
Dali Java Persistence Tools
User Guide

Release 1.0.0 for Eclipse

May 2007

Dali Java Persistence Tools User Guide

Copyright © 2006, 2007 Oracle. All rights reserved.

The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless otherwise indicated
below, the Content is provided to you under the terms and conditions of the Eclipse Public License Version
1.0 ("EPL"). A copy of the EPL is available at http://www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being redistributed
by another party ("Redistributor") and different terms and conditions may apply to your use of any object
code in the Content. Check the Redistributor's license that was provided with the Content. If no such license
exists, contact the Redistributor. Unless otherwise indicated below, the terms and conditions of the EPL still
apply to any source code in the Content.

iii

Contents

1 Getting started

1.1 Requirements and installation .. 1-1
1.2 Dali quick start .. 1-1
1.2.1 Creating a new project .. 1-2
1.2.2 Creating a Java persistent entity.. 1-3
1.2.3 Mapping an entity ... 1-6
1.3 Dali basic tutorial .. 1-7
1.3.1 Generate the tutorial database schema... 1-8
1.3.1.1 Create a database connection.. 1-8
1.3.2 Create a JPA project... 1-9
1.3.3 Create persistent Java entities ... 1-10
1.3.3.1 Add fields to the entities... 1-11
1.3.3.2 Associate the entity with a database table ... 1-11
1.3.4 Create OR mappings .. 1-12
1.3.4.1 Create ID mappings .. 1-12
1.3.4.2 Create basic mappings.. 1-14
1.3.4.3 Create one-to-one mappings.. 1-16
1.3.4.4 Create one-to-many mappings .. 1-17
1.3.4.5 Create many-to-one mappings .. 1-18
1.3.4.6 Create version mappings.. 1-19

2 Concepts

2.1 Understanding Java persistence .. 2-1
2.2 Understanding OR mappings ... 2-1
2.3 Understanding EJB 3.0 Java Persistence API .. 2-2
2.3.1 The persistence.xml file... 2-2
2.3.2 The orm.xml file ... 2-2

3 Tasks

3.1 Creating a new JPA project.. 3-1
3.2 Managing the persistence.xml file.. 3-3
3.2.1 Working with persistence.xml file .. 3-4
3.2.2 Synchronizing classes.. 3-4
3.3 Managing the orm.xml file .. 3-5
3.3.1 Working with orm.xml file... 3-5

iv

3.4 Adding persistence to a class ... 3-6
3.4.1 Entity.. 3-6
3.4.2 Embeddable .. 3-7
3.4.3 Mapped superclass .. 3-8
3.5 Specifying additional tables .. 3-8
3.6 Specifying entity inheritance... 3-9
3.7 Mapping an entity ... 3-11
3.7.1 Basic mapping ... 3-11
3.7.2 Embedded mapping... 3-12
3.7.3 Embedded ID mapping ... 3-13
3.7.4 ID mapping.. 3-13
3.7.5 Many-to-many mapping.. 3-15
3.7.6 Many-to-one mapping ... 3-16
3.7.7 One-to-many mapping... 3-17
3.7.8 One-to-one mapping .. 3-18
3.7.9 Transient mapping ... 3-19
3.7.10 Version mapping .. 3-19
3.8 Generating entities from tables ... 3-20
3.9 Validating mappings and reporting problems.. 3-21
3.9.1 Error messages .. 3-21
3.9.2 Warning messages .. 3-23
3.10 Modifying persistent project properties ... 3-23

4 Reference

4.1 Wizards... 4-1
4.1.1 Create New JPA Project wizard... 4-1
4.1.1.1 New JPA Project page .. 4-1
4.1.1.2 JPA Facet page .. 4-2
4.2 Property pages... 4-2
4.2.1 JPA Details view (for entities).. 4-3
4.2.1.1 General information ... 4-3
4.2.1.2 Secondary table information... 4-3
4.2.1.3 Inheritance information ... 4-3
4.2.2 JPA Details view (for attributes).. 4-4
4.2.2.1 General information ... 4-4
4.2.2.2 Join Table Information ... 4-6
4.2.2.3 Join Columns Information... 4-7
4.2.2.4 Primary Key Generation information.. 4-7
4.2.3 JPA Details view (for orm.xml).. 4-8
4.2.3.1 General information ... 4-8
4.2.3.2 Persistence Unit information .. 4-8
4.2.4 JPA Structure view .. 4-9
4.3 Preferences ... 4-9
4.3.1 Project Properties page – JPA Options ... 4-9
4.4 Dialogs ... 4-10
4.4.1 Generate Entities from Tables dialog... 4-10
4.4.2 Edit Join Columns Dialog.. 4-10

v

4.5 JPA Development perspective .. 4-11
4.6 Icons and buttons... 4-11
4.6.1 Icons.. 4-11
4.6.2 Buttons.. 4-12
4.7 Dali Developer Documentation ... 4-13

5 Tips and tricks

6 What’s new

6.1 Generate Persistent Entities from Tables wizard ... 6-1
6.2 Create and Manage the persistence.xml file ... 6-1
6.3 Create and Manage the orm.xml file.. 6-2

7 Legal

7.1 About this content... 7-1

Index

vi

Getting started 1-1

1
Getting started

This section provides information on getting started with the Java Persistence Tools.

■ Requirements and installation

■ Dali quick start

■ Dali basic tutorial

For additional information, please visit the Dali home page at:
http://www.eclipse.org/webtools/dali/main.php/.

1.1 Requirements and installation
Before installing Dali, ensure that your environment meets the following minimum
requirements:

■ Eclipse 3.3 (http://www.eclipse.org/downloads)

■ Java Runtime Environment (JRE) 1.5 (http://java.com)

■ Eclipse Web Tools Platform (WTP) 2.0 (http://www.eclipse.org/webtools)

■ Java Persistence API (JPA) for Java EE 5. The reference implementation can be
obtained from:

https://glassfish.dev.java.net/downloads/persistence/JavaPersistence.html

Refer to http://www.eclipse.org/webtools/dali/gettingstarted_
main.html for additional installation information.

Review the Dali quick start and Dali basic tutorial to build your first Dali project.

1.2 Dali quick start
This section includes information to help you quickly start using Dali to create
relational mappings between Java persistent entities and database tables.

■ Creating a new project

■ Creating a Java persistent entity

■ Mapping an entity

The Dali basic tutorial contains detailed procedures for building you first Dali project.

Dali quick start

1-2 Dali Java Persistence Tools User Guide

1.2.1 Creating a new project
This quick start shows how to create a new JPA project.

1. Select File > New > Project. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click Next. The Create a
Java Project dialog appears.

Figure 1–1 New JPA Project

3. On the Create a JPA Project dialog, enter a Project name (such as QuickStart).

4. Select your Target Runtime (such as Apache Tomcat) and click Next. The Project
Facets dialog appears.

5. Verify that the Java Persistence 1.0 facet is selected and click Next. The JPA Facet
dialog appears.

6. On the JPA Facet dialog, select your vendor-specific JPA platform, database
connection (or create a new connection), JPA implementation library (such as
TopLink Essentials), define how Dali should manage persistent classes, and click
Finish.

Note: You must configure your project to use Java version 5.0 (or
higher). See "Requirements and installation" on page 1-1 for more
information.

Dali quick start

Getting started 1-3

Figure 1–2 JPA Facet Dialog

Eclipse adds the project to the workbench and opens the JPA perspective.

Figure 1–3 Project in Package Explorer

Now that you have created a project with persistence, you can continue with Creating
a Java persistent entity.

1.2.2 Creating a Java persistent entity
This quick start shows how to create a new persistent Java entity. We will create an
entity to associate with a database table. You will also need to add the ADDRESS table
to your database.

1. Right-click the project in the Package Explorer and select New > Class. The New
Java Class page appears.

2. On the Java Class page, enter a package name (such as
quickstart.demo.model), class name (such as Address), and click Finish.

3. Right-click the Address.java file in the Package Explorer and select Open.

Dali quick start

1-4 Dali Java Persistence Tools User Guide

Figure 1–4 Open Address.java

4. Select the Address entity in the JPA Structure view.

Figure 1–5 Address Class in JPA Structure View

5. In the JPA Details view, in the Map As field, select Entity. In the Table field, select
the ADDRESS database table.

Figure 1–6 Address Entity in JPA Details View

Eclipse creates the persistent entity and adds the @Entity annotation to the class.

Dali quick start

Getting started 1-5

Figure 1–7 Address Entity

Eclipse also displays the Address entity in the JPA Structure view:

Figure 1–8 Address Entity

After creating the entity, you must associate it with a database table.

1. Select the Address class in the Explorer view.

2. In the Persistence Properties view, notice that Dali has automatically associated
the ADDRESS database table with the entity because they are named identically.

Figure 1–9 JPA Details View for Address Entity

After associating the entity with the database table, you must update the
persistence.xml file to include this JPA entity.

Right-click the persistence.xml file in the Package Explorer and select JPA Tools >
Synchronize Classes. Dali adds the following to the persistence.xml file:

<class>quickstart.demo.model.Address</class>

Note: Depending on your database connection type, you may need
to specify the Schema.

Dali quick start

1-6 Dali Java Persistence Tools User Guide

Now that you have created a persistent entity, you can continue with Mapping an
entity to map the entity’s fields to columns on the database table.

1.2.3 Mapping an entity
This quick start shows how to map fields in a Java persistent entity. Before beginning,
add the following fields to the Address class:

private Long id;
private String city;
private String country;
private String stateOrProvince;
private String postalCode;
private String street;

Eclipse updates the Address entity in the JPA Structure view to show its fields:

Figure 1–10 Address Entity and Fields

You will also need to add the following columns to the ADDRESS database table:

NUMBER(10,0) ADDRESS_ID (primary key)
VARCHAR2(80) PROVINCE
VARCHAR2(80) COUNTRY
VARCHAR2(20) P_CODE
VARCHAR2(80) STREET
VARCHAR2(80) CITY

Now we are ready to map each fields in the Address class to a column in the database
table.

1. Select the id field in the JPA Details view.

2. In the JPA Details view:

■ For the Map As field, select Id

■ For the Column field, select ADDRESS_ID.

Dali basic tutorial

Getting started 1-7

Figure 1–11 JPA Details View for addressId Field

Eclipse adds the following annotations to the Address entity:

@Id
@Column(name="ADDRESS_ID")

3. Map each of the following fields (as Basic mappings) to the appropriate database
column:

Notice that Dali will automatically map some fields to the correct database column
(such as the city field to the CITY column) if the names are identical.

Refer to the Dali basic tutorial to map a complete object model using basic and
relational mappings.

1.3 Dali basic tutorial
In this tutorial, you will use Dali to map the object model of a company’s HR
application to track its employees. Figure 1–12 illustrates the object model for the
tutorial.

Field Map As Database Column

city Basic CITY

country Basic COUNTRY

postalCode Basic P_CODE

provinceOrState Basic PROVINCE

street Basic STREET

Dali basic tutorial

1-8 Dali Java Persistence Tools User Guide

Figure 1–12 Tutorial Object Model

1.3.1 Generate the tutorial database schema
The tutorial application uses three database tables to store each employee’s
information: EMPLOYEE, ADDRESS and PHONE. Table 1–1 describes the columns
for each table.

You can download SQL scripts to build and populate the database tables with sample
data from http://www.eclipse.org/webtools/dali/docs/dbscripts.zip.

1.3.1.1 Create a database connection
After creating the database you will need to create a database connection to use with
the tutorial application. An active database connection is required to complete tutorial
application.

Table 1–1 Tutorial Database Schema

Table Column Type Details

EMPLOYEE EMP_ID NUMBER(15) Primary Key

F_NAME VARCHAR(40)

L_NAME VARCHAR(40)

ADDR_ID NUMBER(15) Foreign Key, references
ADDRESS.ADDRES_ID

VERSION NUMBER(15)

ADDRESS ADDRESS_ID NUMBER(15) Primary Key

PROVINCE VARCHAR(80)

COUNTRY VARCHAR(80)

STREET VARCHAR(80)

P_CODE VARCHAR(20)

CITY VARCHAR(80)

PHONE EMP_ID NUMBER(15) Foreign Key, reference to
EMPLOYEE.EMP_ID

AREA_CODE VARCHAR(3)

P_NUMBER VARCHAR(7) Primary key

TYPE VARCHAR(15)

Dali basic tutorial

Getting started 1-9

Use the New Connection wizard to create a database connection.

Figure 1–13 Database Explorer

Now you’re ready to Create a JPA project.

1.3.2 Create a JPA project
In order to begin, you must create a new Java project.

1. Select File > New > Project. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click OK. The New JPA
Project dialog appears.

3. On the New JPA Project dialog, enter Employee as the Project name and click
Next. The Project Facets page appears.

4. Verify that you have selected a Java 5.0 (or higher) and JPA 1.0 facet, and click
Next. The JPA Facet page appears.

5. Select your vender-specific platform, database connection, and JPA
implementation library, and click Finish.

Eclipse adds the project to the workbench and opens the Java perspective.

Dali basic tutorial

1-10 Dali Java Persistence Tools User Guide

Figure 1–14 Persistence Perspective

The next step is to Create persistent Java entities.

1.3.3 Create persistent Java entities
The Tutorial Object Model contains three entities: Employee, Address, and
PhoneNumber. Use this procedure to add the entities to the project.

1. Right-click the Employee project in the Package Explorer and select New > Class.
The New Java Class dialog appears.

2. On the Java Class dialog, enter a package name (such as
dali.tutorial.model), class name (such as Employee), and click Finish.
Eclipse adds the Employee entity to the Package Explorer.

3. Select the Employee entity in the JPA Structure view.

4. In the JPA Details view, in the Map As field, select Entity. In the Table field, select
the EMPLOYEE database table.

Dali basic tutorial

Getting started 1-11

Figure 1–15 Employee Entity in JPA Details View

Eclipse adds the @Entity annotation to the class. Repeat this procedure to add the
PhoneNumber and Address entities.

Notice that the Problems view reports several errors for each entity. We’ll address
these shortly.

1.3.3.1 Add fields to the entities
Before mapping the entities to the database, you must add the necessary fields to each
entity.

1. Add the following fields to the Employee entity:

private Long id;
private String firstNname;
private String lastName;
private String address;
private List<PhoneNumber> phoneNumbers;
private Long version;

2. Import java.util.List.

3. Generate Getters and Setters for each field.

4. Add the following fields to the Address entity:

private Long id;
private String street;
private String city;
private String stateOrProvince;
private String country;
private String postalCode;

5. Add the following fields to the PhoneNumber entity:

private String type;
private String areaCode;
private String number;
private Employee owner;

1.3.3.2 Associate the entity with a database table
Now you must associate each entity with its primary database table.

1. Select the Employee class in the Explorer view.

Dali basic tutorial

1-12 Dali Java Persistence Tools User Guide

2. In the JPA Details view, notice that Dali has automatically selected the
EMPLOYEE table as the table name.

Figure 1–16 JPA Details View for the Employee Entity

By default, Dali attempts to associate each entity with a similarly named database
table. Notice that although you have not explicitly associated the Address entity yet,
there is no error in the Problems view because the entity name, Address, is identical to
the table name (ADDRESS).

For the PhoneNumber entity, however, there is an error. This is because the entity
name (PhoneNumber) is different than the database table (PHONE). You must
explicitly associate the entity with the PHONE table. Dali adds the
@Table(name="PHONE") annotation to the entity.

Now you are ready to Create OR mappings.

1.3.4 Create OR mappings
Now you’re ready to map the attributes of each persistent entity to columns in the
appropriate database table. For the tutorial application, you will use the following
mapping types:

■ ID mappings

■ Basic mappings

■ One-to-one mappings

■ Many-to-one mappings

■ One-to-many mappings

■ Version mappings

1.3.4.1 Create ID mappings
Use an ID Mapping to specify the primary key of an entity. Each persistent entity
must have an ID. Notice that the Problems view reports that each entity is missing an
ID.

1. Select the Employee entity in the Package Explorer view.

2. Expand the Employee entity in the JPA Structure view and select the id field. The
JPA Details view (for attributes) displays the properties for the field.

3. In the Map As field, select ID.

Dali basic tutorial

Getting started 1-13

Figure 1–17 ID Mapping for emp_id Field

4. Use this table to complete the remaining fields in the JPA Details view.

5. Leave all other fields on the tab as their defaults. Expand the Primary Key
Generation area.

Figure 1–18 Primary Key Generation for emp_id Field

6. Use this table to complete the Primary Key Generation fields in the JPA Details
view.

Property Description

Map As Defines this mapping as an ID Mapping. Dali adds the @Id
annotation to the entity.

Column The database column for the primary key of the table associated
with the entity. Select EMP_ID.

Because the database column (EMP_ID) is named differently
than the entity field (id), Dali adds the @Column(name="EMP_
ID") annotation.

Dali basic tutorial

1-14 Dali Java Persistence Tools User Guide

In the JPA Structure view, the id field is identified as the primary key by the following
icon:

Figure 1–19 JPA Structure for Employee Entity

Repeat this procedure to map the following primary keys (as shown in Table 1–1,
" Tutorial Database Schema"):

■ The id field of the Address entity to the ADDRESS_ID column of the ADDRESS
table.

■ The number field of the PhoneNumber entity to the P_NUMBER column of the
PHONE table.

1.3.4.2 Create basic mappings
Use a Basic Mapping to map an attribute directly to a database column. In the Tutorial
Object Model, the firstName field of the Employee class maps directly to the F_NAME
column of the EMPLOYEE database table.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the firstName field of the Employee entity. The
JPA Details view (for attributes) displays the properties for the field.

3. In the Map As field, select Basic. In the Column field, select F_NAME.

Property Description

Generated Value These fields define how the primary key is generated.

Strategy For the tutorial project, use the Auto option.

Generator Name Leave this field blank.

Dali basic tutorial

Getting started 1-15

Figure 1–20 Basic Mapping for firstName

Dali adds the @Column(name="F_NAME") annotation to the entity. In the JPA
Structure, the firstName field is identified as a basic mapping as shown in the
following figure:

Figure 1–21 JPA Structure for Employee Entity

Repeat this procedure to map each of the following fields as Basic mappings:

■ Employee entity

– lastName field to L_NAME column

■ Address Entity

– city field to CITY column

– country field to COUNTRY column

– postalCode field to P_CODE column

– stateOrProvice field to PROVINCE column

– street field to STREET column

■ Phone Entity

– areaCode field to AREA_CODE column

– type field to TYPE column

Note: Because the city, country, and street fields are named
identically to their database columns, Dali automatically maps the
fields; no annotations are required.

Dali basic tutorial

1-16 Dali Java Persistence Tools User Guide

1.3.4.3 Create one-to-one mappings
Use a One-to-One Mapping to define a relationship from an attribute to another class,
with one-to-one multiplicity to a database column. In the Tutorial Object Model, the
address field of the Employee class has a one-to-one relationship to the Address class;
each employee may have a single address.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the address field of the Employee entity. The JPA
Details view (for attributes) displays the properties for the field.

3. In the Map As field, select One-to-One.

Figure 1–22 One-to-one Mapping for address

4. For the Target Entity, click Browse and select the Address persistent entity. Dali
adds the
@OneToOne(targetEntity=dali.tutorial.model.Address.class)
entity to the class.

Leave the other fields with their default values.

5. Select the Override Default option to specify the relationship between the
Employee and Address entities. Because you had to explicitly define the ID field
for the Address entity in its ID mapping, you will need to edit the default join
relationship.

6. Select the address_ADDRESS_ID -> ADDRESS_ID relationship in the Join
Columns area and click Edit.

7. In the Edit Join Column dialog, select the following options and click OK.

■ Name: ADDR_ID (from the EMPLOYEE table)

■ Referenced Column Name: ADDRESS_ID (from the ADDRESS table)

Note: Because the type field is named identically to its database
column, Dali automatically maps the field. No annotation is required.

Dali basic tutorial

Getting started 1-17

Figure 1–23 Editing Join Column for Address Mapping

In the JPA Structure, the address field is identified as a one-to-one mapping, as shown
in the following figure:

Figure 1–24 JPA Structure for Employee Entity

1.3.4.4 Create one-to-many mappings
Use a One-to-Many Mapping to define a relationship from an attribute to another
class, with one-to-many multiplicity to a database column. In the Tutorial Object
Model, the phoneNumbers field of the Employee class has a one-to-many relationship
to the Phone class; each employee may have many phone numbers.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the phoneNumber field of the Employee entity.
The JPA Details view (for attributes) displays the properties for the field.

3. In the Map As field, select One-to-Many.

Dali basic tutorial

1-18 Dali Java Persistence Tools User Guide

Figure 1–25 One-to-many Mapping for phoneNumbers

4. Select PhoneNumber as the Target Entity. Leave the other fields with their default
values.

5. In the Join Table area, notice that Dali has selected the correct joins, based on the
foreign key associations in the database tables.

In the JPA Structure, the phoneNumbers field is identified as a one-to-many mapping
as shown in the following figure:

Figure 1–26 JPA Structure for Employee Entity

1.3.4.5 Create many-to-one mappings
Use a May-to-One Mapping to define a relationship from an attribute to another class,
with many-to-one multiplicity to a database column. In the Tutorial Object Model, the
owner field of the PhoneNumber class has a one-to-many relationship to the
Employee class; there are many phone numbers that each employee may have.

This is the "back mapping" of the one-to-many mapping you previously defined.

1. Select the PhoneNumber entity in the Package Explorer view.

2. In the JPA Structure view, select the owner field of the PhoneNumber entity. The
JPA Details view (for attributes) displays the properties for the field.

Dali basic tutorial

Getting started 1-19

3. In the Map As field, select Many to One.

Figure 1–27 Many to One Mapping for owner

4. Leave the other fields with their default values. Dali correctly completes the
information based on the database structure and previously defined mappings.

5. Use the Join Columns area to specify the relationship between the PhoneNumber
and Employee entities. Because you had to explicitly define the ID field for the
Employee entity in its ID mapping, you will need to edit the default join
relationship.

6. Select the Override Default option.

7. Select the owner_EMP_ID -> EMP_ID relationship in the Join Columns area and
click Edit.

8. In the Edit Join Column dialog, select the following options and click OK.

■ Name: EMP_ID (from the PHONE table)

■ Referenced Column Name: EMP_ID (from the EMPLOYEE table)

In the JPA Structure, the owner field is identified as a many-to-one mapping as shown
in the following figure:

Figure 1–28 JPA Structure for PhoneNumber Entity

1.3.4.6 Create version mappings
Use a Version Mapping to specify the database field used by a persistent entity for
optimistic locking.

1. Select the Employee entity in the Package Explorer view.

2. In the JPA Structure view, select the version field of the Employee entity. The JPA
Details view (for attributes) displays the properties for the field.

Dali basic tutorial

1-20 Dali Java Persistence Tools User Guide

3. In the Map As field, select Version.

Figure 1–29 Version Mapping for version

Dali automatically selects the Version column in the EMPLOYEE database table. In the
JPA Structure, the Version field is identified as a version mapping, as shown in the
following figure:

Figure 1–30 JPA Structure for Employee Entity

Congratulations! All of the entities have been successfully mapped.

Concepts 2-1

2
Concepts

This section contains an overview of concepts you should be familiar with when using
Dali to create mappings for Java persistent entities.

■ Understanding Java persistence

■ Understanding OR mappings

■ Understanding EJB 3.0 Java Persistence API

In addition to these sections, you should review the following resources for additional
information:

■ Eclipse Dali project: http://www.eclipse.org/webtools/dali

■ Eclipse Web Tools Platform project: http://www.eclipse.org/webtools

■ JSR 220 EJB 3.0 specification: http://www.jcp.org/en/jsr/detail?id=220

2.1 Understanding Java persistence
Persistence refers to the ability to store objects in a database and use those objects with
transactional integrity. In a J2EE application, data is typically stored and persisted in
the data tier, in a relational database.

Entity beans are enterprise beans that contain persistent data and that can be saved in
various persistent data stores. The entity beans represent data from a database; each
entity bean carries its own identity. Entity beans can be deployed using
application-managed persistence or container-managed persistence.

2.2 Understanding OR mappings
The Dali OR (object-relational) Mapping Tool allows you to describe how your entity
objects map to the data source (or other objects). This approach isolates persistence
information from the object model–developers are free to design their ideal object
model, and DBAs are free to design their ideal schema.

These mappings transform an object data member type to a corresponding relational
database data source representation. These OR mappings can also transform object
data members that reference other domain objects stored in other tables in the
database and are related through foreign keys.

You can use these mappings to map simple data types including primitives (such as
int), JDK classes (such as String), and large object (LOB) values. You can also use
them to transform object data members that reference other domain objects by way of
association where data source representations require object identity maintenance
(such as sequencing and back references) and possess various types of multiplicity and

Understanding EJB 3.0 Java Persistence API

2-2 Dali Java Persistence Tools User Guide

navigability. The appropriate mapping class is chosen primarily by the cardinality of
the relationship.

2.3 Understanding EJB 3.0 Java Persistence API
The Java 2 Enterprise Edition(J2EE) Enterprise JavaBeans (EJB) are a component
architecture that you use to develop and deploy object-oriented, distributed,
enterprise-scale applications. An application written according to the Enterprise
JavaBeans architecture is scalable, transactional, and secure.

The EJB 3.0 Java Persistence API (JPA) improves the EJB architecture by reducing its
complexity through the use of metadata (annotations) and specifying programmatic
defaults of that metadata.

2.3.1 The persistence.xml file
The JPA specification requires the use of a persistence.xml file for deployment.
This file defines the database and entity manager options, and may contain more than
one persistence unit. Dali can use the Eclipse XML Editor to create and maintain this
information. See "Managing the persistence.xml file" on page 3-3 for more information.

2.3.2 The orm.xml file
Although the JPA specification emphasizes the use of annotations to specify
persistence, you can also the orm.xml file to store this metadata. Dali can use the
Eclipse XML Editor to create and maintain this information. The metadata must match
the XSD specification of your selected JPA implementation. See "Managing the
orm.xml file" on page 3-5 for more information.

Tasks 3-1

3
Tasks

This section includes detailed step-by-step procedures for accessing the Dali OR
mapping tool functionality.

■ Creating a new JPA project

■ Managing the persistence.xml file

■ Managing the orm.xml file

■ Adding persistence to a class

■ Specifying additional tables

■ Specifying entity inheritance

■ Mapping an entity

■ Generating entities from tables

■ Validating mappings and reporting problems

■ Modifying persistent project properties

3.1 Creating a new JPA project
Use this procedure to create a new JPA project.

1. Select File > New > Other. The New Project dialog appears.

2. On the New Project dialog, select JPA > JPA Project and click Next. The New JPA
Project wizard appears.

Creating a new JPA project

3-2 Dali Java Persistence Tools User Guide

Figure 3–1 New JPA Project

3. Complete the fields on the New JPA Project page to specify the project name and
location, target runtime, and pre-defined configuration.

4. Click Next. The Project Facets page appears.

5. Select the project facets to use to create the project and click Next. The JPA Facet
page appears.

Managing the persistence.xml file

Tasks 3-3

Figure 3–2 New JPA Project

6. Complete the fields on the JPA Facet page to specify your vender-specific
platform, database connection, and JPA implementation library.

7. Click Finish. You should now open the JPA Development perspective.

3.2 Managing the persistence.xml file
When creating a JPA project, (see "Creating a new JPA project") you can also create the
persistence.xml file.

Eclipse creates the META-INF\persistence.xml file in your project’s directory:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="<PERSISTENCE_VERSION>"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

<persistence-unit name="<PERSISTENCE_UNIT_NAME>">
<provider="<PERSISTENCE_PROVIDER>" />

</persistence-unit>
</persistence>

Note: If the server runtime does not provide a JPA implementation,
you must explicitly select a JPA implementation library.

To insure the portability of your application, you must explicitly list
the managed persistence classes that are included in the persistence
unit. If the server supports EJB 3.0, the persistent classes will be
discovered automatically.

Managing the persistence.xml file

3-4 Dali Java Persistence Tools User Guide

3.2.1 Working with persistence.xml file
You can work with the persistence.xml by using the XML Editor.

Use this procedure to work with the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select Open
With > XML Editor.

Figure 3–3 Opening the Persistence XML Editor

2. Use the Persistence XML Editor to edit the persistence.xml file.

Figure 3–4 Persistence XML Editor

3.2.2 Synchronizing classes
As you work with the classes in your Java project, you will need to update the
persistence.xml file to reflect the changes.

Use this procedure to synchronize the persistence.xml file:

1. Right-click the persistence.xml file in the Package Explorer and select JPA
Tools > Synchronize Classes.

Managing the orm.xml file

Tasks 3-5

Figure 3–5 Synchronizing the persistence.xml File

Dali adds the necessary <class> elements to the persistence.xml file.

2. Use the Persistence XML Editor to continue editing the persistence.xml file.

3.3 Managing the orm.xml file
When creating a JPA project, (see "Creating a new JPA project") you can also create the
orm.xml file that defines the mapping metadata and defaults.

Eclipse creates the META-INF\orm.xml file in your project’s directory:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="<PERSISTENCE_VERSION>"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

<persistence-unit name="<PERSISTENCE_UNIT_NAME>">
<provider="<PERSISTENCE_PROVIDER>" />

</persistence-unit>
</persistence>

3.3.1 Working with orm.xml file
You can work with the orm.xml by using the JPA Details view.

Use this procedure to work with the orm.xml file:

1. Right-click the orm.xml file in the Package Explorer and select Open.

2. In the JPA Structure view, select EntityMappings.

3. Use the JPA Details view to configure the entity mapping and persistence unit
defaults.

Adding persistence to a class

3-6 Dali Java Persistence Tools User Guide

Figure 3–6 JPA Details view for EntityMappings (orm.xml)

3.4 Adding persistence to a class
You can make a Java class into one of the following persistent types:

■ Entity

■ Embeddable

■ Mapped superclass

3.4.1 Entity
An Entity is a persistent domain object.

An entity can be:

■ Abstract or concrete classes. Entities may also extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

An entity must have:

■ A no-arg constructor (public or protected); the entity class may have other
constructors as well.

Each persistent entity must be mapped to a database table and contain a primary key.
Persistent entities are identified by the @Entity annotation.

Use this procedure to add persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As field to select Entity.

Adding persistence to a class

Tasks 3-7

Figure 3–7 Selecting Entity Persistence

4. Complete the remaining JPA Details view (for entities).

3.4.2 Embeddable
An Embedded class is a class whose instances are stored as part of an owning entity; it
shares the identity of the owning entity. Each field of the embedded class is mapped to
the database table associated with the owning entity.

To override the mapping information for a specific subclass, use the
@AttributeOverride annotation for that specific class.

An embeddable entity is identified by the @Embeddable annotation.

Use this procedure to add embeddable persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As drop-list to select Embeddable.

Figure 3–8 Selecting Embeddable Persistence

4. Complete the remaining JPA Details view (for entities).

Specifying additional tables

3-8 Dali Java Persistence Tools User Guide

3.4.3 Mapped superclass
An entities that extend a Mapped Superclass class inherit the persistent state and
mapping information from a superclass. You should use a mapped superclass to
define mapping information that is common to multiple entity classes.

A mapped superclass can be:

■ Abstract or concrete classes

A mapped superclass cannot be:

■ Be queried or passed as an argument to Entity-Manager or Query operations

■ Be the target of a persistent relationship

A mapped superclass does not have a defined database table. Instead, its mapping
information is derived from its superclass. To override the mapping information for a
specific subclass, use the @AttributeOverride annotation for that specific class.

A mapped superclass is identified by the @MappedSuperclass annotation.

Use this procedure to add Mapped Superclass persistence to an existing entity:

1. Open the Java class in the Package Explorer.

2. Select the class in the JPA Structure view.

3. In the JPA Details view, use the Map As drop-list to select Mapped Superclass.

Figure 3–9 Selecting Mapped Superclass Persistence

4. Complete the remaining JPA Details view (for entities).

3.5 Specifying additional tables
An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Secondary Tables information.

Specifying entity inheritance

Tasks 3-9

Figure 3–10 Specifying Secondary Tables

3. Click Add to associate an additional table with the entity. The Edit Secondary
Table dialog appears

4. Select the Name, Catalog, and Schema of the additional table to associate with the
entity.

Eclipse adds the following annotations the entity:

@SecondaryTable(name="NAME", catalog = "CATALOG", schema = "SCHEMA"

3.6 Specifying entity inheritance
An entity may inherit properties from other entities. You can specify a specific strategy
to use for inheritance.

Use this procedure to specify inheritance (@Inheritance) for an existing entity
(@Entity):

1. Select the entity in the Package Explorer.

2. In the JPA Details view, select the Inheritance information.

Figure 3–11 Specifying Inheritance

3. In the Strategy list, select one of the following the inheritance strategies:

■ A single table (default)

■ Joined table

■ One table per class

4. Use the following table to complete the remaining fields on the tab. See
"Inheritance information" on page 4-3 for additional details.

Specifying entity inheritance

3-10 Dali Java Persistence Tools User Guide

Eclipse adds the following annotations the entity field:

@Inheritance(strategy=InheritanceType.<INHERITANCE_STRATEGY>)
@DiscriminatorColumn(name="<DISCRIMINATOR_COLUMN>",

discriminatorType=<DISCRIMINATOR_TYPE>)
@DiscriminatorValue(value-"<DISCRIMINATOR_VALUE>")
@PrimaryKeyJoinColumn(name="<JOIN_COLUMN_NAME>",

referencedColumnName = "<REFERENCED_COLUMN_NAME>")

The following figures illustrates the different inheritance strategies.

Figure 3–12 Single Table Inheritance

Property Description Default

Discriminator
Column

Name of the discriminator column when using a
Single or Joined inheritance strategy.

This field corresponds to the
@DiscriminatorColumn annotation.

Discriminator Type Set the discriminator type to Char or Integer
(instead of its default: String). The
Discriminator Value must conform to this type.

String

Discriminator Value Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

This field corresponds to the
@DiscriminatorValue annotation.

Override Default Use this field to specify custom primary key join
columns.

This field corresponds to the
@PrimaryKeyJoinClumn annotation.

Mapping an entity

Tasks 3-11

Figure 3–13 Joined Table Inheritance

3.7 Mapping an entity
Dali supports the following mapping types for Java persistent entities:

■ Basic mapping

■ Embedded mapping

■ Embedded ID mapping

■ ID mapping

■ Many-to-many mapping

■ Many-to-one mapping

■ One-to-many mapping

■ One-to-one mapping

■ Transient mapping

■ Version mapping

3.7.1 Basic mapping
Use a Basic Mapping to map an attribute directly to a database column. Basic
mappings may be used only with the following attribute types:

■ Java primitive types and wrappers of the primitive types

■ java.lang.String, java.math.BigInteger

■ java.math.BigDecimal

■ java.util.Date

■ java.util.Calendar, java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

■ byte[]

Mapping an entity

3-12 Dali Java Persistence Tools User Guide

■ Byte[]

■ char[]

■ Character[]

■ enums

■ any other type that implements Serializable

To create a basic mapping:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. In the Map As field, select Basic.

3. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@Column(name="<COLUMN_NAME>", table="<COLUMN_TABLE>",
insertable=<INSERTABLE>, updatable=<UPDATABLE>)

@Basic(fetch=FetchType.<FETCH_TYPE>, optional = <OPTIONAL>)
@Temporal(TemporalType.<TEMPORAL>)

3.7.2 Embedded mapping
Use an Embedded Mapping to specify a persistent field or property of an entity
whose value is an instance of an embeddable class.

Property Description Default

Map As Defines this mapping as a Basic
Mapping.

This field corresponds to the
@Basic annotation.

Basic

Column The database column mapped to the
entity attribute. See "Column" on
page 4-5 for details.

By default, the Column is assumed
to be named identically to the
attribute and always included in the
INSERT and UPDATE statements.

Table Name of the database table.

Fetch Defines how data is loaded from the
database. See "Fetch Type" on
page 4-5 for details.

■ Eager

■ Lazy

Eager

Optional Specifies if this field is can be null. Yes

Lob Specifies if this is a large objects
(BLOB or CLOB). See "Lob" on
page 4-5 for details.

Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.

■ Date

■ Time

■ Timestamp

Mapping an entity

Tasks 3-13

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. In the Map As field, select Embedded.

3. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@Embedded
@AttributeOverride(column=@Column(table="<COLUMN_TABLE>", name = "<COLUMN_NAME>"))

3.7.3 Embedded ID mapping
Use an Embedded ID Mapping to specify the primary key of an embedded ID. These
mappings may be used with a Embeddable entities.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected field.

2. In the Map As field, select Embedded Id.

3. Use this table to complete the remaining fields on the JPA Details view.

Eclipse adds the following annotations to the field:

@EmbeddedId

3.7.4 ID mapping
Use an ID Mapping to specify the primary key of an entity. ID mappings may be used
with a Entity or Mapped superclass. Each Entity must have an ID mapping.

Property Description Default

Map As Defines this mapping as a Embedded.

This field corresponds to the
@Embedded annotation.

Embedded

Attribute
Overrides

Specify to override the default
mapping of an entity’s attribute. Select
Override Default.

Columns The database column (and its table)
mapped to the entity attribute. See
"Column" on page 4-5 for details.

■ Name – Name of the database
column.

■ Table – Name of the database
table.

Property Description Default

Map As Defines this mapping as a Embedded
Id.

This field corresponds to the
@EmbeddedId annotation.

Embedded Id

Mapping an entity

3-14 Dali Java Persistence Tools User Guide

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select ID.

3. Use this table to complete the General information fields in the JPA Details view.

4. Use this table to complete the fields in Primary Key Generation information area
in the JPA Details view.

Additional fields will appear in the Primary Key Generation information area,
depending on the selected Strategy. See "JPA Details view (for attributes)" on page 4-4
for additional information.

Eclipse adds the following annotations to the field:

@Id
@Column(name="<COLUMN_NAME>", table="<TABLE_NAME>", insertable=<INSERTABLE>,

updatable=<UPDATABLE>)
@Temporal(<TEMPORAL>)
@GeneratedValue(strategy=GeneratorType.<STRATEGY>, generator="<GENERATOR_NAME>")
@TableGenerator(name="<TABLE_GENERATOR_NAME>", table = "<TABLE_GENERATOR_TABLE>",

pkColumnName = "<TABLE_GENERATOR_PK>",
valueColumnName = "<TABLE_GENERATOR_VALUE_COLUMN>",

Property Description Default

Map As Defines this mapping as an ID
Mapping.

This field corresponds to the @Id
annotation.

ID

Column The database column mapped to the
entity attribute. See "Column" on
page 4-5 for details.

By default, the Column is
assumed to be named
identically to the attribute.

Table The database table mapped to the
entity attribute.

By default, the Table is
assumed to be identical to the
table associated with the entity.

Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.

■ Date

■ Time

■ Timestamp

Property Description Default

Primary Key
Generation

These fields define how the primary
key is generated.

Strategy See "Primary Key Generation" on
page 4-7 for details.

■ Auto

■ Sequence

■ Identity

■ Table

Auto

Generator Name Name of the primary key generator
specified in the Strategy

Mapping an entity

Tasks 3-15

pkColumnValue = "<TABLE_GENERATOR_PK_COLUMN_VALUE>")
@SequenceGenerator(name="<SEQUENCE_GENERATOR_NAME>",

sequenceName="<SEQUENCE_GENERATOR_SEQUENCE>")

3.7.5 Many-to-many mapping
Use a Many-to-Many Mapping to define a many-valued association with
many-to-many multiplicity. A many-to-many mapping has two sides: the owning side
and non-owning side. You must specify the join table on the owning side. For
bidirectional mappings, either side may be the owning side.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Many-to-Many.

3. Use this table to complete the General information fields of the JPA Details view.

4. Use this table to complete the fields in the Join Table Information area in the JPA
Details view.

Property Description Default

Map As Defines this mapping as a Many to
Many Mapping.

This field corresponds to the
@ManyToMany annotation.

Many to Many

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Defines how data is loaded from the
database. See "Fetch Type" on
page 4-5 for details.

■ Eager

■ Lazy

Lazy

Mapped By The database field that owns the
relationship.

Order By Specify the default order for objects
returned from a query. See "Order
By" on page 4-6 for details.

■ No ordering

■ Primary key

■ Custom

No ordering

Property Description Default

Name Name of the join table that contains the
foreign key column.

You must specify the join table on
the owning side.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Mapping an entity

3-16 Dali Java Persistence Tools User Guide

5. To add a new Join or Inverse Join Column, click Add.

To edit an existing Join or Inverse Join Column, select the field to and click Edit.

Eclipse adds the following annotations to the field:

@JoinTable(joinColumns=@JoinColumn(name="<JOIN_COLUMN>"),
name = "<JOIN_TABLE_NAME>")

@ManyToMany(cascade=CascadeType.<CASCADE_TYPE>, fetch=FetchType.<FETCH_TYPE>,
targetEntity=<TARGET_ENTITY>, mappedBy = "<MAPPED_BY>")

@OrderBy("<ORDER_BY>")

3.7.6 Many-to-one mapping
Use a Many-to-One mapping to defines a single-valued association to another entity
class that has many-to-one multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Many-to-One.

3. Use this table to complete the General information fields JPA Details view.

4. Use this table to complete the fields on the Join Columns Information tab in the
JPA Details view.

Join Columns Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Inverse Join
Columns

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Property Description Default

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Type Defines how data is loaded from the
database. See "Fetch Type" on
page 4-5 for details.

■ Eager

■ Lazy

Eager

Property Description Default

Join Column Specify a mapped column for joining
an entity association. This field
corresponds to the @JoinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

Property Description Default

Mapping an entity

Tasks 3-17

Eclipse adds the following annotations to the field:

@JoinTable(joinColumns=@JoinColumn(name="<JOIN_COLUMN>"),
name = "<JOIN_TABLE_NAME>")

@ManyToOne(targetEntity=<TARGET_ENTITY>, fetch=<FETCH_TYPE>,
cascade=<CASCADE_TYPE>)

3.7.7 One-to-many mapping
Use a One-to-Many Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select One-to-many.

3. Use this table to complete the General information fields JPA Details view.

4. Use this table to complete the Join Table Information fields in the JPA Details
view.

Eclipse adds the following annotations to the field:

@OneToMany(targetEntity=<TARGET_ENTITY>)
@Column(name="<COLUMN>")

Property Description Default

Target Entity The entity to which this attribute is
mapped.

Fetch Type Defines how data is loaded from the
database. See "Fetch Type" on page 4-5
for details.

■ Eager

■ Lazy

Eager

Mapped By The database field that owns the
relationship.

Order By Specify the default order for objects
returned from a query. See "Order By"
on page 4-6 for details.

■ No ordering

■ Primary key

■ Custom

No ordering

Property Description Default

Name Name of the join table By default, the name is assumed to
be the primary tables associated
with the entities concatenated with
an underscore.

Join Columns Specify two or more join columns (that
is, a primary key).

Inverse Join
Columns

The join column on the owned (or
inverse) side of the association: the
owned entity’s primary key column.

Mapping an entity

3-18 Dali Java Persistence Tools User Guide

@OneToMany(targetEntity=<TARGET_ENTITY>.class, cascade=CascadeType.<CASCADE_TYPE>,
fetch = FetchType.<FETCH_TYPE>, mappedBy = "<MAPPED_BY>")

@OrderBy("<ORDER_BY>")
@JoinTable(name="<JOIN_TABLE_NAME>", joinColumns=@JoinColumn(name=

"<JOIN_COLUMN_NAME>", referencedColumnName="<JOIN_COLUMN_REFERENCED_COLUMN>"),
inverseJoinColumns=@JoinColumn(name="<INVERSE_JOIN_COLUMN_NAME>",
referencedColumnName="<INVERSE_JOIN_COLUMN_REFERENCED_COLUMN>"))

3.7.8 One-to-one mapping
Use a One-to-One Mapping to define a relationship with one-to-many multiplicity.

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select One-to-one.

3. Use this table to complete the General information fields in the JPA Details view.

4. Use this table to complete the Join Columns Information fields in the JPA Details
view.

Eclipse adds the following annotations to the field:

@OneToOne(targetEntity=<TARGET_ENTITY>, cascade=CascadeType.<CASCADE_TYPE>,
fetch = FetchType.<FETCH_TYPE>, mappedBy = "<MAPPED_BY>")

@JoinColumn(name="<JOIN_COLUMN_NAME>", referencedColumnName=
"<JOIN_COLUMN_REFERENCED_COLUMN>", insertable = <INSERTABLE>,
updatable = <UPDATABLE>)

Property Description Default

Target Entity The entity to which this attribute is
mapped.

null

You do not need to explicitly specify
the target entity, since it can be
inferred from the type of object
being referenced.

Fetch Type Defines how data is loaded from the
database. See "Fetch Type" on
page 4-5 for details.

■ Eager

■ Lazy

Eager

Mapped By The database field that owns the
relationship.

Property Description Default

Join Column Specify a mapped column for joining
an entity association. This field
corresponds to the @JoinColum
attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is assumed
to have a single join.

Mapping an entity

Tasks 3-19

3.7.9 Transient mapping
Use the Transient Mapping to specify a or field of the entity class that is not persistent.

To create a version mapping:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Transient.

Eclipse adds the following annotation to the field:

@Transient

3.7.10 Version mapping
Use a Version Mapping to specify the field used for optimistic locking. If the entity is
associated with multiple tables, you should use a version mapping only with the
primary table. You should have only a single version mapping per persistent entity.
Version mappings may be used only with the following attribute types:

■ int

■ Integer

■ short, Short

■ long, Long

■ Timestamp

To create a version mapping:

1. In the JPA Structure view, select the field to map. The JPA Details view (for
attributes) displays the properties for the selected.

2. In the Map As field, select Version.

3. Use this table to complete the remaining fields in the JPA Details view.

Eclipse adds the following annotations to the field:

@Version
@Column(table="<COLUMN_TABLE>", name="<COLUMN_NAME>")

Property Description Default

Column The database column mapped to the
entity attribute. See "Column" on
page 4-5 for details.

By default, the Column is assumed
to be named identically to the
attribute and always included in
the INSERT and UPDATE
statements.

Table Name of the database table. This must
be the primary table associated with
the attribute’s entity.

Temporal Specifies the type of data. See
"Temporal" on page 4-5 for details.

■ Date

■ Time

■ Timestamp

Generating entities from tables

3-20 Dali Java Persistence Tools User Guide

3.8 Generating entities from tables
Use this procedure to generate Java persistent entities from database tables. You must
create a JPA project and establish a database connection before generating persistent
entities. See "Creating a new JPA project" on page 3-1 for more information.

1. Right-click the JPA project in the Package Explorer and select JPA Tools >
Generate Entities.

Figure 3–14 Generating Entities

2. If you are not currently connected to the database, the Database Connection page
appears. Select your database connection and schema, and click Reconnect.

To create a new database connection, click Add connection.

After connecting to the database, click Next.

3. On the Generate Entities from Tables dialog dialog, select the tables from which to
generate Java persistent entities and click Finish.

Eclipse creates a Java persistent entity for each database table. Each entity contains
fields based on the table’s columns. Eclipse will also generate entity relationships
(such as one-to-one) based on the table constraints. Figure 3–15 illustrates how Eclipse
generates entities from tables.

Validating mappings and reporting problems

Tasks 3-21

Figure 3–15 Generating Entities from Tables

3.9 Validating mappings and reporting problems
Errors and warnings on persistent entities and mappings are indicated with a red error
or yellow warning next to the resource with the error, as well as the parent containers
up to the project.

Figure 3–16 Sample Errors and Warnings

This section contains information on the following:

■ Error messages

■ Warning messages

3.9.1 Error messages
This section contains information on error messages (including how to resolve the
issue) you may encounter while working with Dali.

Attribute "<ATTRIBUTE__NAME>" has invalid mapping type in this context
The mapped attribute is invalid. Either change the mapping type or change the entity
type.

Validating mappings and reporting problems

3-22 Dali Java Persistence Tools User Guide

See "Mapping an entity" on page 3-11 for more information.

Attribute "<ATTRIBUTE_NAME>" cannot be resolved.
Dali cannot map the attribute to a database table and column. Verify that you database
connection information is correct.

See "Creating a new JPA project" on page 3-1 for more information.

Class "<CLASS_NAME>" is not annotated as a persistent class.
The class has not been identified as a persistent class. Configure the class as an Entity,
Mapped Superclass, or Embeddable persistent entity.

See "Adding persistence to a class" on page 3-6.

Column "<COLUMN_NAME>" cannot be resolved.
You mapped an entity’s field to an incorrect or invalid column in the database table.
By default, Dali will attempt to map each field in the entity with an identically named
row in the database table. If the field’s name differs from the row’s name, you must
explicitly create the mapping.

Map the field to a valid row in the database table as shown in "Mapping an entity" on
page 3-11.

Duplicate class "<CLASS_NAME>".
You created to persistence classes with the same name. Each Java class must have a
unique name. See "Adding persistence to a class" on page 3-6 for more information.

Entity does not have an Id or Embedded Id.
You created a persistent entity without identifying its primary key. A persistent entity
must have a primary key field designated with an @Id or @EmbeddedId annotation.

Add an ID mapping to the entity as shown in "ID mapping" on page 3-13 or
"Embedded ID mapping" on page 3-13.

Multiple persistence.xml files in project.
You created a JPA project with more than one persistence.xml file. Each JPA
project must contain a single persistence.xml file.

See "Managing the persistence.xml file" on page 3-3 for more information.

No generator named "<GENERATOR_NAME>" is defined in persistence unit.
You created a persistence entity that uses sequencing, but did not define include the
sequence generator in the psersistence.xml file. Synchronize the
persistence.xml file with your current project.

 See "Synchronizing classes" on page 3-4 for more information.

No persistence unit defined.
There is no <persistence-unit-metadata> information in the orm.xml file. Add
the default persistence unit information.

See "Managing the orm.xml file" on page 3-5 for more information.

No persistence.xml file in project.
You created a JPA project without a persistence.xml file. Each JPA project must
contain a single persistence.xml file.

Modifying persistent project properties

Tasks 3-23

See "Managing the persistence.xml file" on page 3-3 for more information.

Referenced column "<COLUMN_NAME>" in join column "<COLUMN_NAME>"
cannot be resolved.
The column that you selected to join a relationship mapping does not exist on the
database table. Either select a different column on the Join Table Information or create
the necessary column on the database table.

See "JPA Details view (for attributes)" on page 4-4 for more information.

Schema "<SCHEMA_NAME>" cannot be resolved for table/join table "<TABLE_
NAME>".
Define the default database schema information in the persistence unit.

See "Managing the orm.xml file" on page 3-5 for more information.

Table "<TABLE_NAME>" cannot be resolved.
You associated a persistent entity to an incorrect or invalid database table. By default,
Dali will attempt to associate each persistent entity with an identically named
database table. If the entity’s name differs from the table’s name, you must explicitly
create the association.

Associate the entity with a valid database table as shown in "Adding persistence to a
class" on page 3-6.

3.9.2 Warning messages
This section contains information on warning messages (including how to resolve the
issue) you may encounter while working with Dali.

Connection "<CONNECTION_NAME>" is not active. No validation will be done
against the data source.
The database connection you specified to use with the JPA project is not active. The
JPA project requires an active connection.

No connection specified for the project. No data-specific validation will be
performed.
You created a JPA project without specifying a database connection. The JPA project
requires an active connection.

See "Creating a new JPA project" on page 3-1 or "Modifying persistent project
properties" on page 3-23 for information on specifying a database connection.

3.10 Modifying persistent project properties
Each persistent project must be associated with a database connection. To create a new
database connection, click Database Connection use the New Connection wizard.

Modifying persistent project properties

3-24 Dali Java Persistence Tools User Guide

Use this procedure to modify the vender-specific platform and database connection
associated with your JPA project.

1. Right-click the project in the Explorer view and select Properties. The Properties
page appears.

Figure 3–17 Properties – Persistence Page

2. Use this table to complete the remaining fields on the Properties – JPA page and
click OK.

To create a new connection, click Add connections.

Property Description

Platform Select the vendor-specific platform for the JPA
implementation.

Database Connection Database connection to use to store the persistent entities. To
create a new connection, click Add Connection.

Reference 4-1

4
Reference

This section includes detailed help information for each of the following elements in
the Dali OR Mapping Tool:

■ Wizards

■ Property pages

■ Preferences

■ Dialogs

■ JPA Development perspective

■ Icons and buttons

■ Dali Developer Documentation

4.1 Wizards
This section includes information on the following wizards:

■ Create New JPA Project wizard

4.1.1 Create New JPA Project wizard
The Create New JPA Project wizard allows you to create a new Java project using JPA.
The wizard consists of the following pages:

■ New JPA Project page

■ Project Facets page

■ JPA Facet page

4.1.1.1 New JPA Project page
This table lists the properties available on the New JPA Project page of the Create New
JPA Project wizard.

Property Description Default

Project name Name of the Eclipse JPA project.

Project contents Location of the workspace in which to save the
project.

Unselect The Use Default option and click
Browse to select a new location.

Current workspace

Property pages

4-2 Dali Java Persistence Tools User Guide

4.1.1.2 JPA Facet page
This table lists the properties available on the JPA Facet page of the Create New JPA
Project wizard.

4.2 Property pages
This section includes information on the following property pages:

Target runtime Select a pre-defined target for the project.

Click New to create a new environment with
the New Server Runtime wizard.

Configurations Select a project configuration with pre-defined
facets.

Select <custom> to manually select the facets
for this project.

Utility JPA project
with Java 5.0

EAR membership Specify if this project should be included in an
EAR file for deployment.

Select the EAR Project Name, or click New to
create a new EAR project.

Property Description Default

Platform Vendor-specific JPA implementation. Generic

Connection Select the database connection to use with the
project. Dali requires an active database
connection to use and validate the persistent
entities and mappings.

Click Add connection to create a new database
connection.

JPA Implementation Select to use the JPA implementation
provided by the server at runtime, or select a
specific implementation library that contain
the Java Persistence API (JPA) and entities to
be added to the project’s Java Build Path.

Click Configure default JPA implementation
library to create a default library for the project
or click Configure user libraries to define
additional libraries.

Determined by
server.

Persistent class
management

Specify if Dali will discover annotated classes
automatically, or if the annotated classes must
be listed in the persistence.xml file.

Note: To insure application portability, you
should explicitly list the managed persistence
classes that are included in the persistence unit.

Determined by
server.

Create orm.xml Specify if Dali should create a default orm.xml
file for your entity mappings and persistence
unit defaults.

Selected

Property Description Default

Property pages

Reference 4-3

■ JPA Details view (for entities)

■ JPA Details view (for attributes)

■ JPA Details view (for orm.xml)

■ JPA Structure view

4.2.1 JPA Details view (for entities)
The JPA Details view displays the persistence information for the currently selected
entity and contains the following tabs:

■ General information

■ Secondary table information

■ Inheritance information

4.2.1.1 General information
This table lists the General information fields available in the JPA Details view for each
entity type.

4.2.1.2 Secondary table information
Use the Secondary Tables area in the Java Details view to associate additional tables
with an entity. Use this area if the data associated with an entity is spread across
multiple tables.

Refer to "Specifying additional tables" on page 3-9 for additional information.

4.2.1.3 Inheritance information
This table lists the fields available on the Inheritance area in the Java Details view for
each entity type.

Property Description Default Available for Entity Type

Map As Specify the type of entity: Entity, Mapped
Superclass, Embeddable.

Entity Entity, Embeddable, and
Mapped superclass

Name The name of this entity. By default, the class
name is used as the entity name.

Entity

Table The primary database table associated with the
entity.

Entity

Catalog The database catalog that contains the Table. As defined in
orm.xml.

Entity

Schema The database schema that contains the Table. As defined in
orm.xml.

Entity

Attribute
Overrides

Specify a property or field to be overridden
(from the default mappings). Select Override
Default.

Entity

Column The database column (from the Table Name)
mapped to the entity.

Entity

Table Name of the database table that contains the
selected column.

Entity

Property pages

4-4 Dali Java Persistence Tools User Guide

Refer to "Specifying entity inheritance" on page 3-9 for additional information.

4.2.2 JPA Details view (for attributes)
The JPA Details view displays the persistence information for the currently selected
mapped attribute and contains the following areas:

■ General information

■ Join Table Information

■ Join Columns Information

■ Primary Key Generation information

See "Mapping an entity" on page 3-11 for more information.

4.2.2.1 General information
This table lists the General properties available in the Java Details view for each
mapping type.

Property Description Default

Strategy Specify the strategy to use when mapping a
class or class hierarchy:

■ Single table – All classes in the hierarchy
are mapped to a single table.

■ Joined – The root of the hierarchy is
mapped to a single table; each child maps
to its own table.

■ Table per class – Each class is mapped to a
separate table.

Single table

Discriminator
Column

Use to specify the name of the discriminator
column when using a Single or Joined
inheritance strategy.

Discriminator Type Set this field to set the discriminator type to
Char or Integer (instead of its default:
String). The Discriminator Value must
conform to this type.

String

Discriminator Value Specify the discriminator value used to
differentiate an entity in this inheritance
hierarchy. The value must conform to the
specified Discriminator Type.

Primary Key Join
Columns Select Override Default.

This field corresponds with
@PrimaryKeyJoinColumn annotation.

Property Description Default
Available for
Mapping Type

Map As Define the mapping type for the
attribute

Basic All mapping types

Property pages

Reference 4-5

Column The database column that
contains the value for the
attribute. This field corresponds
to the @Column annotation.

By default, the Column is
assumed to be named
identically to the attribute.

Basic mapping,
Embedded mapping,
ID mapping, Version
mapping

Name Name of the database column.

This field corresponds to the
@Column annotation.

Basic mapping,
Embedded mapping,
ID mapping

Table Name of the database table that
contains the selected column.

Basic mapping,
Embedded mapping,
ID mapping

Fetch Type Defines how data is loaded from
the database:

■ Eager – Data is loaded in
before it is actually needed.

■ Lazy – Data is loaded only
when required by the
transaction.

Eager Basic mapping,
One-to-one mapping

Optional Specifies if this field is can be
null.

Yes Basic mapping,
One-to-one mapping

Lob Specify if the field is mapped to
java.sql.Clob or
java.sql.Blob.

This field corresponds to the
@Lob annotation.

Basic mapping

Temporal Specifies if this field is one of the
following:

■ Date – java.sql.Date

■ Time – java.sql.Time

■ Timestamp –
java.sql.Timestamp

This field corresponds to the
@Temporal annotation.

Basic mapping, ID
mapping

Enumerated Specify how to persist
enumerated constraints if the
String value suits your
application requirements or to
match an existing database
schema.

■ ordinal

■ String

This field corresponds to the
@Enumerated annotation.

Ordinal

Target Entity The persistent entity to which the
attribute is mapped.

One-to-one mapping,,
One-to-many
mapping
Many-to-many
mapping,
Many-to-one mapping

Property Description Default
Available for
Mapping Type

Property pages

4-6 Dali Java Persistence Tools User Guide

4.2.2.2 Join Table Information
Use area to specify a mapped column for joining an entity association. By default, the
mapping is assumed to have a single join.

This table lists the fields available on the Join Table area in the JPA Details view for
One-to-many mapping and Many-to-many mapping mapping types.

Cascade Type Specify which operations are
propagated throughout the entity.

■ All – All operations

■ Persist

■ Merge

■ Move

One-to-one mapping

Mapped By The field in the database table
that "owns" the relationship. This
field is required only on the
non-owning side of the
relationship.

One-to-one mapping,
One-to-many
mapping

Order By Specify the default order for
objects returned from a query:

■ No ordering

■ Primary key

■ Custom ordering

This field corresponds to the
@OrderBy annotation.

Primary key One-to-many
mapping.
Many-to-many
mapping,
Many-to-one mapping

Attribute Overrides Overrides the column mappings
from the mapped, entity tabled.
(for example, if the inherited
column name is incompatible
with a pre-existing data model, or
invalid as a column name in your
database).

Embedded mapping

Embedded mapping

Property Description Default

Name Name of the join table that contains
the foreign key column.

By default, the name is
assumed to be the primary
tables associated with the
entities concatenated with an
underscore.

Join Columns Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Inverse Join Columns Select Override Default, then Add,
Edit, or Remove the join columns.

Property Description Default
Available for
Mapping Type

Property pages

Reference 4-7

4.2.2.3 Join Columns Information
This table lists the fields available in the Join Table area in JPA Details view for
Many-to-one mapping and One-to-one mapping mapping types.

4.2.2.4 Primary Key Generation information
This table lists the fields available in the Primary Key Generation area in JPA Details
view for ID mapping types.

Property Description Default

Join Column Specify a mapped column for
joining an entity association. This
field corresponds to the
@JoinColum attribute.

Select Override Default, then Add,
Edit, or Remove the join columns.

By default, the mapping is
assumed to have a single join.

Property Description Default

Primary Key
Generation

These fields define how the
primary key is generated. These
fields correspond to the
@GeneratedValue annotation.

Generated Value

Strategy ■ Auto

■ Identity – Values are assigned
by the database’s Identity
column.

■ Sequence – Values are assigned
by a sequence table (see
Sequence Generator).

■ Table – Values are assigned by
a database table (see Table
Generator).

Auto

Generator Name Unique name of the generated
value.

Table Generator These fields define the database
table used for generating the
primary key and correspond to the
@TableGenerator annotation.

These fields apply only when
Strategy = Table.

Name Unique name of the generator.

Table Database table that stores the
generated ID values.

Primary Key Column The column in the table generator’s
Table that contains the primary
key.

Value Column The column that stores the
generated ID values.

Primary Key Column
Value

The value for the Primary Key
Column in the generator table.

Property pages

4-8 Dali Java Persistence Tools User Guide

4.2.3 JPA Details view (for orm.xml)
The JPA Details view displays the default mapping and persistence information for
the project and contains the following areas:

■ General information

■ Persistence Unit information

These defaults can be overridden by the settings on a specific entity or mapping.

4.2.3.1 General information
This table lists the General information fields available in the JPA Details view for each
entity type.

4.2.3.2 Persistence Unit information
This table lists the Persistence Unit information fields available in the JPA Details view
for each entity type. These fields are contained in the
<persistence-unit-metadata> element in the orm.xml file.

Sequence Generator These fields define the specific
sequence used for generating the
primary key and correspond to the
@SequenceGenerator
annotation.

These fields apply only when
Strategy = Sequence.

Name Name of the sequence table to use
for defining primary key values.

Sequence Unique name of the sequence.

Property Description Default

Package The Java package that contains the persistent
entities. Click Browse and select the package

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Access Specify the default access method for the variables in
the project:

■ Property

■ Field

This field corresponds to the <access> element in
the orm.xml file.

Property Description Default

Preferences

Reference 4-9

4.2.4 JPA Structure view
The JPA Structure view displays an outline of the structure (its attributes and
mappings) of the entity that is currently selected or opened in the editor. The
structural elements shown in the outline are the entity and its fields.

Figure 4–1 Sample JPA Structure View

4.3 Preferences
This section includes information on the following preference pages:

■ Project Properties page – JPA Options

4.3.1 Project Properties page – JPA Options
Use the JPA options on the Properties page to select the database connection to use
with the project.

This table lists the properties available in the Persistence Properties page.

Property Description Default

XML Mapping
Data Complete

Specifies that the Java classes in this persistence unit
are fully specified by their metadata. Any
annotations will be ignored.

This field corresponds to the
<xml-mapping-metadata-complete> element
in the orm.xml file.

Package The Java package that contains the persistent entities
for this persistence unit.

Click Browse and select the package

Schema The database schema that contains the Table.

This field corresponds to the <schema> element in
the orm.xml file.

Catalog The database catalog that contains the Table.

This field corresponds to the <catalog> element in
the orm.xml file.

Cascade Persist Adds cascade-persist to the set of cascade options in
entity relationships of the persistence unit.

This field corresponds to the <cascade-persist>
element in the orm.xml file.

Dialogs

4-10 Dali Java Persistence Tools User Guide

See "Modifying persistent project properties" on page 3-23 for additional information.

4.4 Dialogs
This section includes information on the following preference pages:

■ Generate Entities from Tables dialog

■ Edit Join Columns Dialog

4.4.1 Generate Entities from Tables dialog
Use the Generate Entities dialog to create Java persistent entities from your database
tables and columns.

This table lists the properties available in the Generate Entities dialog.

See "Generating entities from tables" on page 3-20 for more information.

4.4.2 Edit Join Columns Dialog
Use the Join Columns dialog to create or modify the join tables and columns in
relationship mappings.

This table lists the properties available in the Join Columns dialog.

Property Description

Platform Select the vendor-specific platform.

Connection The database connection used to map the persistent entities.

■ To create a new connection, click Add Connections.

■ To reconnect to an existing connection, click Reconnect.

Property Description

Source Folder Enter a project folder name in which to generate the Java
persistent entities, or click Browse to select an existing folder.

Package Enter a package name in which to generate the Java persistent
entities, or click Browse to select an existing package.

Tables Select the tables from which to create Java persistent entities.
The tables shown are determined by the database connection
that you defined in the Project Properties page – JPA Options.

Property Description

Name Name of the joint table column that contains the foreign key
column.

Referenced Column Name Name of the database column that contains the foreign key
reference for the entity relationship.

Icons and buttons

Reference 4-11

4.5 JPA Development perspective
The JPA Development perspective defines the initial set and layout of views in the
Workbench window when using Dali. By default, the JPA Development perspective
includes the following vies:

■ JPA Structure view

■ JPA Details view (for entities)

■ JPA Details view (for attributes)

■ JPA Details view (for orm.xml)

Figure 4–2 Sample JPA Development Perspective

4.6 Icons and buttons
This section includes information on each of the icons and buttons used in the Dali OR
Mapping Tool.

■ Icons

■ Buttons

4.6.1 Icons
The following icons are used throughout the Dali OR Mapping Tool.

Icons and buttons

4-12 Dali Java Persistence Tools User Guide

4.6.2 Buttons
The following buttons are used throughout the Dali OR Mapping Tool.

Icon Description

Nonpersistent class

Entity

Embeddable entity

Mapped superclass

Basic mapping

Embedded mapping

Embedded ID mapping

ID mapping

Many-to-many mapping

Many-to-one mapping

One-to-many mapping

One-to-one mapping

Transient mapping

Version mapping

Icon Description

JPA Development perspective

Dali Developer Documentation

Reference 4-13

4.7 Dali Developer Documentation
Additional Dali documentation is available online at:

http://wiki.eclipse.org/index.php/Dali_Developer_Documentation

This developer documentation includes information about:

■ Dali architecture

■ Plugins that comprise the Dali JPA Eclipse feature

■ Extension points

Dali Developer Documentation

4-14 Dali Java Persistence Tools User Guide

Tips and tricks 5-1

5
Tips and tricks

The following tips and tricks give some helpful ideas for increasing your productivity.

■ Database Connections

■ Schema-based persistence.xml

Tip Description

Database Connections When starting a new workbench session, be sure to reconnect to
your database (if you are working online). This allows Dali to
provide database-related mapping assistance and validation.

Schema-based
persistence.xml

If you are behind a firewall, you may need to configure your Eclipse
workspace proxy in the Preferences dialog (Preferences > Internet >
Proxy Settings) to properly validate a schema-based
persistence.xml file.

5-2 Dali Java Persistence Tools User Guide

What’s new 6-1

6
What’s new

This section contains descriptions of the following new feature and significant changes
made to the Dali OR Mapping Tool for Release 1.0.0:

■ Generate Persistent Entities from Tables wizard

■ Create and Manage the persistence.xml file

■ Create and Manage the orm.xml file

6.1 Generate Persistent Entities from Tables wizard
Use the Generate Entities from Tables wizard to quickly create JPA entities from your
database tables.

Figure 6–1 Generating Entities

Dali automatically creates the necessary OR mappings, based on your database table
constraints.

6.2 Create and Manage the persistence.xml file
When creating a JPA project, Dali automatically creates the perssistence.xml file.

Create and Manage the orm.xml file

6-2 Dali Java Persistence Tools User Guide

Figure 6–2 JPA Project with persistence.xml File

Use the XML editor to edit the persistence.xml file.

After adding your JPA entities, use the Java Persistence > Synchronize Classes option
to add the classes to the persistence.xml file.

Figure 6–3 Synchronizing the persistence.xml File.

6.3 Create and Manage the orm.xml file
When creating a JPA project, you can also create the orm.xml file. Select the Create
orm.xml option on the JPA Facet page page of the Create New JPA Project wizard.

Create and Manage the orm.xml file

What’s new 6-3

Figure 6–4 JPA Facet Dialog

Use the orm.xml file to define the project and persistence unit defaults.

Figure 6–5 JPA Details view for orm.xml file.

Create and Manage the orm.xml file

6-4 Dali Java Persistence Tools User Guide

Legal 7-1

7
Legal

The material in this guide is copyright © 2006, 2007 by Oracle.

7.1 About this content
Terms and conditions regarding the use of this guide.

May 5, 2007

License
The Eclipse Foundation makes available all content in this plug-in ("Content"). Unless
otherwise indicated below, the Content is provided to you under the terms and
conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of the EPL is
available at http://www.eclipse.org/legal/epl-v10.html. For purposes of
the EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is
being redistributed by another party ("Redistributor") and different terms and
conditions may apply to your use of any object code in the Content. Check the
Redistributor’s license that was provided with the Content. If no such license exists,
contact the Redistributor. Unless otherwise indicated below, the terms and conditions
of the EPL still apply to any source code in the Content and such source code may be
obtained at http://www.eclipse.org.

About this content

7-2 Dali Java Persistence Tools User Guide

Index-1

Index

Annotations
@Basic, 3-11
@Column, 4-5
@DiscriminatorColumn, 3-10
@DiscriminatorValue, 3-10
@Embeddable, 3-7
@Embedded, 3-12
@EmbeddedId, 3-13
@Entity, 3-6
@Enumerated, 4-5
@GeneratedValue, 4-7
@Id, 3-13
@Inheritance, 3-8, 3-9
@JoinColumn, 3-16, 3-18, 4-6, 4-7
@Lob, 4-5
@ManyToMany, 3-15
@ManyToOne, 3-16
@MappedSuperclass, 3-8
@OneToMany, 3-17
@OneToOne, 3-18
@OrderBy, 4-6
@SequenceGenerator, 4-8
@Temporal, 4-5
@Transient, 3-19
@Version, 3-19

A
annotations. See specific annotation.
architecture of Dali feature, 4-13
attributes

JPA Details view, 4-4
mapping, 2-1

B
basic mapping

@Basic, 3-11
about, 3-11
See also mappings

C
classes

adding persistence to, 3-6
embeddable, 3-7

entity, 3-6
mapped superclass, 3-8
synchronizing, 3-4

columns
discriminator, 3-10
join, 3-16, 3-18, 4-6, 4-7
mapping to, 4-5
value, 3-10

D
database tables

generating entities from, 3-20
database, persistence

connection, 4-10
schema, 4-10

developer documentation, Dali, 4-13

E
eager fetch, 4-5
EJB. see persistent entities
embeddable class

@Embeddable, 3-7
about, 3-7

embedded ID mapping
@EmbeddedId, 3-13
about, 3-13

embedded mapping
@Embedded, 3-12
about, 3-12

entities
@Entity annotation, 3-6
about, 2-1
embeddable, 3-7
from tables, 3-20, 4-10
JPA Details view, 4-3
mapped superclass, 3-8
mapping, 1-6
persistence, 1-3
persistent, 3-6
secondary tables, 4-3

@Enumerated, 4-5
enumerated, 4-5
error messages, Dali, 3-21
extension points, Dali feature, 4-13

Index-2

F
fetch type, 4-5

G
Generate Entities from Tables dialog, 3-20, 4-10
generated values

ID mappings, 4-7
sequence, 4-8

I
ID mapping

@Id, 3-13
about, 3-13

inheritance
entity, 3-8, 3-9, 4-3
joined tables, 3-11
single table, 3-10

Inheritance, in Java Details view, 4-3
installation, Dali, 1-1

J
joined tables, inheritance, 3-11
JPA Details view

attributes, 4-4
entities, 4-3

JPA Development perspective, 4-11
JPA Facet dialog, 3-3
JPA project

creating new, 3-1
platform, 4-10

JPA Project dialog, 3-2
JPA Structure view, 4-9

L
lazy fetch, 4-5

M
many-to-many mapping

@ManyToMany, 3-15
about, 3-15

many-to-one mapping
@ManyToOne, 3-16
about, 3-16

mapped superclass
@MappedSuperclass, 3-8
about, 3-8

mapping entities, 1-6
mappings

about, 2-1
basic, 3-11
embedded, 3-12
embedded ID, 3-13
ID, 3-13
many-to-many, 3-15
many-to-one, 3-16

one-to-many, 3-17
one-to-one, 3-18
problems, 3-21
transient, 3-19
version, 3-19

N
New JPA Project wizard, 3-1
nonpersistent

classes, 3-6
fields. See transient

O
one-to-many mapping

@OneToMany, 3-17
about, 3-17

one-to-one mapping
@OneToOne, 3-18
about, 3-18

OR (object-relational) mappings. See mappings
@OrderBy, 4-6
ordering, 4-6
orm.xml file

about, 2-2
managing, 3-5
sample, 3-5

outline, persistence. See JPA Structure view

P
persistence

about, 2-1
database connection, 4-10
database schema, 4-10
entity class, 3-6
options, 4-9

Persistence XML Editor, 3-4
persistence.xml file

about, 2-2
editor, 3-4
managing, 3-3, 3-4, 3-5
sample, 3-3
synchronizing with classes, 3-4

persistent entity, 3-6
perspective, JPA Development, 4-11
platform, JPA, 4-10
problems, 3-21
projects, JPA

creating new, 1-2, 3-1
options, 4-9

Q
quick start, Dali, 1-1

R
requirements

Dali Java Persistence Tools, 1-1

Index-3

persistent entities, 3-6

S
schema, database, 4-10
secondary tables, 4-3
Secondary Tables, in Java Details view, 4-3
single table inheritance, 3-10
superclass, 3-8

T
tables

creating entities from, 3-20, 4-10
inheritance, 3-10
secondary, 4-3

@Temporal, 4-5
temporal, 4-5
transient mapping

@Transient, 3-19
about, 3-19

tutorial, Dali, 1-7

V
version mapping

@Version, 3-19
about, 3-19

views
JPA Details view, 4-3, 4-4
JPA Structure view, 4-9

W
warning messages, Dali, 3-21
wizards

New JPA Project wizard, 3-1

X
XML editor, 3-4, 3-5

Index-4

	Contents
	1 Getting started
	1.1 Requirements and installation
	1.2 Dali quick start
	1.2.1 Creating a new project
	1.2.2 Creating a Java persistent entity
	1.2.3 Mapping an entity

	1.3 Dali basic tutorial
	1.3.1 Generate the tutorial database schema
	1.3.1.1 Create a database connection

	1.3.2 Create a JPA project
	1.3.3 Create persistent Java entities
	1.3.3.1 Add fields to the entities
	1.3.3.2 Associate the entity with a database table

	1.3.4 Create OR mappings
	1.3.4.1 Create ID mappings
	1.3.4.2 Create basic mappings
	1.3.4.3 Create one-to-one mappings
	1.3.4.4 Create one-to-many mappings
	1.3.4.5 Create many-to-one mappings
	1.3.4.6 Create version mappings

	2 Concepts
	2.1 Understanding Java persistence
	2.2 Understanding OR mappings
	2.3 Understanding EJB 3.0 Java Persistence API
	2.3.1 The persistence.xml file
	2.3.2 The orm.xml file

	3 Tasks
	3.1 Creating a new JPA project
	3.2 Managing the persistence.xml file
	3.2.1 Working with persistence.xml file
	3.2.2 Synchronizing classes

	3.3 Managing the orm.xml file
	3.3.1 Working with orm.xml file

	3.4 Adding persistence to a class
	3.4.1 Entity
	3.4.2 Embeddable
	3.4.3 Mapped superclass

	3.5 Specifying additional tables
	3.6 Specifying entity inheritance
	3.7 Mapping an entity
	3.7.1 Basic mapping
	3.7.2 Embedded mapping
	3.7.3 Embedded ID mapping
	3.7.4 ID mapping
	3.7.5 Many-to-many mapping
	3.7.6 Many-to-one mapping
	3.7.7 One-to-many mapping
	3.7.8 One-to-one mapping
	3.7.9 Transient mapping
	3.7.10 Version mapping

	3.8 Generating entities from tables
	3.9 Validating mappings and reporting problems
	3.9.1 Error messages
	3.9.2 Warning messages

	3.10 Modifying persistent project properties

	4 Reference
	4.1 Wizards
	4.1.1 Create New JPA Project wizard
	4.1.1.1 New JPA Project page
	4.1.1.2 JPA Facet page

	4.2 Property pages
	4.2.1 JPA Details view (for entities)
	4.2.1.1 General information
	4.2.1.2 Secondary table information
	4.2.1.3 Inheritance information

	4.2.2 JPA Details view (for attributes)
	4.2.2.1 General information
	4.2.2.2 Join Table Information
	4.2.2.3 Join Columns Information
	4.2.2.4 Primary Key Generation information

	4.2.3 JPA Details view (for orm.xml)
	4.2.3.1 General information
	4.2.3.2 Persistence Unit information

	4.2.4 JPA Structure view

	4.3 Preferences
	4.3.1 Project Properties page - JPA Options

	4.4 Dialogs
	4.4.1 Generate Entities from Tables dialog
	4.4.2 Edit Join Columns Dialog

	4.5 JPA Development perspective
	4.6 Icons and buttons
	4.6.1 Icons
	4.6.2 Buttons

	4.7 Dali Developer Documentation

	5 Tips and tricks
	6 What’s new
	6.1 Generate Persistent Entities from Tables wizard
	6.2 Create and Manage the persistence.xml file
	6.3 Create and Manage the orm.xml file

	7 Legal
	7.1 About this content

	Index

