Java Persistence Tools User Guide

Dali quick start

Figure 1-2 JPA Facet Dialog

& New JPA Project .EE
IPA Facet
o | JPR
onfigure JPA settings. \/
—
Platform
|Generic j
Connection
|Derby_Embedded j

&dd connectio

JPA implementation
" Use implementation provided by server runtime

0.

+ |se implementation library:

= |

Configure default JPA implementation library ...

Configure user libraries ...

Persistent class managerment
(" Discover annotated classes automatically

&+ annotated classes must be listed in persistence, xml

¥ Create arm.xml

@ < Back | | Einish | Cancel |

Eclipse adds the project to the workbench and opens the JPA perspective.

Figure 1-3 Project in Package Explorer

== META-TNF
[E] MANIFEST.MF
X orm.xml
K| persistence,xml
Bl JRE System Library [jrel.5.0_10]
B Apache Tomcat v5.5 [Apache Tomcat
B TopLink Essentials
= build

Now that you have created a project with persistence, you can continue with Creating

a Java persistent entity.

1.2.2 Creating a Java persistent entity

This quick start shows how to create a new persistent Java entity. We will create an
entity to associate with a database table. You will also need to add the ADDRESS table

to your database.

1. Right-click the project in the Package Explorer and select New > Class. The New

Java Class page appears.

2. On the Java Class page, enter a package name (such as
quickstart.demo.model), class name (such as Address), and click Finish.

3. Right-click the Address. java file in the Package Explorer and select Open.

Getting started 1-3

Dali quick start

Figure 1-4 Open Address.java

i PackageE...

= bjd QuickStart
B src
=} quickstart,demo,

& ad Nevs 4

-y PR TN w
LN Open With L4

B JRE System LiE

: Open Type Hierarch F4
B Apache Tomca s: IYD ' Alb+ShiFHW ¥
= build o n !
LT Servers & Copy Ctr+C

LT TestProject E=; Copy Qualified Name

a1
|| Paste Chrly

4. Select the Address entity in the JPA Structure view.

Figure 1-5 Address Class in JPA Structure View

=8
)

EED

5. In the JPA Details view, in the Map As field, select Entity. In the Table field, select
the ADDRESS database table.

Figure 1-6 Address Entity in JPA Details View

Marne: |DeFault (Address) -
Table:
Mame: | Default (null) 3
Catalog: |Default 4] 3
Schema: |Default (nul) 3

b Attribute Overrides
» Secondary Tables

} Inheritance

Eclipse creates the persistent entity and adds the @Ent ity annotation to the class.

1-4 Dali Java Persistence Tools User Guide

Dali quick start

Figure 1-7 Address Entity

0 *address.java X =08

package guickstart.demo.model; u

import jsvax.persistence.Entity;

FEntity ™

ass Address {

Eclipse also displays the Address entity in the JPA Structure view:

Figure 1-8 Address Entity

=08
&
(& Address

After creating the entity, you must associate it with a database table.
1. Select the Address class in the Explorer view.

2. In the Persistence Properties view, notice that Dali has automatically associated
the ADDRESS database table with the entity because they are named identically.

Note: Depending on your database connection type, you may need
to specify the Schema.

Figure 1-9 JPA Details View for Address Entity

‘# P8 Detals X

Map As: |Entity v|
Mame: |DeFauIt (Address) 3
Table:
name: % | Defadlt (Addressly v |
Catalog: |Default [{] 2
schema: |DeFauIt [T 2

} Attribute Overrides
» Secondary Tables

} Inheritance

After associating the entity with the database table, you must update the
persistence.xml file to include this JPA entity.

Right-click the persistence.xml file in the Package Explorer and select JPA Tools >
Synchronize Classes. Dali adds the following to the persistence.xml file:

<class>quickstart.demo.model .Address</class>

Getting started 1-5

Dali quick start

Now that you have created a persistent entity, you can continue with Mapping an

entity to map

1.2.3 Mapping an entity

the entity’s fields to columns on the database table.

This quick start shows how to map fields in a Java persistent entity. Before beginning,
add the following fields to the Address class:

private Long

id;

private String city;

private String country;

private String stateOrProvince;
private String postalCode;
private String street;

Eclipse updates the Address entity in the JPA Structure view to show its fields:

Figure 1-10 Address Entity and Fields

FEETER.

= @E Address
? .
& id
42> city
42> counkry

42> postalCode
42> street

42> skateOrProvince

=3

You will also

NUMBER (10, 0)
VARCHAR?2 (80)
VARCHAR2 (80)
VARCHAR2 (20)
VARCHAR2 (80)
VARCHAR2 (80)
Now we are r
table.

1. Select the

need to add the following columns to the ADDRESS database table:

ADDRESS ID (primary key)
PROVINCE

COUNTRY

P_CODE

STREET

CITY

eady to map each fields in the Address class to a column in the database

id field in the JPA Details view.

2. In the JPA Details view:
» For the Map As field, select Id
s For the Column field, select ADDRESS_ID.

1-6 Dali Java Persistence Tools User Guide

Dali basic tutorial

Figure 1-11 JPA Details View for addressld Field

‘% P4 Details X =8
— v|
Calurnn:
alurmn /..-- -
vere: QEERLS]
Table: [Default (Address) -
Insertable: |DeFauIt (False) v
Updatable: | Defaul (False) v
Temporal: | i
¥ Primary Key Generation

Eclipse adds the following annotations to the Address entity:

@Id

@Column (name="ADDRESS ID")

3. Map each of the following fields (as Basic mappings) to the appropriate database

column:
Field Map As Database Column
city Basic CITY
country Basic COUNTRY
postalCode Basic P_CODE
provinceOrState Basic PROVINCE
street Basic STREET

Notice that Dali will automatically map some fields to the correct database column
(such as the city field to the CITY column) if the names are identical.

Refer to the Dali basic tutorial to map a complete object model using basic and

relational mappings.

1.3 Dali basic tutorial

In this tutorial, you will use Dali to map the object model of a company’s HR
application to track its employees. Figure 1-12 illustrates the object model for the

tutorial.

Getting started 1-7

Dali basic tutorial

Figure 1-12 Tutorial Object Model

(& Employee 4,—% Address
address: String Bl id: Long

id; Long city ; String
firsthlame : String country: String
lasthlarme : String postalCode : Sting

phoneMumbers : List M
Wersion ; String

state QP rovinee : String
street: Sting

—— (& PhoneNumber

areaCode : String
owner ; Sting
numhber: String
type : String

1.3.1 Generate the tutorial database schema

The tutorial application uses three database tables to store each employee’s
information: EMPLOYEE, ADDRESS and PHONE. Table 1-1 describes the columns
for each table.

You can download SQL scripts to build and populate the database tables with sample
data from http://www.eclipse.org/webtools/dali/docs/dbscripts.zip.

Table 1-1 Tutorial Database Schema
Table Column Type Details
EMPLOYEE EMP_ID NUMBER(15) Primary Key
F_NAME VARCHAR(40)
L_NAME VARCHAR(40)
ADDR_ID NUMBER(15) Foreign Key, references
ADDRESS.ADDRES_ID
VERSION NUMBER(15)
ADDRESS ADDRESS_ID NUMBER(15) Primary Key
PROVINCE VARCHAR(80)
COUNTRY VARCHAR(80)
STREET VARCHAR(80)
P_CODE VARCHAR(20)
CITY VARCHAR(80)
PHONE EMP_ID NUMBER(15) Foreign Key, reference to
EMPLOYEE.EMP_ID
AREA_CODE VARCHAR(3)
P_NUMBER VARCHAR(?7) Primary key
TYPE VARCHAR(15)

1.3.1.1 Create a database connection

After creating the database you will need to create a database connection to use with
the tutorial application. An active database connection is required to complete tutorial
application.

1-8 Dali Java Persistence Tools User Guide

Dali basic tutorial

Use the New Connection wizard to create a database connection.

Figure 1-13 Database Explorer

i'} Database Explorer X

S| 0447
—-[4 Connections Py
=& DALI DE SAMPLE [Oracle 10]
=1 [Heest-2k
-1+ Schemas
- =Em
+-[[Dependencies
+-[7] Sequences
+]-[7] Stored Procedures
=[] Tables
+- 7] ADDRESS
+- [EMPLOYEE
+- [PHOMNE
+-[] User-Defined Functions
+[] Views

Now you're ready to Create a JPA project.

1.3.2 Create a JPA project

In order to begin, you must create a new Java project.
1. Select File > New > Project. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click OK. The New JPA
Project dialog appears.

3. On the New JPA Project dialog, enter Employee as the Project name and click
Next. The Project Facets page appears.

4. Verify that you have selected a Java 5.0 (or higher) and JPA 1.0 facet, and click
Next. The JPA Facet page appears.

5. Select your vender-specific platform, database connection, and JPA
implementation library, and click Finish.

Eclipse adds the project to the workbench and opens the Java perspective.

Getting started 1-9

Dali basic tutorial

Figure 1-14 Persistence Perspective

JPA Details view JPA Structure view

Selecting the JPA perspective.

File Edkt Source Refachor Mavijzte Search Project Run Window Help
s S R SR W
@ 2 AR
[Package Explorer &3 = O) Eirsoyeejava 2
= \'_—|. R packige dall.guickstartc.mwodel; 0%
| ~id
= Empioryee -
1_:_ - & Fimport javax.persistence.Entity “8 Firsthinams
o LB
= [# dali.guickstart. model £ lasthiame
I . =2 adldress
= 1] Address.java y
% (9 pddress BEncity =4 phoneduribers
{7) Employes.fava public class Ewployes.(o 10 verson
e 1l—l_ Phoneumber java Ii'_n. mn (name="EMP_1-7)
(= META-INF kj“ o
B, IRE System Libeary [re1.5.0_10] el 7 Lus
B Apache Tomcat v5.5 [Apache Toms = =
3 B TopLink Essentisls [Problems £ o T | % ®n Detais 2o =0
& build + | D errors, 20 warnings, 0 infos Map As: |Entity ﬂ
< > Deescription -
- = # [Warnings (20 items) Mame: |Defaul (Employee) v
¥ Data Source Explorer 53 g L L}
=&l m 5] @ m Iﬁ Table: | Default (Employes) v
== D;atab;ses . Catalog: |Default () ~
=-§3 local_derby (Apache Derby v. 10.2.2. Schema: | Default (dairest) v
#- [sameLE
* Ed oracle_x= Attribute Overrides:
H t_i stral d_crby [T override Defar
& Lo ODA Daka Sources Calumn:
< 3| > Table: |

The next step is to Create persistent Java entities.

1.3.3 Create persistent Java entities

The Tutorial Object Model contains three entities: Employee, Address, and
PhoneNumber. Use this procedure to add the entities to the project.

1. Right-click the Employee project in the Package Explorer and select New > Class.
The New Java Class dialog appears.

2. On the Java Class dialog, enter a package name (such as
dali.tutorial.model), class name (such as Employee), and click Finish.
Eclipse adds the Employee entity to the Package Explorer.

3. Select the Employee entity in the JPA Structure view.

4. In the JPA Details view, in the Map As field, select Entity. In the Table field, select
the EMPLOYEE database table.

1-10 Dali Java Persistence Tools User Guide

Dali basic tutorial

Figure 1-15 Employee Entity in JPA Details View

‘% IPA Details X = H
v
Mame: |DeFauIt (Employes) W
Tahble:
Mame: |DeFauIt (Emplayee) 3
Catalog: |Default 0 3
schema: |Default (nully 3

b Attribute Overrides
} Secondary Tables

} Inheritance

Eclipse adds the @Entity annotation to the class. Repeat this procedure to add the
PhoneNumber and Address entities.

Notice that the Problems view reports several errors for each entity. We’ll address
these shortly.

1.3.3.1 Add fields to the entities

Before mapping the entities to the database, you must add the necessary fields to each
entity.

1. Add the following fields to the Employee entity:

private Long id;

private String firstNname;

private String lastName;

private String address;

private List<PhoneNumber> phoneNumbers;
private Long version;

2, Import java.util.List.
3. Generate Getters and Setters for each field.

4. Add the following fields to the Address entity:

private Long id;

private String street;

private String city;

private String stateOrProvince;
private String country;

private String postalCode;

5. Add the following fields to the PhoneNumber entity:

private String type;
private String areaCode;
private String number;
private Employee owner;

1.3.3.2 Associate the entity with a database table
Now you must associate each entity with its primary database table.

1. Select the Employee class in the Explorer view.

Getting started 1-11

Dali basic tutorial

2. In the JPA Details view, notice that Dali has automatically selected the
EMPLOYEE table as the table name.

Figure 1-16 JPA Details View for the Employee Entity

‘% IPA Detals X =5
Map fs: |Entity W |
Marme: |DeFauIt (Employves) 3
Tahble:
Mame: & §efault (Empl oyeeE -
Catalog: |DeFauIt 4] W
Schema: |DeFauIt (rull} W

b Attribute Overrides
} Secondary Tables

» Inheritance

By default, Dali attempts to associate each entity with a similarly named database
table. Notice that although you have not explicitly associated the Address entity yet,
there is no error in the Problems view because the entity name, Address, is identical to
the table name (ADDRESS).

For the PhoneNumber entity, however, there is an error. This is because the entity
name (PhoneNumber) is different than the database table (PHONE). You must
explicitly associate the entity with the PHONE table. Dali adds the

@Table (name="PHONE") annotation to the entity.

Now you are ready to Create OR mappings.

1.3.4 Create OR mappings

Now you're ready to map the attributes of each persistent entity to columns in the
appropriate database table. For the tutorial application, you will use the following

mapping types:

s ID mappings

= Basic mappings

s One-to-one mappings

= Many-to-one mappings
s One-to-many mappings

= Version mappings

1.3.4.1 Create ID mappings

Use an ID Mapping to specify the primary key of an entity. Each persistent entity
must have an ID. Notice that the Problems view reports that each entity is missing an
ID.

1. Select the Employee entity in the Package Explorer view.

2. Expand the Employee entity in the JPA Structure view and select the id field. The
JPA Details view (for attributes) displays the properties for the field.

3. Inthe Map As field, select ID.

1-12 Dali Java Persistence Tools User Guide

Dali basic tutorial

Figure 1-17 ID Mapping for emp_id Field

' IPA Detals X

=0

Map As: |ICI

|

Column:

MName: [EMP_ID

Tahle: [EMPLOYEE

Insertable: |DEF5U"2 (False}

Updatable: |DeFauIt (False)

C ESERES

Tempoaral: |

¥ Primary Key Generation

4. Use this table to complete the remaining fields in the JPA Details view.

Property Description

Map As Defines this mapping as an ID Mapping. Dali adds the @Id
annotation to the entity.

Column The database column for the primary key of the table associated

with the entity. Select EMP_ID.

Because the database column (EMP_ID) is named differently
than the entity field (id), Dali adds the @column (name="EMP_
ID") annotation.

5. Leave all other fields on the tab as their defaults. Expand the Primary Key

Generation area.

Figure 1-18 Primary Key Generation for emp_id Field

A Detals X

=0

Map As: |Id

]

Columnn:

MNams: [EMP_ID

Tahle: | EMPLOYEE

Insertable: |Default {False)

C ESIERES

Updatable: |DeFauIt (False)

Temporal_:J__

Primary Key Generati

Primary Key Generation

Strategy: |Default {Auko)

Generator Name: |

} Table Generator

} Sequence Generator

6. Use this table to complete the Primary Key Generation fields in the JPA Details

view.

Getting started 1-13

Dali basic tutorial

Property

Description

Generated Value

These fields define how the primary key is generated.

Strategy

For the tutorial project, use the Auto option.

Generator Name

Leave this field blank.

In the JPA Structure view, the id field is identified as the primary key by the following

icon:

Figure 1-19 JPA Structure for Employee Entity

& ~0

= oves
Hid S
a5
55 Trethiname

48 lasthame

o-° address

o5 phonehurnbers
L,_*E wersion

Repeat this procedure to map the following primary keys (as shown in Table 1-1,
" Tutorial Database Schema"):

» Theid field of the Address entity to the ADDRESS_ID column of the ADDRESS

table.

s The number field of the PhoneNumber entity to the P_NUMBER column of the

PHONE table.

1.3.4.2 Create basic mappings

Use a Basic Mapping to map an attribute directly to a database column. In the Tutorial
Object Model, the firstName field of the Employee class maps directly to the F_ NAME
column of the EMPLOYEE database table.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the firstName field of the Employee entity. The
JPA Details view (for attributes) displays the properties for the field.

3. In the Map As field, select Basic. In the Column field, select F_ NAME.

1-14 Dali Java Persistence Tools User Guide

Dali basic tutorial

Figure 1-20 Basic Mapping for firstName

=0

Mafhs: |Basic '\‘

Column:

Mame: |[F_NAME

Tahle: [EMPLOYEE

Insertable: |DEF5U"2 (False}

LB EAES

Updatable: |DeFauIt (False)

Fetch: | Default (Eager)

Optional: | Defaulk (False)

Temparal: |

Enumerated: |Default (Ordinal)

CAIEA B

CLab

Dali adds the @Column (name="F_NAME") annotation to the entity. In the JPA
Structure, the firstName field is identified as a basic mapping as shown in the

following figure:

Figure 1-21 JPA Structure for Employee Entity

g =0

=1 U Employee

] Firstm
£

48 address

‘2> phoneMumbers

48 version

Repeat this procedure to map each of the following fields as Basic mappings:

= Employee entity
- lastName field to L_ NAME column
= Address Entity

city field to CITY column
— country field to COUNTRY column

— postalCode field to P_CODE column

— stateOrProvice field to PROVINCE column
— street field to STREET column

Note: Because the city, country, and street fields are named
identically to their database columns, Dali automatically maps the

fields; no annotations are required.

= Phone Entity

- areaCode field to AREA_CODE column
- type field to TYPE column

Getting started 1-15

Dali basic tutorial

Note: Because the type field is named identically to its database
column, Dali automatically maps the field. No annotation is required.

1.3.4.3 Create one-to-one mappings

Use a One-to-One Mapping to define a relationship from an attribute to another class,
with one-to-one multiplicity to a database column. In the Tutorial Object Model, the
address field of the Employee class has a one-to-one relationship to the Address class;
each employee may have a single address.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the address field of the Employee entity. The JPA
Details view (for attributes) displays the properties for the field.

3. Inthe Map As field, select One-to-One.

Figure 1-22 One-to-one Mapping for address

‘@ IPA Detals X =8

Maf@s: |One to One L

Target Entity: |dali.tutorial model Address

Fetch: Default (Eager) 2
Mapped Bv: v
Optional: Default (False) v

[override Default

Jain Colurnns

4. For the Target Entity, click Browse and select the Address persistent entity. Dali
adds the
@OneToOne (targetEntity=dali.tutorial .model.Address.class)
entity to the class.

Leave the other fields with their default values.

5. Select the Override Default option to specify the relationship between the
Employee and Address entities. Because you had to explicitly define the ID field
for the Address entity in its ID mapping, you will need to edit the default join
relationship.

6. Select the address_ ADDRESS_ID -> ADDRESS_ID relationship in the Join
Columns area and click Edit.

7. In the Edit Join Column dialog, select the following options and click OK.
s Name: ADDR_ID (from the EMPLOYEE table)
s Referenced Column Name: ADDRESS_ID (from the ADDRESS table)

1-16 Dali Java Persistence Tools User Guide

Dali basic tutorial

Figure 1-23 Editing Join Column for Address Mapping

& Edit Join Column X
Mame: | ADDR_ID |
Referenced Column Hame: | ADDRESS_ID v|
Table: | ADDRESS |
Insertable: | Defaul (False) |
Updatable: | Default (False) |

[o [cancel |

In the JPA Structure, the address field is identified as a one-to-one mapping, as shown
in the following figure:

Figure 1-24 JPA Structure for Employee Entity

& =0
=1 U Employee
A g
b8 firsthname
s
=-2 address

48 version

1.3.4.4 Create one-to-many mappings

Use a One-to-Many Mapping to define a relationship from an attribute to another
class, with one-to-many multiplicity to a database column. In the Tutorial Object
Model, the phoneNumbers field of the Employee class has a one-to-many relationship
to the Phone class; each employee may have many phone numbers.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the phoneNumber field of the Employee entity.
The JPA Details view (for attributes) displays the properties for the field.

3. Inthe Map As field, select One-to-Many.

Getting started 1-17

Dali basic tutorial

Figure 1-25 One-to-many Mapping for phoneNumbers

‘# IPA Detals X =8
Mapfhs: |One to Many v| ~
Target Entity: |D9F3U|t {rully V| [Browse...]
Fetch: | Default (Lazy) b
Mapped By: | -

Crder By

(¥ Mo Ordering

() Primary Key Ordering

() Custom Ordering

~ Join Table

Marme: |DeFauIt (Employes_PHOME) W

[override Default

Join Columns

[owerride Default

Inverse Join Columns

| | v

4. Select PhoneNumber as the Target Entity. Leave the other fields with their default
values.

5. In the Join Table area, notice that Dali has selected the correct joins, based on the
foreign key associations in the database tables.

In the JPA Structure, the phoneNumbers field is identified as a one-to-many mapping
as shown in the following figure:

Figure 1-26 JPA Structure for Employee Entity

g =0
=1 U Employee

A g

b8 firsthname
48 lasthame

0z phoneMumbers

1.3.4.5 Create many-to-one mappings

Use a May-to-One Mapping to define a relationship from an attribute to another class,
with many-to-one multiplicity to a database column. In the Tutorial Object Model, the
owner field of the PhoneNumber class has a one-to-many relationship to the
Employee class; there are many phone numbers that each employee may have.

This is the "back mapping" of the one-to-many mapping you previously defined.
1. Select the PhoneNumber entity in the Package Explorer view.

2. In the JPA Structure view, select the owner field of the PhoneNumber entity. The
JPA Details view (for attributes) displays the properties for the field.

1-18 Dali Java Persistence Tools User Guide

Dali basic tutorial

3. Inthe Map As field, select Many to One.

Figure 1-27 Many to One Mapping for owner

‘# I8 Detaile ¥ =0

4q Many bo One

Target Entity: |Default (dali,tutorial, model Employes) v| [Browse...]

|

Fetch: | Diefault (Eager) 3

Optional: |DeFauIt (False) =
Crwverride Default

Join Columns

EMP_ID - EMP_ID

4. Leave the other fields with their default values. Dali correctly completes the
information based on the database structure and previously defined mappings.

5. Use the Join Columns area to specify the relationship between the PhoneNumber
and Employee entities. Because you had to explicitly define the ID field for the
Employee entity in its ID mapping, you will need to edit the default join
relationship.

6. Select the Override Default option.

7. Select the owner_EMP_ID -> EMP_ID relationship in the Join Columns area and
click Edit.

8. In the Edit Join Column dialog, select the following options and click OK.
s Name: EMP_ID (from the PHONE table)
s Referenced Column Name: EMP_ID (from the EMPLOYEE table)

In the JPA Structure, the owner field is identified as a many-to-one mapping as shown
in the following figure:

Figure 1-28 JPA Structure for PhoneNumber Entity
& =0
=1 U5 Phonehumber

] bype
48 areaCode

25 owiner |

1.3.4.6 Create version mappings

Use a Version Mapping to specify the database field used by a persistent entity for
optimistic locking.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the version field of the Employee entity. The JPA
Details view (for attributes) displays the properties for the field.

Getting started 1-19

Dali basic tutorial

3. Inthe Map As field, select Version.

Figure 1-29 Version Mapping for version

 IPADeFI- X =g
- |
Colurnn:
Marne: | Default {wersion) -
Tahle: | Default (Emplovee) -
Insertable: |Default (False) 3
Updatable: |Default (False) .
Temporal: | w

Dali automatically selects the Version column in the EMPLOYEE database table. In the
JPA Structure, the Version field is identified as a version mapping, as shown in the
following figure:

Figure 1-30 JPA Structure for Employee Entity

& =0
=1 U Employes

g

b8 firsthname

48 lasthame

°-o address

P
MQ;Numbers
Wt wersion

1

Congratulations! All of the entities have been successfully mapped.

1-20 Dali Java Persistence Tools User Guide

2

Concepts

This section contains an overview of concepts you should be familiar with when using
Dali to create mappings for Java persistent entities.

s Understanding Java persistence
s Understanding OR mappings
s Understanding E]B 3.0 Java Persistence API

In addition to these sections, you should review the following resources for additional
information:

» Eclipse Dali project: http://www.eclipse.org/webtools/dali
» Eclipse Web Tools Platform project: http://www.eclipse.org/webtools
= JSR 220 EJB 3.0 specification: http://www.jcp.org/en/jsr/detail?id=220

2.1 Understanding Java persistence

Persistence refers to the ability to store objects in a database and use those objects with
transactional integrity. In a J2EE application, data is typically stored and persisted in
the data tier, in a relational database.

Entity beans are enterprise beans that contain persistent data and that can be saved in
various persistent data stores. The entity beans represent data from a database; each
entity bean carries its own identity. Entity beans can be deployed using
application-managed persistence or container-managed persistence.

2.2 Understanding OR mappings

The Dali OR (object-relational) Mapping Tool allows you to describe how your entity
objects map to the data source (or other objects). This approach isolates persistence
information from the object model-developers are free to design their ideal object
model, and DBAs are free to design their ideal schema.

These mappings transform an object data member type to a corresponding relational
database data source representation. These OR mappings can also transform object
data members that reference other domain objects stored in other tables in the
database and are related through foreign keys.

You can use these mappings to map simple data types including primitives (such as
int), JDK classes (such as String), and large object (LOB) values. You can also use
them to transform object data members that reference other domain objects by way of
association where data source representations require object identity maintenance
(such as sequencing and back references) and possess various types of multiplicity and

Concepts 2-1

Understanding EJB 3.0 Java Persistence API

navigability. The appropriate mapping class is chosen primarily by the cardinality of
the relationship.

2.3 Understanding EJB 3.0 Java Persistence API

The Java 2 Enterprise Edition(J2EE) Enterprise JavaBeans (EJB) are a component
architecture that you use to develop and deploy object-oriented, distributed,
enterprise-scale applications. An application written according to the Enterprise
JavaBeans architecture is scalable, transactional, and secure.

The E]B 3.0 Java Persistence API (JPA) improves the EJB architecture by reducing its
complexity through the use of metadata (annotations) and specifying programmatic
defaults of that metadata.

2.3.1 The persistence.xml file

The JPA specification requires the use of a persistence.xml file for deployment.
This file defines the database and entity manager options, and may contain more than
one persistence unit. Dali can use the Eclipse XML Editor to create and maintain this
information. See "Managing the persistence.xml file" on page 3-3 for more information.

2.3.2 The orm.xml file

Although the JPA specification emphasizes the use of annotations to specify
persistence, you can also the orm. xm1 file to store this metadata. Dali can use the
Eclipse XML Editor to create and maintain this information. The metadata must match
the XSD specification of your selected JPA implementation. See "Managing the
orm.xml file" on page 3-5 for more information.

2-2 Dali Java Persistence Tools User Guide

3

Tasks

This section includes detailed step-by-step procedures for accessing the Dali OR
mapping tool functionality.

s Creating a new JPA project

» Managing the persistence.xml file

= Managing the orm.xml file

= Adding persistence to a class

= Specifying additional tables

= Specifying entity inheritance

= Mapping an entity

= Generating entities from tables

» Validating mappings and reporting problems
= Modifying persistent project properties

3.1 Creating a new JPA project
Use this procedure to create a new JPA project.
1. Select File > New > Other. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click Next. The New JPA
Project wizard appears.

Tasks 3-1

Creating a new JPA project

Figure 3—-1 New JPA Project

& New P4 Project |:|®

JPA Project 2

el JPR
onfigure JPA project settings. \/

—

Project name: |

Project contents:
Use default

Targek Funtime

|Oracle OC4] Standalone 10.1.3 v | [New...]

Configurations

| <custam i |

Hint: Get starked quickly by selecting one of the pre-defined project configurations.

EAR Membership
[add project to an EAR

@

3. Complete the fields on the New JPA Project page to specify the project name and
location, target runtime, and pre-defined configuration.

4. Click Next. The Project Facets page appears.

5. Select the project facets to use to create the project and click Next. The JPA Facet
page appears.

3-2 Dali Java Persistence Tools User Guide

Managing the persistence.xml file

Figure 3-2 New JPA Project

& New JPA Project .EE

IPA Facet
Configure JPA settings. J\P/A>
L
N

Platform
| Generic |
Connection
|Derby_Embedded j

&dd connection ...

JPA implementation
" Use implementation provided by server runtime

+ |se implementation library: j

Configure default JPA implementation library ...
Configure user libraries ...

Persistent class managerment
(" Discover annotated classes automatically

&+ annotated classes must be listed in persistence, xml

¥ Create arm.xml

@ < Back | | Einish | Cancel |

6. Complete the fields on the JPA Facet page to specify your vender-specific
platform, database connection, and JPA implementation library.

Note: If the server runtime does not provide a JPA implementation,
you must explicitly select a JPA implementation library.

To insure the portability of your application, you must explicitly list
the managed persistence classes that are included in the persistence
unit. If the server supports EJB 3.0, the persistent classes will be
discovered automatically.

7. Click Finish. You should now open the JPA Development perspective.

3.2 Managing the persistence.xml file

When creating a JPA project, (see "Creating a new JPA project”) you can also create the
persistence.xml file.

Eclipse creates the META-INF\persistence.xml file in your project’s directory:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="<PERSISTENCE VERSION>"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 1 0.xsd">
<persistence-unit name=" <PERSISTENCE UNIT NAME>">
<provider=" <PERSISTENCE PROVIDER>" />
</persistence-unit>
</persistence>

Tasks 3-3

Managing the persistence.xml file

3.2.1 Working with persistence.xml file
You can work with the persistence.xml by using the XML Editor.

Use this procedure to work with the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select Open
With > XML Editor.

Figure 3-3 Opening the Persistence XML Editor

Hierarchy =0
~

4 B8
= IDJ Employee Hew v
+ -3 dali.kukarial, model
+ B, IRE System Library Open F3
+-E IPA | Persistence sML Editor
< :;.ETF =| Copy Chrl+C IS _I oF
& Paste Crl+y] ML Eeltar
¥ Delete Delete) System Editar
Build Path Y| 2 In-Place Editor
Refactar Ale+Shift+T # Default Editar

2. Use the Persistence XML Editor to edit the persistence.xml file.

Figure 3—-4 Persistence XML Editor

P2 xml

-| [&] persistence

wersian

xmins

wrnins:xsi

wsitschemalocation

- [8] persistence-unit

name
[8] pravider

Diesign | Source

3.2.2 Synchronizing classes

As you work with the classes in your Java project, you will need to update the
persistence.xmnl file to reflect the changes.

Use this procedure to synchronize the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select JPA
Tools > Synchronize Classes.

3-4 Dali Java Persistence Tools User Guide

Managing the orm.xml file

Figure 3-5 Synchronizing the persistence.xml File

= :,7‘] Employes
= e ' Mew »
o i ickd
‘EE Eh :;Ek-l Open [=c}
-
rei Open With 3
+ m Empla]
Show In Ale+Shift+ P
#] _,'D Phone
=12 METAINF |72 copy Chr+C
MANIF
X ormax
5 Pasts Chrl+y
+-m) JRE SystemLi ¥ Delete Delete
+- B, Apache Tomc: E
Source

+-E, TopLink Essen

= build JPA Tools
1T QuickStart Properties At Entor
+- 1= Servers

Dali adds the necessary <class> elements to the persistence.xml file.

2. Use the Persistence XML Editor to continue editing the persistence.xml file.

3.3 Managing the orm.xml file

When creating a JPA project, (see "Creating a new JPA project”) you can also create the

orm.xml file that defines the mapping metadata and defaults.

Eclipse creates the META-INF\orm.xml file in your project’s directory:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="<PERSISTENCE VERSION>"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 1 0.xsd">

<persistence-unit name=" <PERSISTENCE UNIT NAME>">
<provider="<PERSISTENCE PROVIDER>" />
</persistence-units>
</persistence>

3.3.1 Working with orm.xml file

You can work with the orm. xml by using the JPA Details view.

Use this procedure to work with the orm. xm1 file:

1. Right-click the orm. xm1 file in the Package Explorer and select Open.

2. In the JPA Structure view, select EntityMappings.

3. Use the JPA Details view to configure the entity mapping and persistence unit

defaults.

Adding persistence to a class

Figure 3-6 JPA Details view for EntityMappings (orm.xml)

‘% IPA Details X =8
schema: | Default () -
Catalog: |Default () -
Access: | Default -

* Persistence Unit

O ML Mapping Metadata Complete

schema; | Default -
Catalog: | Default -
Access: | Default -

O cascade Persist

3.4 Adding persistence to a class

You can make a Java class into one of the following persistent types:
= Entity

= Embeddable

= Mapped superclass

3.4.1 Entity

An Entity is a persistent domain object.

An entity can be:

= Abstract or concrete classes. Entities may also extend non-entity classes as well as

entity classes, and non-entity classes may extend entity classes.

An entity must have:

= A no-arg constructor (public or protected); the entity class may have other

constructors as well.

Each persistent entity must be mapped to a database table and contain a primary key.

Persistent entities are identified by the @Ent ity annotation.
Use this procedure to add persistence to an existing entity:
1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As field to select Entity.

3-6 Dali Java Persistence Tools User Guide

Adding persistence to a class

Figure 3-7 Selecting Entity Persistence

i =]

Map As: |Elj_tl_tj - |

Mamne
rilass

Tahle: IEmbeddabIe

Catalog: | Default () -

schema: | Default {dalitest) -

Attribute Overrides:
O override Default

Calurnn:
Table:

} Inheritance

4, Complete the remaining JPA Details view (for entities).

3.4.2 Embeddable

An Embedded class is a class whose instances are stored as part of an owning entity; it
shares the identity of the owning entity. Each field of the embedded class is mapped to

the database table associated with the owning entity.

To override the mapping information for a specific subclass, use the

@AttributeOverride annotation for that specific class.

An embeddable entity is identified by the @Embeddable annotation.

Use this procedure to add embeddable persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As drop-list to select Embeddable.

Figure 3-8 Selecting Embeddable Persistence

X =]

Map As: |Entity - |

Catalog: |Default () -
Schema: | Default (dalitest) -

Attribute Overrides:
O override Default

Colurnn:
Table:

} Inheritance

4. Complete the remaining JPA Details view (for entities).

Tasks 3-7

Specifying additional tables

3.4.3 Mapped superclass

An entities that extend a Mapped Superclass class inherit the persistent state and
mapping information from a superclass. You should use a mapped superclass to
define mapping information that is common to multiple entity classes.

A mapped superclass can be:

= Abstract or concrete classes

A mapped superclass cannot be:

= Be queried or passed as an argument to Entity-Manager or Query operations
= Be the target of a persistent relationship

A mapped superclass does not have a defined database table. Instead, its mapping
information is derived from its superclass. To override the mapping information for a
specific subclass, use the @At tributeOverride annotation for that specific class.

A mapped superclass is identified by the @MappedSuperclass annotation.
Use this procedure to add Mapped Superclass persistence to an existing entity:
1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As drop-list to select Mapped Superclass.

Figure 3-9 Selecting Mapped Superclass Persistence

% =0

Map As: |Entiky -

Table:
Catalag: |Default () ? <
schema: |Default (dalitest) -

Attribute Overrides:
O override Default

Calurnn:

Table:

» Inheritance

4. Complete the remaining JPA Details view (for entities).

3.5 Specifying additional tables

An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Secondary Tables information.

3-8 Dali Java Persistence Tools User Guide

Specifying entity inheritance

Figure 3—-10 Specifying Secondary Tables

+ Secondary Tables

add...

il

3. Click Add to associate an additional table with the entity. The Edit Secondary
Table dialog appears

4. Select the Name, Catalog, and Schema of the additional table to associate with the
entity.

Eclipse adds the following annotations the entity:

@SecondaryTable (name="NAME", catalog = "CATALOG", schema = "SCHEMA"

3.6 Specifying entity inheritance
An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Inheritance information.

Figure 3—-11 Specifying Inheritance

+ Inheritance

Strategy: Default {Single Table) -
Discriminator Column: | Default (rull) -
Discriminator Type: | Default (String) -
Discriminator Yalue: |Default (Person) -

O override Default

3. In the Strategy list, select one of the following the inheritance strategies:
= A single table (default)
= Joined table
= One table per class

4. Use the following table to complete the remaining fields on the tab. See
"Inheritance information" on page 4-3 for additional details.

Tasks 3-9

Specifying entity inheritance

(instead of its default: String). The
Discriminator Value must conform to this type.

Property Description Default
Discriminator Name of the discriminator column when using a
Column Single or Joined inheritance strategy.
This field corresponds to the
@DiscriminatorColumn annotation.
Discriminator Type | Set the discriminator type to Char or Integer | String

Discriminator Value

Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

This field corresponds to the
@DiscriminatorValue annotation.

Override Default

Use this field to specify custom primary key join
columns.

This field corresponds to the
@PrimaryKeyJoinClumn annotation.

Eclipse adds the following annotations the entity field:

@Inheritance (strategy=InheritanceType.<INHERITANCE STRATEGY>)
@DiscriminatorColumn (name="<DISCRIMINATOR COLUMN>",
discriminatorType=<DISCRIMINATOR TYPE>)
@DiscriminatorValue (value-"<DISCRIMINATOR VALUE>")
@PrimaryKeyJoinColumn (name="<JOIN COLUMN NAME>",
referencedColumnName = "<REFERENCED COLUMN NAME>")

The following figures illustrates the different inheritance strategies.

Figure 3—-12 Single Table Inheritance

FE wEHICLE

ID|PASE_CAP |WHCL_TYPE FUEL_CAP | FUEL_TYPE |CAR_DESC BICYCLE_DES

o|m<|m

11
23
38
4|5

Mountain Bike

Diesel
Unleaded Sedan

3-10 Dali Java Persistence Tools User Guide

Mapping an entity

Figure 3—13 Joined Table Inheritance

[WEHICLE
ID|PASE_CARWHCL TYPE

11 Ele)
FE >"
KRE o
45 \’“c"’—l

[F FUELED WEHCLE B BicyclE
ID| FUEL_CAP| FUEL_TYPE ID|DESCRIFTION
/3 20 Diesel 1 Mountain Bike
\DT Unleaded
E car
1D DESCRIFTION
4 | Sedan

3.7 Mapping an entity
Dali supports the following mapping types for Java persistent entities:
= Basic mapping
» Embedded mapping
= Embedded ID mapping
s ID mapping
= Many-to-many mapping
= Many-to-one mapping
s One-to-many mapping
= One-to-one mapping
s Transient mapping

= Version mapping

3.7.1 Basic mapping

Use a Basic Mapping to map an attribute directly to a database column. Basic
mappings may be used only with the following attribute types:

= Java primitive types and wrappers of the primitive types
m Jjava.lang.String, java.math.BigInteger

m Jjava.math.BigDecimal

m Jjava.util.Date

m Jjava.util.Calendar, java.sqgl.Date

m Jjava.sgl.Time

s Jjava.sgl.Timestamp

s bytel]

Tasks 3-11

Mapping an entity

Byte []
char []
Character[]
enums

any other type that implements Serializable

To create a basic mapping:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. Inthe Map As field, select Basic.

3. Use this table to complete the remaining fields on the JPA Details view.

Property Description Default

Map As Defines this mapping as a Basic Basic
Mapping.

This field corresponds to the
@Basic annotation.

Column The database column mapped to the | By default, the Column is assumed
entity attribute. See "Column" on to be named identically to the
page 4-5 for details. attribute and always included in the

INSERT and UPDATE statements.

Table Name of the database table.

Fetch Defines how data is loaded from the | Eager
database. See "Fetch Type" on
page 4-5 for details.
= Eager
= Lazy

Optional Specifies if this field is can be null. Yes

Lob Specifies if this is a large objects
(BLOB or CLOB). See "Lob" on
page 4-5 for details.

Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.

» Date
» Time
= Timestamp

Eclipse adds the following annotations to the field:

@Column (name="<COLUMN NAME>", table="<COLUMN TABLE>",

@Basic (fetch=FetchType.<FETCH TYPE>, optional =

insertable=<INSERTABLE>, updatable=<UPDATABLE>)
<OPTIONAL>)

@Temporal (TemporalType.<TEMPORALS>)

3.7.2 Embedde

d mapping

Use an Embedded Mapping to specify a persistent field or property of an entity
whose value is an instance of an embeddable class.

3-12 Dali Java Persistence Tools User Guide

Mapping an entity

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. Inthe Map As field, select Embedded.

3. Use this table to complete the remaining fields on the JPA Details view.

Property Description Default

Map As Defines this mapping as a Embedded. | Embedded

This field corresponds to the
@Embedded annotation.

Attribute Specify to override the default

Overrides mapping of an entity’s attribute. Select
Override Default.

Columns The database column (and its table)

mapped to the entity attribute. See
"Column" on page 4-5 for details.

s Name - Name of the database
column.

s Table — Name of the database
table.

Eclipse adds the following annotations to the field:

@Embedded
@AttributeOverride (column=@Column (table="<COLUMN TABLE>", name = "<COLUMN NAME>"))

3.7.3 Embedded ID mapping

Use an Embedded ID Mapping to specify the primary key of an embedded ID. These
mappings may be used with a Embeddable entities.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. Inthe Map As field, select Embedded Id.

3. Use this table to complete the remaining fields on the JPA Details view.

Property Description Default
Map As Defines this mapping as a Embedded | Embedded Id
Id.

This field corresponds to the
@EmbeddedId annotation.

Eclipse adds the following annotations to the field:

@EmbeddedId

3.7.4 ID mapping

Use an ID Mapping to specify the primary key of an entity. ID mappings may be used
with a Entity or Mapped superclass. Each Entity must have an ID mapping.

Tasks 3-13

Mapping an entity

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select ID.

3. Use this table to complete the General information fields in the JPA Details view.

Property Description Default
Map As Defines this mapping as an ID ID
Mapping.
This field corresponds to the @Id
annotation.
Column The database column mapped to the By default, the Column is
entity attribute. See "Column" on assumed to be named
page 4-5 for details. identically to the attribute.
Table The database table mapped to the By default, the Table is
entity attribute. assumed to be identical to the
table associated with the entity.
Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.
s Date
» Time
s Timestamp

4. Use this table to complete the fields in Primary Key Generation information area

in the JPA Details view.
Property Description Default
Primary Key These fields define how the primary
Generation key is generated.
Strategy See "Primary Key Generation" on Auto
page 4-7 for details.
s Auto

= Sequence
= Identity
» Table

Generator Name | Name of the primary key generator
specified in the Strategy

Additional fields will appear in the Primary Key Generation information area,
depending on the selected Strategy. See "JPA Details view (for attributes)" on page 4-4
for additional information.

Eclipse adds the following annotations to the field:

@Id

@Column (name="<COLUMN NAME>", table="<TABLE NAME>", insertable=<INSERTABLE>,
updatable=<UPDATABLE>)

@Temporal (<TEMPORAL>)

@GeneratedValue (strategy=GeneratorType.<STRATEGY>, generator="<GENERATOR NAME>")

@TableGenerator (name="<TABLE GENERATOR NAME>", table = "<TABLE GENERATOR TABLE>",
pkColumnName = "<TABLE GENERATOR PK>",
valueColumnName = "<TABLE GENERATOR VALUE COLUMN>",

3-14 Dali Java Persistence Tools User Guide

Mapping an entity

pkColumnValue = "<TABLE GENERATOR PK COLUMN VALUE>")
@SequenceGenerator (name="<SEQUENCE GENERATOR NAME>",
sequenceName="<SEQUENCE GENERATOR SEQUENCE>")

3.7.5 Many-to-many mapping

Use a Many-to-Many Mapping to define a many-valued association with
many-to-many multiplicity. A many-to-many mapping has two sides: the owning side
and non-owning side. You must specify the join table on the owning side. For
bidirectional mappings, either side may be the owning side.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Many-to-Many.

3. Use this table to complete the General information fields of the JPA Details view.

Property Description Default
Map As Defines this mapping as a Many to Many to Many
Many Mapping.
This field corresponds to the
@ManyToMany annotation.
Target Entity The entity to which this attribute is null
mapped. You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.
Fetch Defines how data is loaded from the | Lazy
database. See "Fetch Type" on
page 4-5 for details.
= Eager
n Lazy
Mapped By The database field that owns the
relationship.
Order By Specify the default order for objects | No ordering
returned from a query. See "Order
By" on page 4-6 for details.
= No ordering
= Primary key
s Custom

4. Use this table to complete the fields in the Join Table Information area in the JPA

Details view.

Property

Description

Default

Name

Name of the join table that contains the
foreign key column.

You must specify the join table on
the owning side.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Tasks 3-15

Mapping an entity

Property

Description

Default

Join Columns

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Inverse Join
Columns

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

5. To add a new Join or Inverse Join Column, click Add.

To edit an existing Join or Inverse Join Column, select the field to and click Edit.

Eclipse adds the following annotations to the field:

@JoinTable (joinColumns=@JoinColumn (name="<JOIN COLUMN>"),

name =

"<JOIN TABLE NAME>")

@ManyToMany (cascade=CascadeType.<CASCADE TYPE>, fetch=FetchType.<FETCH TYPE>,
targetEntity=<TARGET ENTITY>, mappedBy = "<MAPPED BY>")
@0rderBy ("<ORDER BY>")

3.7.6 Many-to-one mapping

Use a Many-to-One mapping to defines a single-valued association to another entity
class that has many-to-one multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2, Inthe Map As field, select Many-to-One.

3. Use this table to complete the General information fields JPA Details view.

database. See "Fetch Type" on
page 4-5 for details.

= Eager
= Lazy

Property Description Default
Target Entity The entity to which this attributeis | null
mapped. You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.
Fetch Type Defines how data is loaded from the | Eager

4. Use this table to complete the fields on the Join Columns Information tab in the
JPA Details view.

Property

Description

Default

Join Column

Specify a mapped column for joining
an entity association. This field
corresponds to the @7oinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

3-16 Dali Java Persistence Tools User Guide

Mapping an entity

Eclipse adds the following annotations to the field:

@JoinTable (joinColumns=@JoinColumn (name="<JOIN COLUMN>"),
name = "<JOIN TABLE NAME>")
@ManyToOne (targetEntity=<TARGET ENTITY>, fetch=<FETCH TYPE>,
cascade=<CASCADE TYPE>)

3.7.7 One-to-many mapping

Use a One-to-Many Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for

attributes) displays the properties for the selected.

2. Inthe Map As field, select One-to-many.

3. Use this table to complete the General information fields JPA Details view.

Property

Description

Default

Target Entity

The entity to which this attribute is
mapped.

Fetch Type

Defines how data is loaded from the
database. See "Fetch Type" on page 4-5
for details.

= Eager
= Lazy

Eager

Mapped By

The database field that owns the
relationship.

Order By

Specify the default order for objects
returned from a query. See "Order By"
on page 4-6 for details.

= No ordering
= Primary key

s Custom

No ordering

4. Use this table to complete the Join Table Information fields in the JPA Details

view.
Property Description Default
Name Name of the join table By default, the name is assumed to

be the primary tables associated
with the entities concatenated with
an underscore.

Join Columns

Specify two or more join columns (that
is, a primary key).

Inverse Join
Columns

The join column on the owned (or
inverse) side of the association: the
owned entity’s primary key column.

Eclipse adds the following annotations to the field:

@OneToMany (targetEnt ity: <TARGET_ENTITY>)
@Column (name="<COLUMN>")

Tasks 3-17

Mapping an entity

@OneToMany (targetEntity=<TARGET ENTITY>.class, cascade=CascadeType.<CASCADE TYPE>,
fetch = FetchType.<FETCH TYPE>, mappedBy = "<MAPPED BY>")

@OrderBy ("<ORDER BY>")

@JoinTable (name="<JOIN TABLE NAME>", joinColumns=@JoinColumn (name=
"<JOIN COLUMN NAME>", referencedColumnName="<JOIN COLUMN REFERENCED COLUMN>"),
inverseJoinColumns=@JoinColumn (name="<INVERSE JOIN COLUMN NAME>",
referencedColumnName="<INVERSE JOIN COLUMN REFERENCED COLUMN>"))

3.7.8 One-to-one mapping

Use a One-to-One Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select One-to-one.

3. Use this table to complete the General information fields in the JPA Details view.

Property Description Default
Target Entity The entity to which this attribute is | null
mapped. You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.
Fetch Type Defines how data is loaded from the | Eager
database. See "Fetch Type" on
page 4-5 for details.
= Eager
= Lazy
Mapped By The database field that owns the
relationship.

4. Use this table to complete the Join Columns Information fields in the JPA Details

view.

Property

Description

Default

Join Column

Specify a mapped column for joining
an entity association. This field
corresponds to the @7oinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

Eclipse adds the following annotations to the field:

@OneToOne (targetEntity=<TARGET ENTITY>, cascade=CascadeType.<CASCADE TYPE>,
fetch = FetchType.<FETCH TYPE>, mappedBy = "<MAPPED BY>")
@JoinColumn (name="<JOIN COLUMN NAME>", referencedColumnName=

"<JOIN COLUMN REFERENCED COLUMN>", insertable
updatable

3-18

<UPDATABLE>)

Dali Java Persistence Tools User Guide

= <INSERTABLE>,

Mapping an entity

3.7.9 Transient mapping
Use the Transient Mapping to specify a or field of the entity class that is not persistent.

To create a version mapping;:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2, Inthe Map As field, select Transient.
Eclipse adds the following annotation to the field:

@Transient

3.7.10 Version mapping

Use a Version Mapping to specify the field used for optimistic locking. If the entity is
associated with multiple tables, you should use a version mapping only with the
primary table. You should have only a single version mapping per persistent entity.
Version mappings may be used only with the following attribute types:

L] int

s Integer

s short, Short

» long, Long

s Timestamp

To create a version mapping;:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Version.
3. Use this table to complete the remaining fields in the JPA Details view.

Property Description Default
Column The database column mapped to the By default, the Column is assumed
entity attribute. See "Column" on to be named identically to the
page 4-5 for details. attribute and always included in
the INSERT and UPDATE
statements.
Table Name of the database table. This must

be the primary table associated with
the attribute’s entity.

Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.

s Date

s Time

= Timestamp

Eclipse adds the following annotations to the field:

@Version
@Column (table=" <COLUMN_TABLE>", name="<COLUMN NAME>")

Tasks 3-19

Generating entities from tables

3.8 Generating entities from tables

Use this procedure to generate Java persistent entities from database tables. You must
create a JPA project and establish a database connection before generating persistent
entities. See "Creating a new JPA project” on page 3-1 for more information.

1. Right-click the JPA project in the Package Explorer and select JPA Tools >
Generate Entities.

Figure 3—-14 Generating Entities

i Package Explorer X

J’_j’) Mew 4

+) Go Inta
5
e Open in Mew Window

o 1 Open Type Hierarchy F4

+| =’|
=| Copy Ctr+Insert

' Paste Shift+Insert

< 3 Delete Delete

Restaore From Local Histary...
JPA Tools
FDE Tools

ate Entities. ..
L ——
.

Add Java Persistence. ..
Properties Alt+Enter

2. If you are not currently connected to the database, the Database Connection page
appears. Select your database connection and schema, and click Reconnect.

To create a new database connection, click Add connection.
After connecting to the database, click Next.

3. On the Generate Entities from Tables dialog dialog, select the tables from which to
generate Java persistent entities and click Finish.

Eclipse creates a Java persistent entity for each database table. Each entity contains
fields based on the table’s columns. Eclipse will also generate entity relationships
(such as one-to-one) based on the table constraints. Figure 3-15 illustrates how Eclipse
generates entities from tables.

3-20 Dali Java Persistence Tools User Guide

Validating mappings and reporting problems

Figure 3-15 Generating Entities from Tables

Database Tables Persistent Entities

EMP_ID |F_MAME [L_MAME QL ADDR_ID | VERSION i1 Employee

addr_id : Address
emp_id : BigDecimal
f_name : String
|_name : String
version : BigDecimal

EMPLOYEE Tahle

FK Reference

Address

5DRESS D PRONVIMCE | COUNMTRY | STREET | P_CODE | CITY address_id : BigDecimal
city : String

country : String
p_code : String
province : String

street ; String

ADDRESS Table

3.9 Validating mappings and reporting problems

Errors and warnings on persistent entities and mappings are indicated with a red error
or yellow warning next to the resource with the error, as well as the parent containers
up to the project.

Figure 3—-16 Sample Errors and Warnings

Eror

el " C
= v

=3)
’,: Wy arning

{:;9 st
‘(:‘(quickstart.model
@Address.java
£ m Employee.java
#¢d] PhoneMumber . java
+-[= META-IMF
4B, JRE System Library [jrel.5.0_10]
+-B, Apache Tomcat v5.5 [Apache Tomcak

4B TopLink Essentials

This section contains information on the following:
»s Error messages

= Warning messages

3.9.1 Error messages

This section contains information on error messages (including how to resolve the
issue) you may encounter while working with Dali.

Attribute "<ATTRIBUTE__ NAME>" has invalid mapping type in this context
The mapped attribute is invalid. Either change the mapping type or change the entity
type.

Tasks 3-21

Validating mappings and reporting problems

See "Mapping an entity" on page 3-11 for more information.

Attribute "<ATTRIBUTE_NAME>" cannot be resolved.
Dali cannot map the attribute to a database table and column. Verify that you database
connection information is correct.

See "Creating a new JPA project” on page 3-1 for more information.

Class "<CLASS_NAME>" is not annotated as a persistent class.
The class has not been identified as a persistent class. Configure the class as an Entity,
Mapped Superclass, or Embeddable persistent entity.

See "Adding persistence to a class" on page 3-6.

Column "<COLUMN_NAME>" cannot be resolved.

You mapped an entity’s field to an incorrect or invalid column in the database table.
By default, Dali will attempt to map each field in the entity with an identically named
row in the database table. If the field’s name differs from the row’s name, you must
explicitly create the mapping.

Map the field to a valid row in the database table as shown in "Mapping an entity" on
page 3-11.

Duplicate class "<CLASS_NAME>".

You created to persistence classes with the same name. Each Java class must have a
unique name. See "Adding persistence to a class" on page 3-6 for more information.

Entity does not have an Id or Embedded Id.
You created a persistent entity without identifying its primary key. A persistent entity
must have a primary key field designated with an @Id or @EmbeddedId annotation.

Add an ID mapping to the entity as shown in "ID mapping" on page 3-13 or
"Embedded ID mapping" on page 3-13.

Multiple persistence.xml files in project.

You created a JPA project with more than one persistence.xmnl file. Each JPA
project must contain a single persistence.xml file.

See "Managing the persistence.xml file" on page 3-3 for more information.

No generator named "<GENERATOR_NAME>" is defined in persistence unit.

You created a persistence entity that uses sequencing, but did not define include the
sequence generator in the psersistence.xml file. Synchronize the
persistence.xml file with your current project.

See "Synchronizing classes" on page 3-4 for more information.

No persistence unit defined.

There is no <persistence-unit-metadatas information in the orm.xml file. Add
the default persistence unit information.

See "Managing the orm.xml file" on page 3-5 for more information.
No persistence.xml file in project.

You created a JPA project without a persistence.xml file. Each JPA project must
contain a single persistence.xml file.

3-22 Dali Java Persistence Tools User Guide

Modifying persistent project properties

See "Managing the persistence.xml file" on page 3-3 for more information.

Referenced column "<COLUMN_NAME>" in join column "<COLUMN_NAME>"
cannot be resolved.

The column that you selected to join a relationship mapping does not exist on the
database table. Either select a different column on the Join Table Information or create
the necessary column on the database table.

See "JPA Details view (for attributes)" on page 4-4 for more information.

Schema "<SCHEMA_NAME>" cannot be resolved for table/join table "<TABLE
NAME>".

Define the default database schema information in the persistence unit.

See "Managing the orm.xml file" on page 3-5 for more information.

Table "<TABLE_NAME>" cannot be resolved.

You associated a persistent entity to an incorrect or invalid database table. By default,
Dali will attempt to associate each persistent entity with an identically named
database table. If the entity’s name differs from the table’s name, you must explicitly
create the association.

Associate the entity with a valid database table as shown in "Adding persistence to a
class" on page 3-6.

3.9.2 Warning messages

This section contains information on warning messages (including how to resolve the
issue) you may encounter while working with Dali.

Connection "<CONNECTION_NAME>" is not active. No validation will be done
against the data source.

The database connection you specified to use with the JPA project is not active. The
JPA project requires an active connection.

No connection specified for the project. No data-specific validation will be
performed.

You created a JPA project without specifying a database connection. The JPA project
requires an active connection.

See "Creating a new JPA project” on page 3-1 or "Modifying persistent project
properties" on page 3-23 for information on specifying a database connection.

3.10 Modifying persistent project properties

Each persistent project must be associated with a database connection. To create a new
database connection, click Database Connection use the New Connection wizard.

Tasks 3-23

Modifying persistent project properties

Use this procedure to modify the vender-specific platform and database connection
associated with your JPA project.

1. Right-click the project in the Explorer view and select Properties. The Properties
page appears.

Figure 3—17 Properties — Persistence Page

& Properties for Employee

tvpe Filker text PA =R]
Resource
BeanInfo Path Platfarm:
Builders Genetic b
JZEE Module Dependenci

Java Build Path

Connection:
Java Code Style
Java Compiler local_derby 5
Java Editar Add connection ...
Javadoc Location
Persistent class management
Profile Compliance and ¥: (" Discover annotated classes automatically

Project Facets
Project References
Run/Debug Settings

% Annotated classes must be lisked in persistence . ml

SErver

Targeted Runtimes

Task Tags

Yalidation
sDaclek
< 5 [Restore DeFauIts] [Apply]
@ [oK l [Cancel]

2. Use this table to complete the remaining fields on the Properties — JPA page and

click OK.
Property Description
Platform Select the vendor-specific platform for the JPA
implementation.
Database Connection Database connection to use to store the persistent entities. To
create a new connection, click Add Connection.

To create a new connection, click Add connections.

3-24 Dali Java Persistence Tools User Guide

4

Reference

This section includes detailed help information for each of the following elements in
the Dali OR Mapping Tool:

s Wizards

= Property pages

» Preferences

= Dialogs

s JPA Development perspective
= Icons and buttons

= Dali Developer Documentation

4.1 Wizards

This section includes information on the following wizards:

m Create New JPA Project wizard

4.1.1 Create New JPA Project wizard

The Create New JPA Project wizard allows you to create a new Java project using JPA.
The wizard consists of the following pages:

s New JPA Project page
»s Project Facets page

s JPA Facet page

4.1.1.1 New JPA Project page
This table lists the properties available on the New JPA Project page of the Create New

JPA Project wizard.
Property Description Default
Project name Name of the Eclipse JPA project.
Project contents Location of the workspace in which to save the | Current workspace

project.

Unselect The Use Default option and click
Browse to select a new location.

Reference 4-1

Property pages

Property Description Default

Target runtime Select a pre-defined target for the project.

Click New to create a new environment with
the New Server Runtime wizard.

Configurations Select a project configuration with pre-defined | Utility JPA project
facets. with Java 5.0

Select <custom> to manually select the facets
for this project.

EAR membership Specify if this project should be included in an
EAR file for deployment.

Select the EAR Project Name, or click New to
create a new EAR project.

4.1.1.2 JPA Facet page

This table lists the properties available on the JPA Facet page of the Create New JPA
Project wizard.

Property Description Default
Platform Vendor-specific JPA implementation. Generic
Connection Select the database connection to use with the

project. Dali requires an active database
connection to use and validate the persistent
entities and mappings.

Click Add connection to create a new database
connection.

JPA Implementation | Select to use the JPA implementation Determined by
provided by the server at runtime, or select a server.

specific implementation library that contain
the Java Persistence API (JPA) and entities to
be added to the project’s Java Build Path.

Click Configure default JPA implementation
library to create a default library for the project
or click Configure user libraries to define
additional libraries.

Persistent class Specify if Dali will discover annotated classes | Determined by
management automatically, or if the annotated classes must | server.
be listed in the persistence.xml file.

Note: To insure application portability, you
should explicitly list the managed persistence
classes that are included in the persistence unit.

Create orm.xml Specify if Dali should create a default orm.xml | Selected
file for your entity mappings and persistence
unit defaults.

4.2 Property pages

This section includes information on the following property pages:

4-2 Dali Java Persistence Tools User Guide

Property pages

n JPA Details view (for entities)
m JPA Details view (for attributes)
s JPA Details view (for orm.xml)

» JPA Structure view

4.2.1 JPA Details view (for entities)

The JPA Details view displays the persistence information for the currently selected
entity and contains the following tabs:

= General information
= Secondary table information

s Inheritance information

4.2.1.1 General information

This table lists the General information fields available in the JPA Details view for each
entity type.

Property Description Default Available for Entity Type
Map As Specify the type of entity: Entity, Mapped Entity Entity, Embeddable, and
Superclass, Embeddable. Mapped superclass
Name The name of this entity. By default, the class Entity
name is used as the entity name.
Table The primary database table associated with the Entity
entity.
Catalog The database catalog that contains the Table. As defined in Entity
orm.xml.
Schema The database schema that contains the Table. As defined in Entity
orm.xml.
Attribute Specify a property or field to be overridden Entity
Overrides (from the default mappings). Select Override
Default.
Column The database column (from the Table Name) Entity
mapped to the entity.
Table Name of the database table that contains the Entity

selected column.

4.2.1.2 Secondary table information

Use the Secondary Tables area in the Java Details view to associate additional tables
with an entity. Use this area if the data associated with an entity is spread across
multiple tables.

Refer to "Specifying additional tables" on page 3-9 for additional information.

4.2.1.3 Inheritance information

This table lists the fields available on the Inheritance area in the Java Details view for
each entity type.

Reference 4-3

Property pages

Property

Description

Default

Strategy

Specify the strategy to use when mapping a
class or class hierarchy:

= Single table — All classes in the hierarchy
are mapped to a single table.

= Joined — The root of the hierarchy is
mapped to a single table; each child maps
to its own table.

= Table per class — Each class is mapped to a
separate table.

Single table

Discriminator
Column

Use to specify the name of the discriminator
column when using a Single or Joined
inheritance strategy.

Discriminator Type

Set this field to set the discriminator type to
Char or Integer (instead of its default:
String). The Discriminator Value must
conform to this type.

String

Discriminator Value

Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

Primary Key Join
Columns

Select Override Default.

This field corresponds with
@PrimaryKeyJoinColumn annotation.

Refer to "Specifying entity inheritance" on page 3-9 for additional information.

4.2.2 JPA Details view (for attributes)

The JPA Details view displays the persistence information for the currently selected
mapped attribute and contains the following areas:

s General information

= Join Table Information

s Join Columns Information

= Primary Key Generation information

See "Mapping an entity" on page 3-11 for more information.

4.2.2.1 General information
This table lists the General properties available in the Java Details view for each

attribute

mapping type.
Available for
Property Description Default Mapping Type
Map As Define the mapping type for the Basic All mapping types

4-4 Dali Java Persistence Tools User Guide

Property pages

Available for

Property Description Default Mapping Type
Column The database column that By default, the Column is Basic mapping,
contains the value for the assumed to be named Embedded mapping,
attribute. This field corresponds | identically to the attribute. ID mapping, Version
to the @Column annotation. mapping
Name Name of the database column. Basic mapping,
This field corresponds to the {E[r)n bedded mapping,
@Column annotation. mappimng
Table Name of the database table that Basic mapping,
contains the selected column. Embedded mapping,
ID mapping
Fetch Type Defines how data is loaded from | Eager Basic mapping,
the database: One-to-one mapping
= Eager - Data is loaded in
before it is actually needed.
= Lazy - Data is loaded only
when required by the
transaction.
Optional Specifies if this field is can be Yes Basic mapping,
null. One-to-one mapping
Lob Specify if the field is mapped to Basic mapping
java.sgl.Clob or
java.sql.Blob.
This field corresponds to the
@Lob annotation.
Temporal Specifies if this field is one of the Basic mapping, ID
following: mapping
s Date-java.sgl.Date
s Time-java.sgl.Time
s Timestamp -
java.sql.Timestamp
This field corresponds to the
@Temporal annotation.
Enumerated Specify how to persist Ordinal
enumerated constraints if the
String value suits your
application requirements or to
match an existing database
schema.
= ordinal
s String
This field corresponds to the
@Enumerated annotation.
Target Entity The persistent entity to which the One-to-one mapping,,

attribute is mapped.

One-to-many
mapping
Many-to-many
mapping,
Many-to-one mapping

Reference 4-5

Property pages

Available for

Property Description Default Mapping Type
Cascade Type Specify which operations are One-to-one mapping
propagated throughout the entity.
= All - All operations
n Persist
s Merge
= Move
Mapped By The field in the database table One-to-one mapping,
that "owns" the relationship. This One-to-many
field is required only on the mapping
non-owning side of the
relationship.
Order By Specify the default order for Primary key One-to-many

objects returned from a query:
= No ordering

= Primary key

= Custom ordering

This field corresponds to the
@OrderBy annotation.

mapping.
Many-to-many
mapping,
Many-to-one mapping

Attribute Overrides

Overrides the column mappings
from the mapped, entity tabled.
(for example, if the inherited
column name is incompatible
with a pre-existing data model, or
invalid as a column name in your
database).

Embedded mapping
Embedded mapping

4.2.2.2 Join Table Information

Use area to specify a mapped column for joining an entity association. By default, the
mapping is assumed to have a single join.

This table lists the fields available on the Join Table area in the JPA Details view for
One-to-many mapping and Many-to-many mapping mapping types.

Property

Description

Default

Name

Name of the join table that contains
the foreign key column.

By default, the name is
assumed to be the primary
tables associated with the
entities concatenated with an
underscore.

4-6 Dali Java Persistence Tools User Guide

Join Columns

Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Inverse Join Columns

Select Override Default, then Add,
Edit, or Remove the join columns.

Property pages

4.2.2.3 Join Columns Information

This table lists the fields available in the Join Table area in JPA Details view for
Many-to-one mapping and One-to-one mapping mapping types.

Property

Description

Default

Join Column

Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

4.2.2.4 Primary Key Generation information

This table lists the fields available in the Primary Key Generation area in JPA Details
view for ID mapping types.

= Identity — Values are assigned
by the database’s Identity
column.

= Sequence - Values are assigned
by a sequence table (see
Sequence Generator).

= Table - Values are assigned by
a database table (see Table
Generator).

Property Description Default
Primary Key These fields define how the Generated Value
Generation primary key is generated. These
fields correspond to the
@GeneratedValue annotation.
Strategy s Auto Auto

Generator Name

Unique name of the generated
value.

Table Generator

These fields define the database
table used for generating the
primary key and correspond to the
@TableGenerator annotation.

These fields apply only when
Strategy = Table.

Name

Unique name of the generator.

Table

Database table that stores the
generated ID values.

Primary Key Column

The column in the table generator’s
Table that contains the primary
key.

Value Column

The column that stores the
generated ID values.

Primary Key Column
Value

The value for the Primary Key
Column in the generator table.

Reference 4-7

Property pages

Property

Description Default

Sequence Generator These fields define the specific

sequence used for generating the
primary key and correspond to the
@SequenceGenerator
annotation.

These fields apply only when
Strategy = Sequence.

Name

Name of the sequence table to use
for defining primary key values.

Sequence

Unique name of the sequence.

4.2.3 JPA Details view (for orm.xml)

The JPA Details view displays the default mapping and persistence information for
the project and contains the following areas:

s General information

s Persistence Unit information

These defaults can be overridden by the settings on a specific entity or mapping.

4.2.3.1 General information
This table lists the General information fields available in the JPA Details view for each

entity type.

Property

Description

Default

Package

The Java package that contains the persistent
entities. Click Browse and select the package

Schema

The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xm1 file.

Catalog

The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xm1 file.

Access

Specify the default access method for the variables in
the project:

n Property
[] Fleld

This field corresponds to the <access> element in
the orm.xml file.

4.2.3.2 Persistence Unit information

This table lists the Persistence Unit information fields available in the JPA Details view
for each entity type. These fields are contained in the
<persistence-unit-metadatas element in the orm.xml file.

4-8 Dali Java Persistence Tools User Guide

Preferences

Property Description Default

XML Mapping Specifies that the Java classes in this persistence unit
Data Complete are fully specified by their metadata. Any
annotations will be ignored.

This field corresponds to the
<xml-mapping-metadata-completes> element
in the orm.xml file.

Package The Java package that contains the persistent entities
for this persistence unit.

Click Browse and select the package

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Cascade Persist Adds cascade-persist to the set of cascade options in
entity relationships of the persistence unit.

This field corresponds to the <cascade-persist>
element in the orm. xml file.

4.2.4 JPA Structure view

The JPA Structure view displays an outline of the structure (its attributes and
mappings) of the entity that is currently selected or opened in the editor. The
structural elements shown in the outline are the entity and its fields.

Figure 4-1 Sample JPA Structure View

Persistent entity

Mapped attributes
| _—

4.3 Preferences
This section includes information on the following preference pages:

» Project Properties page — JPA Options

4.3.1 Project Properties page — JPA Options

Use the JPA options on the Properties page to select the database connection to use
with the project.

This table lists the properties available in the Persistence Properties page.

Reference 4-9

Dialogs

Property Description
Platform Select the vendor-specific platform.
Connection The database connection used to map the persistent entities.

s To create a new connection, click Add Connections.

s To reconnect to an existing connection, click Reconnect.

See "Modifying persistent project properties” on page 3-23 for additional information.

4.4 Dialogs

This section includes information on the following preference pages:
= Generate Entities from Tables dialog

s Edit Join Columns Dialog

4.4.1 Generate Entities from Tables dialog

Use the Generate Entities dialog to create Java persistent entities from your database
tables and columns.

This table lists the properties available in the Generate Entities dialog.

Property Description

Source Folder Enter a project folder name in which to generate the Java
persistent entities, or click Browse to select an existing folder.

Package Enter a package name in which to generate the Java persistent
entities, or click Browse to select an existing package.

Tables Select the tables from which to create Java persistent entities.
The tables shown are determined by the database connection
that you defined in the Project Properties page — JPA Options.

See "Generating entities from tables" on page 3-20 for more information.

4.4.2 Edit Join Columns Dialog

Use the Join Columns dialog to create or modify the join tables and columns in
relationship mappings.

This table lists the properties available in the Join Columns dialog.

Property Description
Name Name of the joint table column that contains the foreign key
column.

Referenced Column Name Name of the database column that contains the foreign key
reference for the entity relationship.

4-10 Dali Java Persistence Tools User Guide

Icons and buttons

4.5 JPA Development perspective

The JPA Development perspective defines the initial set and layout of views in the
Workbench window when using Dali. By default, the JPA Development perspective

includes the following vies:

» JPA Structure view

s JPA Details view (for entities)

s JPA Details view (for attributes)

» JPA Details view (for orm.xml)

Figure 4-2 Sample JPA Development Perspective

JPA Details view

& JPh - Employee/src/dftifguickstart/model/Employes. java - Eclipse SDK —

File Edkt Source Refactor Mawijzte Search Project Run Window Help

3+ FE 0 Qg
|J L ”P .“jv
[Package Explorer &3

= i Employze
=2 src
= [dali.guickstart. model
= 1J] Address.java
® @ Address
+ 1) Employes.java
#-11) Phorehumber java N
L= META-INF 814 i
B IRE System Library [jr=1.5.0_10] < SCererar el e
B Apache Tomcat v5.5 [Apache Toms
) Toplink Essentisls (24 Problems £2
& build + | 0 errors, 20 warnings, 0 infos
£ ¥ Description
¥ Data Source Expiorer 10 =g ® F Warnings (20 keme)

=S R=RESIE AT %
= == Databases
=-%3 local_derby (Apache Derby v. 10,2.24
[saweLE
B oracle_xe
B9 stral_derby
& L= ODA Data Sources

L4 S

JPA Structure view

Co lumn (neme="EMF_ 1

Selecting the JPA perspective.

8 firsthiname
“E lastName
= address
=] phaneduribers
5 wverson

i

“C Etai TP Details :: D

Map As: Entity

Mame: | Default (Employee)
Tahle: | Default (Employes)

Catalog: |Default ()

| 0
== = = o

schema: | Default (dalkest)
Attribute Overrides:
[Clowerride Defar

Column:
> Table: |

4.6 lcons and buttons

This section includes information on each of the icons and buttons used in the Dali OR

Mapping Tool.
s Icons
s Buttons

4.6.1 lcons

The following icons are used throughout the Dali OR Mapping Tool.

Reference 4-11

Icons and buttons

Icon Description
4 Nonpersistent class
% Entity
p= Embeddable entity
W=
% Mapped superclass
Basic mappin,
HE pping
ﬁ Embedded mapping
& Embedded ID mapping
ID mappin,
@ pping
E
a8 Many-to-many mapping
Mg
. Many-to-one mapping
-
[T
o One-to-many mapping
i::
One-to- i
- ne-to-one mapping
Transient mapping
&
a Version mapping
Iz

4.6.2 Buttons
The following buttons are used throughout the Dali OR Mapping Tool.

Icon Description

JPA Development perspective
% 1P |

4-12 Dali Java Persistence Tools User Guide

Dali Developer Documentation

4.7 Dali Developer Documentation
Additional Dali documentation is available online at:
http://wiki.eclipse.org/index.php/Dali Developer Documentation
This developer documentation includes information about:
= Dali architecture
= Plugins that comprise the Dali JPA Eclipse feature

= Extension points

Reference 4-13

Dali Developer Documentation

4-14 Dali Java Persistence Tools User Guide

O

Tips and tricks

The following tips and tricks give some helpful ideas for increasing your productivity.

s Database Connections

= Schema-based persistence.xml

Tip

Description

Database Connections

When starting a new workbench session, be sure to reconnect to
your database (if you are working online). This allows Dali to
provide database-related mapping assistance and validation.

Schema-based
persistence.xml

If you are behind a firewall, you may need to configure your Eclipse
workspace proxy in the Preferences dialog (Preferences > Internet >
Proxy Settings) to properly validate a schema-based
persistence.xml file.

Tips and tricks 5-1

5-2 Dali Java Persistence Tools User Guide

6

What’s new

This section contains descriptions of the following new feature and significant changes
made to the Dali OR Mapping Tool for Release 1.0.0:

s Generate Persistent Entities from Tables wizard
» Create and Manage the persistence.xml file

s Create and Manage the orm.xml file

6.1 Generate Persistent Entities from Tables wizard

Use the Generate Entities from Tables wizard to quickly create JPA entities from your
database tables.

Figure 6—1 Generating Entities

i Package Explorer X

wd
= B
= I:B Mew
+ Go Inta
=
T Open in Mew Window
o Open Type Hierarchy F4
eS|
= Copy Ctri+-Insert
"5 Paste Shift+Insert
< # Delete Delete

Restore from Local History...
JPA Tools
FDE Tools

Add Java Persistence. ..
Properties Al+Enter

Dali automatically creates the necessary OR mappings, based on your database table
constraints.

6.2 Create and Manage the persistence.xml file

When creating a JPA project, Dali automatically creates the perssistence.xml file.

What's new 6-1

Create and Manage the orm.xml file

Figure 6—-2 JPA Project with persistence.xml File

= TEJ Drali_Tutorial_Maodel
- B SrC
== META-IMF
2l MaMIFEST.MF
(X arr,xrml

|| persistence. xml
+-B8, IRE System Library [jrel.5.0_10]
+-=8, Apache Tomcat v5.5 [Apache Tamcat
+-E TopLink Essentials
= build

4| | B

Use the XML editor to edit the persistence.xml file.

After adding your JPA entities, use the Java Persistence > Synchronize Classes option
to add the classes to the persistence.xml file.

Figure 6-3 Synchronizing the persistence.xml File.

i Package Explorer X

= :pd Employes

=% sre | Mew »
5 i, quickd
B vt open =
+o
rei Open With »
+ m Empla]
Shiow In Ale+Shift+i ¥
E2 m Phone
= (= META-INF 72 Copy e
MANIF
%] orm.x
X) Paste Chrl+
+-m, JRE SystemLi ¥ Delete Delete
+- B, Apache Tomc: g
Source

+- B, TopLink Essen

JP4 Tools

(= build
T Quickstart Properties Alt+Enter
+-1=F Servers

6.3 Create and Manage the orm.xml file

When creating a JPA project, you can also create the orm. xml file. Select the Create
orm.xml option on the JPA Facet page page of the Create New JPA Project wizard.

6-2 Dali Java Persistence Tools User Guide

Create and Manage the orm.xml file

Figure 6—4 JPA Facet Dialog

& New JPA Project

IPA Facet
AT | JPR
onfigure JPA settings, \./
.
PlatFarm
| Generic |
Conneckion

|Derby_Embedded

L

&dd connection ...

JPA implementation
" Use implementation provided by server runtime

+ |se implementation library: j

Configure default JPA implementation library ...

Configure user libraries ...

Persistent class managerment
(" Discover annotated classes automatically

&+ annotated classes must be listed in persistence, xml

¥ Create arm.xml

@ < Back | | Einish | Cancel |

Use the orm.xml file to define the project and persistence unit defaults.

Figure 6-5 JPA Details view for orm.xml file.

Package: |

Schema: |Default 0 v|
Catalog: |DeFauIt {) - |
Access: |Default v|

~ Persistence Unit

O wML Mapping Metadata Complete

Schema: |Default = |
Catalog: |Default - |
Access: |Default v|

O cascade Persist

What's new 6-3

Create and Manage the orm.xml file

6-4 Dali Java Persistence Tools User Guide

Legal

The material in this guide is copyright © 2006, 2007 by Oracle.

7.1 About this content

Terms and conditions regarding the use of this guide.

May 5, 2007

License

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless
otherwise indicated below, the Content is provided to you under the terms and
conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is
available at http://www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is
being redistributed by another party ("Redistributor") and different terms and
conditions may apply to your use of any object code in the Content. Check the
Redistributor’s license that was provided with the Content. If no such license exists,
contact the Redistributor. Unless otherwise indicated below, the terms and conditions
of the EPL still apply to any source code in the Content and such source code may be
obtained at http://www.eclipse.org.

Legal 7-1

About this content

7-2 Dali Java Persistence Tools User Guide

Annotations

@Basic, 3-11

@Column, 4-5
@DiscriminatorColumn, 3-10
@DiscriminatorValue, 3-10
@Embeddable, 3-7
@Embedded, 3-12
@Embeddedld, 3-13
@Entity, 3-6
@Enumerated, 4-5
@GeneratedValue, 4-7
@ld, 3-13

@Inheritance, 3-8, 3-9
@JoinColumn, 3-16, 3-18, 4-6, 4-7
@Lob, 4-5
@ManyToMany, 3-15
@ManyToOne, 3-16
@MappedSuperclass, 3-8
@OneToMany, 3-17
@OneToOne, 3-18
@OrderBy, 4-6
@SequenceGenerator, 4-8
@Temporal, 4-5
@Transient, 3-19
@Version, 3-19

A

annotations. See specific annotation.
architecture of Dali feature, 4-13
attributes
JPA Details view, 4-4
mapping, 2-1

basic mapping
@Basic, 3-11
about, 3-11
See also mappings

Cc

classes
adding persistence to, 3-6
embeddable, 3-7

IndeXx

entity, 3-6

mapped superclass, 3-8

synchronizing, 3-4
columns

discriminator, 3-10

join, 3-16, 3-18, 4-6, 4-7

mapping to, 4-5

value, 3-10

D

database tables

generating entities from, 3-20
database, persistence

connection, 4-10

schema, 4-10
developer documentation, Dali, 4-13

E

eager fetch, 4-5

EJB. see persistent entities

embeddable class
@Embeddable, 3-7
about, 3-7

embedded ID mapping
@Embeddedld, 3-13
about, 3-13

embedded mapping
@Embedded, 3-12
about, 3-12

entities
@Entity annotation, 3-6
about, 2-1
embeddable, 3-7
from tables, 3-20, 4-10
JPA Details view, 4-3
mapped superclass, 3-8
mapping, 1-6
persistence, 1-3
persistent, 3-6
secondary tables, 4-3

@Enumerated, 4-5

enumerated, 4-5

error messages, Dali, 3-21

extension points, Dali feature, 4-13

Index-1

F one-to-many, 3-17
one-to-one, 3-18
problems, 3-21
transient, 3-19

fetch type, 4-5

G version, 3-19
Generate Entities from Tables dialog, 3-20, 4-10
generated values N

D mapplngz,S 47 New JPA Project wizard, 3-1

sequence, & nonpersistent

classes, 3-6

| fields. See transient
ID mapping

@ld, 3-13 (o)

about, 3-13 .

"y _t _-

inheritance one-to-many mapping

@OneToMany, 3-17
entity, 3-8,3-9,4-3 abo?;: 03-1a;1y
joined tables, 3-11 one-to-one mapping

single table, 3-10 @OneToOne, 3-18
Inheritance, in Java Details view, 4-3 about 3—18,

installation, Deli, 1-1 OR (object-relational) mappings. See mappings

@OrderBy, 4-6

J ordering, 4-6
joined tables, inheritance, 3-11 Ormg(m{[fllez)
JPA Details view about, 2- i
attributes, 4-4 managing, 3-
sample, 3-5

entities, 4-3
JPA Development perspective, 4-11
JPA Facet dialog, 3-3
JPA project P

outline, persistence. See JPA Structure view

creating new, 3-1
platform, 4-10
JPA Project dialog, 3-2
JPA Structure view, 4-9

persistence
about, 2-1
database connection, 4-10
database schema, 4-10
entity class, 3-6

L options, 4-9

lazy fetch, 45 Pers?stence XML.Editor, 3-4

persistence.xml file

about, 2-2
M editor, 3-4
many-to-many mapping managing, 3-3,3-4,3-5
@ManyToMany, 3-15 sample, 33
about, 3-15 synchronizing with classes, 3-4
many-to-one mapping persistent entity, 3-6
@ManyToOne, 3-16 perspective, JPA Development, 4-11
about, 3-16 / platform, JPA, 4-10
mapped superclass Problemsl 3-21
@MappedSuperclass, 3-8 projects, JPA
about, 3-8 creating new, 1-2,3-1
mapping entities, 1-6 options, 4-9
mappings
about, 2-1 Q
basic, 3-11

embedded. 3-12 quick start, Dali, 1-1

embedded ID, 3-13
ID, 3-13 R

many-to-many, 3-15

requirements
many-to-one, 3-16 1

Dali Java Persistence Tools, 1-1

Index-2

persistent entities, 3-6

S

schema, database, 4-10
secondary tables, 4-3

Secondary Tables, in Java Details view, 4-3

single table inheritance, 3-10
superclass, 3-8

T

tables
creating entities from, 3-20, 4-10
inheritance, 3-10
secondary, 4-3
@Temporal, 4-5
temporal, 4-5
transient mapping
@Transient, 3-19
about, 3-19
tutorial, Dali, 1-7

\'}

version mapping
@Version, 3-19
about, 3-19
views
JPA Details view, 4-3,4-4
JPA Structure view, 4-9

w

warning messages, Dali, 3-21
wizards
New JPA Project wizard, 3-1

X

XML editor, 3-4,3-5

Index-3

Index-4

	Contents
	1 Getting started
	1.1 Requirements and installation
	1.2 Dali quick start
	1.2.1 Creating a new project
	1.2.2 Creating a Java persistent entity
	1.2.3 Mapping an entity

	1.3 Dali basic tutorial
	1.3.1 Generate the tutorial database schema
	1.3.1.1 Create a database connection

	1.3.2 Create a JPA project
	1.3.3 Create persistent Java entities
	1.3.3.1 Add fields to the entities
	1.3.3.2 Associate the entity with a database table

	1.3.4 Create OR mappings
	1.3.4.1 Create ID mappings
	1.3.4.2 Create basic mappings
	1.3.4.3 Create one-to-one mappings
	1.3.4.4 Create one-to-many mappings
	1.3.4.5 Create many-to-one mappings
	1.3.4.6 Create version mappings

	2 Concepts
	2.1 Understanding Java persistence
	2.2 Understanding OR mappings
	2.3 Understanding EJB 3.0 Java Persistence API
	2.3.1 The persistence.xml file
	2.3.2 The orm.xml file

	3 Tasks
	3.1 Creating a new JPA project
	3.2 Managing the persistence.xml file
	3.2.1 Working with persistence.xml file
	3.2.2 Synchronizing classes

	3.3 Managing the orm.xml file
	3.3.1 Working with orm.xml file

	3.4 Adding persistence to a class
	3.4.1 Entity
	3.4.2 Embeddable
	3.4.3 Mapped superclass

	3.5 Specifying additional tables
	3.6 Specifying entity inheritance
	3.7 Mapping an entity
	3.7.1 Basic mapping
	3.7.2 Embedded mapping
	3.7.3 Embedded ID mapping
	3.7.4 ID mapping
	3.7.5 Many-to-many mapping
	3.7.6 Many-to-one mapping
	3.7.7 One-to-many mapping
	3.7.8 One-to-one mapping
	3.7.9 Transient mapping
	3.7.10 Version mapping

	3.8 Generating entities from tables
	3.9 Validating mappings and reporting problems
	3.9.1 Error messages
	3.9.2 Warning messages

	3.10 Modifying persistent project properties

	4 Reference
	4.1 Wizards
	4.1.1 Create New JPA Project wizard
	4.1.1.1 New JPA Project page
	4.1.1.2 JPA Facet page

	4.2 Property pages
	4.2.1 JPA Details view (for entities)
	4.2.1.1 General information
	4.2.1.2 Secondary table information
	4.2.1.3 Inheritance information

	4.2.2 JPA Details view (for attributes)
	4.2.2.1 General information
	4.2.2.2 Join Table Information
	4.2.2.3 Join Columns Information
	4.2.2.4 Primary Key Generation information

	4.2.3 JPA Details view (for orm.xml)
	4.2.3.1 General information
	4.2.3.2 Persistence Unit information

	4.2.4 JPA Structure view

	4.3 Preferences
	4.3.1 Project Properties page - JPA Options

	4.4 Dialogs
	4.4.1 Generate Entities from Tables dialog
	4.4.2 Edit Join Columns Dialog

	4.5 JPA Development perspective
	4.6 Icons and buttons
	4.6.1 Icons
	4.6.2 Buttons

	4.7 Dali Developer Documentation

	5 Tips and tricks
	6 What’s new
	6.1 Generate Persistent Entities from Tables wizard
	6.2 Create and Manage the persistence.xml file
	6.3 Create and Manage the orm.xml file

	7 Legal
	7.1 About this content

	Index

